Отыскание общего решения систем равенств и неравенств. Как быть с дробными неравенствами? Решение квадратных неравенств

Не все знают, как решать неравенства, которые по своей структуре имеют сходные и отличительные черты с уравнениями. Уравнение – упражнение, состоящее их двух частей, между которыми стоит знак равенства, а между частями неравенства может стоять знак «больше» или «меньше». Таким образом, прежде чем найти решение конкретного неравенства, мы должны понимать, что стоит учитывать знак числа (положительное или отрицательное), если возникает необходимость умножения обеих частей на какое-либо выражение. Этот же факт следует учитывать, если требуется для решения неравенства возводить в квадрат, поскольку возведение в квадрат проводится путем умножения.

Как решать систему неравенств

Намного сложнее решать системы неравенств, чем обычные неравенства. Как решать неравенства 9 класс, рассмотрим на конкретных примерах. Следует понимать, что перед тем, как решать квадратные неравенства (системы) или любые иные системы неравенств, необходимо решить каждое неравенство по отдельности, после чего сопоставить их. Решением системы неравенства будет либо положительный, либо отрицательный ответ (имеет система решение или не имеет решения).

Задача - решить совокупность неравенств:

Решим каждое неравенство по отдельности

Строим числовую прямую, на которой изображаем множество решений

Так как совокупность - это объединение множеств решений, то это множество на числовой прямой должно быть подчеркнуто минимум одной линией.

Решение неравенств с модулем

Данный пример покажет, как решать неравенства с модулем. Итак, у нас имеется определение:

Нам необходимо решить неравенство:

Прежде чем решить такое неравенство, необходимо избавиться от модуля (знака)

Запишем, основываясь данными определения:

Теперь следует решать каждую из систем по отдельности.

Построим одну числовую прямую, на которой изобразим множества решений.

В результате у нас получилась совокупность, объединяющая множество решений.

Решение квадратичных неравенств

Используя числовую прямую рассмотрим на примере решение квадратичных неравенств. У нас есть неравенство:

Нам известно, что графиком квадратного трехчлена является парабола. Так же нам известно, что ветви параболы направленные вверх, если а>0.

x 2 -3x-4 < 0

Пользуясь теоремой Виета находим корни х 1 = - 1; х 2 = 4

Изобразим параболу, вернее, ее эскиз.

Таким образом, мы выяснили, что значения квадратного трехчлена будут меньше 0 на отрезке от – 1 до 4.

У многих возникают вопросы при решении двойных неравенств типа g(x) < f(x) < q(x). Перед тем, как решать двойные неравенства, необходимо их раскладывать на простые, и каждое простое неравенство решать по отдельности. Например, разложив наш пример, получим в результате систему неравенств g(x) < f(x) и f(x) < q(x), которую следует и решать.

На самом деле, методов решения неравенств несколько, поэтому вы можете использовать для решения сложных неравенств графический способ.

Решение дробных неравенств

Более тщательного подхода требуют к себе дробные неравенства. Это обусловлено тем, что в процессе решения некоторых дробных неравенств может измениться знак. Перед тем, как решать дробные неравенства, необходимо знать, что для их решения используется метод интервалов. Дробное неравенство необходимо представить таким образом, чтобы одна сторона от знака выглядела, как дробно-рациональное выражение, а вторая – «- 0». Преобразуя неравенство таким образом, мы получим в результате f(x)/g(x) > (.

Решение неравенств методом интервалов

Методика интервалов основана на методе полной индукции, то есть, необходимо для нахождения решения неравенства перебрать все возможные варианты. Данный метод решения, возможно, и не потребуется ученикам 8-х классов, поскольку они должны знать, как решать неравенства 8 класс, которые представляют собой простейшие упражнения. А вот для более старших классов этот метод незаменим, так как помогает решить дробные неравенства. Решение неравенств с помощью данной методики основано и на таком свойстве непрерывной функции, как сохранение знака между значениями, в которых она обращается в 0.

Построим график многочлена. Это непрерывная функция, приобретающая значение 0 3 раза, то есть, f(x) будет равен 0 в точках x 1 , x 2 и x 3 , корнях многочлена. В промежутках между этими точками, знак функции сохраняется.

Так как для решения неравенства f(x)>0 нам необходим знак функции, переходим к координатной прямой, оставив график.

f(x)>0 при x(x 1 ; x 2) и при x(x 3 ;)

f(x)x(- ; x 1) и при х (x 2 ; x 3)

На графике наглядно показаны решения неравенств f(x)f(x)>0 (синим цветом решение для первого неравенства, а красным – для второго). Чтобы определить Для определения знак функции на интервале, достаточно того, чтобы вам был известен знак функции в одной из точек. Данная методика позволяет быстро решать неравенства, в которых левая часть разложена на множители, потому что в таких неравенствах достаточно просто найти корни.

В статье рассмотрим решение неравенств . Расскажем доступно о том, как строиться решение неравенств , на понятных примерах!

Перед тем, как рассмотреть решение неравенств на примерах, разберемся с базовыми понятиями.

Общи сведения о неравенствах

Неравенством называется выражение, в котором функции соединяются знаками отношения >, . Неравенства бывают как числовые, так и буквенные.
Неравенства с двумя знаками отношения, называются двойными, с тремя - тройными и т.д. Например:
a(x) > b(x),
a(x) a(x) b(x),
a(x) b(x).
a(x) Неравенства, содержащие знак > или или - нестрогими.
Решением неравенства является любое значение переменой, при котором это неравенство будет верно.
"Решить неравенство " означает, что надо найти множество всех его решений. Существуют различные методы решения неравенств . Для решения неравенства пользуются числовой прямой, которая бесконечна. Например, решением неравенства x > 3 есть промежуток от 3 до +, причем число 3 не входит в этот промежуток, поэтому точка на прямой обозначается пустым кружком, т.к. неравенство строгое.
+
Ответ будет следующим: x (3; +).
Значение х=3 не входит в множество решений, поэтому скобка круглая. Знак бесконечности всегда выделяется круглой скобкой. Знак означает «принадлежание».
Рассмотрим как решать неравенства на другом примере со знаком :
x 2
-+
Значение х=2 входит в множество решений, поэтому скобка квадратная и точка на прямой обозначается закрашенным кружком.
Ответ будет следующим: x .

Третий пример. |1 - х| > 2 |х - 1|.

Решение. Первым делом нужно определить точки, в которых функции обращаются в ноль. Для левого этим числом будет 2, для правого — 1. их нужно отметить на луче и определить промежутки знакопостоянства.

На первом интервале, от минус бесконечности до 1, функция из левой части неравенства принимает положительные значения, а из правой — отрицательные. Под дугой нужно записать рядом два знака «+» и «-».

Следующий промежуток от 1 до 2. На нем обе функции принимают положительные значения. Значит, под дугой два плюса.

Третий интервал от 2 до бесконечности даст такой результат: левая функция — отрицательная, правая — положительная.

С учетом получившихся знаков нужно вычислить значения неравенства для всех промежутков.

На первом получается такое неравенство: 2 - х > - 2 (х - 1). Минус перед двойкой во втором неравенстве получился из-за того, что эта функция отрицательная.

После преобразования неравенство выглядит так: х > 0. Оно сразу дает значения переменной. То есть из этого интервала в ответ пойдет только промежуток от 0 до 1.

На втором: 2 - х > 2 (х - 1). Преобразования дадут такое неравенство: -3х + 4 больше ноля. Его нулем будет значение х = 4/3. С учетом знака неравенства получается, что х должен быть меньше этого числа. Значит, этот интервал уменьшается до промежутка от 1 до 4/3.

Последний дает такую запись неравенства: - (2 - х) > 2 (х - 1). Его преобразование приводит к такому: -х > 0. То есть уравнение верно при х меньшем ноля. Это значит, что на искомом промежутке неравенство не дает решений.

На первых двух промежутках граничным оказалось число 1. Его нужно проверить отдельно. То есть подставить в исходное неравенство. Получается: |2 - 1| > 2 |1 - 1|. Подсчет дает что 1 больше 0. Это верное утверждение, поэтому единица входит в ответ.

Ответ: х лежит в промежутке (0; 4/3).

Системе неравенств.
Пример 1 . Найти область определения выражения
Решение. Под знаком квадратного корня должно находиться неотрицательное число, значит, должны одновременно выполняться два неравенства: В таких случаях говорят, что задача сводится к решению системы неравенств

Но с такой математической моделью (системой неравенств) мы еще не встречались. Значит, решение примера мы пока не в состоянии довести до конца.

Неравенства, образующие систему, объединяются фигурной скобкой (так же обстоит дело и в системах уравнений). Например, запись

означает, что неравенства 2х - 1 > 3 и Зх - 2 < 11 образуют систему неравенств.

Иногда используется запись системы неравенств в виде двойного неравенства. Например, систему неравенств

можно записать в виде двойного неравенства 3<2х-1<11.

В курсе алгебры 9-го класса мы будем рассматривать только системы из двух неравенств.

Рассмотрим систему неравенств

Можно подобрать несколько ее частных решений, например х = 3, х = 4, х = 3,5. В самом деле, при х = 3 первое неравенство принимает вид 5 > 3, а второе - вид 7 < 11. Получились два верных числовых неравенства, значит, х = 3 - решение системы неравенств. Точно так же можно убедиться в том, что х = 4, х = 3,5 - решения системы неравенств.

В то же время значение х = 5 не является решением системы неравенств. При х = 5 первое неравенство принимает вид 9 > 3 - верное числовое неравенство, а второе - вид 13 < 11- неверное числовое неравенство .
Решить систему неравенств - значит найти все ее частные решения. Ясно, что такое угадывание, которое продемонстрировано выше, - не метод решения системы неравенств. В следующем примере мы покажем, как обычно рассуждают при решении системы неравенств.

Пример 3. Решить систему неравенств:

Р е ш е н и е.

а) Решая первое неравенство системы, находим 2х > 4, х > 2; решая второе неравенство системы, находим Зх < 13 Отметим эти промежутки на одной координатной прямой , использовав для выделения первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 22). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. В рассматриваемом примере получаем интервал
б) Решая первое неравенство системы, находим х > 2; решая второе неравенство системы, находим Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 23). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. В рассматриваемом примере получаем луч


в) Решая первое неравенство системы, находим х < 2; решая второе неравенство системы, находим Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 24). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. Здесь такого промежутка нет, значит, система неравенств не имеет решений.



Обобщим рассуждения, проведенные в рассмотренном примере. Предположим, что нам нужно решить систему неравенств


Пусть, например, интервал (а, b) является решением неравенства fх 2 > g(х), а интервал (с, d) - решением неравенства f 2 (х) > s 2 (х). Отметим эти промежутки на одной координатной прямой, использовав для первого промежутка верхнюю штриховку, а для второго - нижнюю штриховку (рис. 25). Решением системы неравенств является пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. На рис. 25 это интервал (с, b).


Теперь мы без особого труда сможем решить систему неравенств, которую получили выше, в примере 1:

Решая первое неравенство системы, находим х > 2; решая второе неравенство системы, находим х < 8. Отметим эти промежутки (лучи) на одной координатной прямой, использовав для первого -верхнюю, а для второго - нижнюю штриховку (рис. 26). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали, - отрезок . Это - область определения того выражения, о котором шла речь в примере 1.


Разумеется, система неравенств не обязательно должна состоять из линейных неравенств, как было до сих пор; могут встретиться любые рациональные (и не только рациональные) неравенства. Технически работа с системой рациональных нелинейных неравенств, конечно, сложнее, но принципиально нового (по сравнению с системами линейных неравенств) здесь ничего нет.

Пример 4. Решить систему неравенств

Р е ш е н и е.

1) Решим неравенство Имеем
Отметим точки -3 и 3 на числовой прямой (рис. 27). Они разбивают прямую на три промежутка, причем на каждом промежутке выражение р(х) = (х- 3)(х + 3) сохраняет постоянный знак - эти знаки указаны на рис. 27. Нас интересуют промежутки, на которых выполняется неравенство р(х) > 0 (они заштрихованы на рис. 27), и точки, в которых выполняется равенство р(х) = 0, т.е. точки х = -3, х = 3 (они отмечены на рис. 2 7 темными кружочками). Таким образом, на рис. 27 представлена геометрическая модель решения первого неравенства.


2) Решим неравенство Имеем
Отметим точки 0 и 5 на числовой прямой (рис. 28). Они разбивают прямую на три промежутка, причем на каждом промежутке выражение <7(х) = х(5 - х) сохраняет постоянный знак - эти знаки указаны на рис. 28. Нас интересуют промежутки, на которых выполняется неравенство g(х) > О (заштриховано на рис. 28), и точки, в которых выполняется равенство g (х) - О, т.е. точки х = 0, х = 5 (они отмечены на рис. 28 темными кружочками). Таким образом, на рис. 28 представлена геометрическая модель решения второго неравенства системы.


3) Отметим найденные решения первого и второго неравенств системы на одной координатной прямой, использовав для решений первого неравенства верхнюю штриховку, а для решений второго - нижнюю штриховку (рис. 29). Решением системы неравенств будет пересечение решений неравенств системы, т.е. промежуток, на котором обе штриховки совпали. Таким промежутком является отрезок .


Пример 5. Решить систему неравенств:


Решение:

а) Из первого неравенства находим x >2. Рассмотрим второе неравенство. Квадратный трехчлен х 2 + х + 2 не имеет действительных корней, а его старший коэффициент (коэффициент при х 2) положителен. Значит, при всех х выполняется неравенство х 2 + х + 2>0,а потому второе неравенство системы не имеет решений. Что это значит для системы неравенств? Это значит, что система не имеет решений.

б) Из первого неравенства находим x > 2, а второе неравенство выполняется при любых значениях х. Что это значит для системы неравенств? Это значит, что ее решение имеет вид х>2, т.е. совпадает с решением первого неравенства.

О т в е т:

а) нет решений; б) x >2.

Этот пример является иллюстрацией для следующих полезных

1. Если в системе из нескольких неравенств с одной переменной одно неравенство не имеет решений, то и система не имеет решений.

2. Если в системе из двух неравенств с одной переменной одно неравенство выполняется при любых значениях переменной , то решением системы служит решение второго неравенства системы.

Завершая этот параграф, вернемся к приведенной в его начале задаче о задуманном числе и решим ее, как говорится, по всем правилам.

Пример 2 (см. с. 29). Задумано натуральное число. Известно, что если к квадрату задуманного числа прибавить 13, то сумма будет больше произведения задуманного числа и числа 14. Если же к квадрату задуманного числа прибавить 45, то сумма будет меньше произведения задуманного числа и числа 18. Какое число задумано?

Решение.

Первый этап. Составление математической модели.
Задуманное число х, как мы видели выше, должно удовлетворять системе неравенств


Второй этап. Работа с составленной математической моделью.Преобразуем первое неравенство системы к виду
х2- 14x+ 13 > 0.

Найдем корни трехчлена х 2 - 14x + 13: х 2 = 1, х 2 = 13. С помощью параболы у = х 2 - 14x + 13 (рис. 30) делаем вывод, что интересующее нас неравенство выполняется при x < 1 или x > 13.

Преобразуем второе неравенство системы к виду х2 - 18 2 + 45 < 0. Найдем корни трехчлена х 2 - 18x + 45: = 3, х 2 = 15.

Программа для решения линейных, квадратных и дробных неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Причём, если в процессе решения одного из неравенств нужно решить, например, квадратное уравнение, то его подробное решение также выводится (оно заключается в спойлер).

Данная программа может быть полезна учащимся старших классов при подготовке к контрольным работам, родителям для контроля решения неравенств их детьми.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Правила ввода неравенств

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5y +1/7y^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} y + \frac{1}{7}y^2 \)

При вводе выражений можно использовать скобки. В этом случае при решении неравенства выражения сначала упрощаются.
Например: 5(a+1)^2+2&3/5+a > 0,6(a-2)(a+3)

Выберите нужный знак неравенства и введите многочлены в поля ниже.

Первое неравенство системы.

Нажмите на кнопку для изменения типа первого неравенства.


> >= < <=
Решить систему неравенств

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Системы неравенств с одним неизвестным. Числовые промежутки

С понятием системы вы познакомились в 7 классе и научились решать системы линейных уравнений с двумя неизвестными. Далее будут рассмотрены системы линейных неравенств с одним неизвестным. Множества решений систем неравенств могут записываться с помощью промежутков (интервалов, полуинтервалов, отрезков, лучей). Также вы познакомитесь обозначениями числовых промежутков.

Если в неравенствах \(4x > 2000 \) и \(5x \leq 4000 \) неизвестное число х одно и то же, то эти неравенства рассматривают совместно и говорят, что они образуют систему неравенств: $$ \left\{\begin{array}{l} 4x > 2000 \\ 5x \leq 4000 \end{array}\right. $$

Фигурная скобка показывает, что нужно найти такие значения х, при которых оба неравенства системы обращаются в верные числовые неравенства. Данная система - пример системы линейных неравенств с одним неизвестным.

Решением системы неравенств с одним неизвестным называется то значение неизвестного, при котором все неравенства системы обращаются в верные числовые неравенства. Решить систему неравенств - это значит найти все решения этой системы или установить, что их нет.

Неравенства \(x \geq -2 \) и \(x \leq 3 \) можно записать в виде двойного неравенства: \(-2 \leq x \leq 3 \).

Решениями систем неравенств с одним неизвестным являются различные числовые множества. Эти множества имеют названия. Так, на числовой оси множество чисел х, таких, что \(-2 \leq x \leq 3 \), изображается отрезком с концами в точках -2 и 3.

-2 3

Если \(a отрезком и обозначается [а; b]

Если \(a интервалом и обозначается (а; b)

Множества чисел \(x \), удовлетворяющих неравенствам \(a \leq x полуинтервалами и обозначаются соответственно [а; b) и (а; b]

Отрезки, интервалы, полуинтервалы и лучи называют числовыми промежутками .

Таким образом, числовые промежутки можно задавать в виде неравенств.

Решением неравенства с двумя неизвестными называется пара чисел (х; у), обращающая данное неравенство в верное числовое неравенство. Решить неравенство - это значит найти множество всех его решений. Так, решениями неравенства х > у будут, например, пары чисел (5; 3), (-1; -1), так как \(5 \geq 3 \) и \(-1 \geq -1\)

Решение систем неравенств

Решать линейные неравенства с одним неизвестным вы уже научились. Знаете, что такое система неравенств и решение системы. Поэтому процесс решения систем неравенств с одним неизвестным не вызовет у вас затруднений.

И все же напомним: чтобы решить систему неравенств, нужно решить каждое неравенство по отдельности, а затем найти пересечение этих решений.

Например, исходная система неравенств была приведена к виду:
$$ \left\{\begin{array}{l} x \geq -2 \\ x \leq 3 \end{array}\right. $$

Чтобы решить эту систему неравенств, отметим решение каждого неравенства на числовой оси и найдём их пересечение:

-2 3

Пересечением является отрезок [-2; 3] - это и есть решение исходной системы неравенств.