Цепные реакции, основные понятия, примеры цепных реакций. Возникновение теории цепных реакций Самая энергоемкая стадия цепной реакции

Академик Н. СЕМЕНОВ.

Академик Николай Николаевич Семенов. Этот куст сирени у здания Института химической физики РАН он посадил сам.

Рис. 1. Скорость большинства химических реакций W быстро меняется с температурой. Левая шкала оси ординат относится к кривой 1, а правая - к кривой 2, являющейся продолжением кривой 1.

Рис. 2. Химический процесс, происходящий между молекулами Н2 и О2, можно уподобить салазкам, стоящим на вершине горы, профиль которой изображен на рисунке.

Рис. 3. Цепную реакцию можно сравнить со спуском с горы, профиль которой изображен на рисунке, где в каждой впадине стоят салазки.

Наука и жизнь // Иллюстрации

Рис. 4. Один первичный центр может вызвать целую лавину химического превращения. Изображены два типа таких лавин, где каждая черточка изображает один элементарный акт реакции.

Издательство "Наука" при поддержке Российского фонда фундаментальных исследований завершает издание избранных трудов Н. Н. Семенова в четырех томах. В издание включены основные работы, начиная со студенческих публикаций, выполненных в 1913 году.

В апреле 2006 года отечественное и мировое научное сообщество отмечает 110 лет со дня рождения великого естествоиспытателя XX века - академика Николая Николаевича Семенова, первого и пока единственного русского ученого, получившего Нобелевскую премию за работы по химии.

Он увлекался химией с детства, ставил опыты, иногда заканчивавшиеся взрывами, читал запоем учебники, искал ответы на возникавшие вопросы. В статье "О времени и о себе" (см. "Наука и жизнь" № 6, 1966 г.) Николай Николаевич вспоминает такой эпизод: "Я никак не мог понять, почему, например, обыкновенная соль, состоящая из мягкого металла натрия и ядовитого газа хлора, так отличается по свойствам от компонентов, из которых она состоит. С детским стремлением проверить все самому я у себя дома сжег кусочек натрия в хлоре и, получив осадок, посолил им кусок хлеба и съел его. Ничего не скажешь: это была действительно соль!".

Еще в юношеские годы он пришел к выводу, что для понимания химии нужно знать физику, и поступил в 1913 году на отделение физики физико-математического факультета Петербургского университета. Физический подход к химическим реакциям оказался необычайно плодотворным: родилась новая наука - химическая физика, которая рассматривала химические процессы исходя из физических представлений о структуре вещества.

Николай Николаевич Семенов в течение долгих лет был членом редколлегии журнала "Наука и жизнь" и автором многих замечательных статей. На страницах журнала он рассказывал о своих учителях и коллегах, о радостях и трудностях поиска научной истины, о путях развития науки, о новых направлениях в химии и конечно же о теории цепных реакций, которая принесла ему мировую славу, а в 1956 году - Нобелевскую премию, совместно с британским химиком С. Хиншельвудом. Механизм цепных реакций стал ключом к пониманию множества различных явлений - горения, взрыва, биохимических процессов. В 1940 году академик Н. Н. Семенов опубликовал в журнале "Наука и жизнь" статью "Теория горения". Мы предлагаем вниманию читателей раздел этой статьи, посвященный цепным реакциям.

Слабое развитие химической кинетики и необычайно яркие тепловые и гидродинамические эффекты пламени и взрывов заставляли прежних исследователей фиксировать свое внимание именно на тепловой и гидродинамической стороне горения, затушевывая вопросы о скорости химического превращения, лежащего в основе самого явления. В этом была их ошибка и причина неудач во всех теоретических построениях о природе пламени (исключая теории установившейся детонации). Научная школа Института химической физики с самого начала поставила вопрос по-иному. Поскольку первопричина тепловых и гидродинамических явлений горения лежит в самом химическом превращении, - кинетика химического превращения стала для нас основным звеном вопроса. Сюда мы и направили главный удар.

Учитывая, однако, что мощные тепловые и гидродинамические эффекты реакции оказывают сильнейшее обратное влияние на скорость химического превращения, мы направили вспомогательный удар на решение вопросов гидродинамики и теплопередачи в пламенах в их тесном взаимодействии с кинетикой. Такое взаимодействие нескольких видов оружия привело нас к существенным успехам на пути создания теории горения и взрывов.

Скорость большинства химических реакций быстро меняется с температурой (рис. 1).

В этих простейших случаях при увеличении температуры горючего газа медленная реакция, ускоряясь, приводит при достижении некоторой критической температуры к самовоспламенению. Дело сводится к тому, что при достижении определенной (как можно показать, небольшой) скорости реакции тепло, ею выделяемое, не успевает отводиться через газ и стенки сосуда наружу. Это вызывает прогрессивный разогрев газа, приводящий в свою очередь к еще большему ускорению реакции и т. д. В результате такой тепловой лавины возникает бурный процесс сгорания, заканчивающийся в течение доли секунды и воспринимаемый нами как взрыв. Все это совершенно подобно самовозгоранию непросушенных стогов сена или серы в отвалах. Такая трактовка самовоспламенения очень кратко качественно была формулирована Вант-Гоффом в 1883 году и количественно разработана мной в 1928 году и проверена на опыте. Сотрудники нашего института Тодес и Франк-Каменецкий деталировали и уточнили эту теорию в последние годы.

В результате всех этих работ температура самовоспламенения, как константа вещества, была полностью дискредитирована. Она оказалась производной величиной от констант, определяющих скорость химического превращения, и от условий теплоотдачи (размеров сосуда, теплопроводности смеси и т. д.).

Нами было показано, что в случае, если известна кинетика химической реакции, температура самовоспламенения может быть предвычислена с большой точностью.

Однако такая простая картина наблюдается лишь для немногих реакций, особенно для тех, где реакция сводится к простому распаду молекул на части.

В случае реакции окисления (а к этому классу относится большинство технически интересных реакций) кинетика оказывается гораздо более сложной и приводит к новым замечательным явлениям в области самовоспламенения. Большое количество новых фактов, открытых нами в течение последних 12 лет, а также анализ старых, давно забытых работ привели нас к формулировке цепной теории химических реакций, изложенной в моей книге, изданной в 1934 году. Я принужден затронуть здесь этот старый материал, так как наши новые работы тесным образом связаны с этой теорией.

Прямое соединение молекул горючего и кислорода (например, водорода Н 2 +О 2) является процессом очень затрудненным, потому что хотя вода, например, термодинамически несравненно более устойчива, чем Н 2 и О 2 , но все же относительная устойчивость Н 2 и О 2 также очень велика. Химический процесс, происходящий между ними, можно уподобить салазкам, стоящим на вершине горы профиля, изображенного на рис. 2.

Гораздо более устойчиво положение салазок у подошвы горы, но, чтобы скатиться вниз, салазки приходится втащить на бугор, затратив предварительно энергию.

Поэтому реакция обычно выбирает другой путь, который приводит к большой скорости превращения.

Известно, что свободные атомы, радикалы и некоторые неустойчивые промежуточные соединения входят с молекулами в реакцию гораздо легче, чем молекулы между собой. При такой реакции наряду с молекулой продукта обычно образуется новый радикал , который в свою очередь реагирует с молекулой, и т. д. При этом один первичный радикал создает длинную цепь последующих реакций. Пользуясь нашей аналогией, мы могли бы сравнить это с горой профиля, изображенного на рис. 3,где в каждой впадине стоят салазки.

После того как мы втащили первые из них на бугор и пустили вниз, они ударятся о вторые и столкнут их, вторые столкнут третьи и т. д. Естественно, что такой процесс оказывается гораздо более экономным, чем если мы будем каждые салазки втаскивать на свой бугор и спускать вниз.

При некоторых условиях при отдельных элементарных реакциях возникают сразу два радикала, что приводит к разветвлению цепи. При этом один первичный центр может вызвать целую лавину химического превращения (см. рис. 4, изображающий схематически два типа таких лавин, где каждая черточка изображает один элементарный акт реакции).

При одних внешних условиях давления, температуры и т. д. эта лавина сможет развивать ся, при других нет. Пока нет условий для развития цепной лавины и при очень редком появлении исходных радикалов реакция практически не идет вовсе. Как только условия для развития лавины создаются, то сколь бы малое число начальных центров ни создавалось, реакция, лавинообразно ускоряясь, приведет к полному сгоранию вещества.

Формально эта картина чрезвычайно подобна размножению бактерий, в частности, вызывающих заболевание организма. При ничтожном числе попавших в организм во время заражения бактерий, если условия для их размножения благоприятны, лавина размножения бактерий приводит к заболеванию. Активные центры ценной теории - это те же бактерии химического процесса, размножение которых заканчивается смертью исходного вещества. Здесь, как и при заражении, царит принцип - все или ничего. Либо, при соответствующем состоянии организма, бактерии практически не размножаются, либо они размножаются в огромных количествах. Либо реакция очень мала, либо она происходит с большой скоростью.

Примеси, обрывающие цепи и затормаживающие процесс, подобны сывороткам, убивающим или стимулирующим организм к убиванию бактерий.

В случае если химическая лавина нарастает медленно, то мы имеем дело с автоускоряющимся процессом, приводящим к взрыву с большим запозданием - в тот момент, когда скорость реакции достигает такой величины, что выделяемое ею тепло более не успевает отводиться через теплопроводность. В случае, если цепная лавина развивается быстро, она приводит к явлению самовоспламенения и выгоранию вещества даже совершенно независимо от тепловых явлений. Воспламенение паров фосфора, фосфина, сероуглерода при концентрации порядка сотых долей процента в воздухе не вызывает практически никакого повышения температуры. Тем не менее воспламенение происходит при строго определенных условиях. Это есть типичное осуществление цепной изотермической лавины в чистом виде. Однако и при воспламенении богатых смесей природа процесса, приводящая к взрыву, та же. Воспламенение происходит с помощью цепной лавины, она явится первопричиной, а бурный разогрев и звук являются здесь вторичными явлениями.

Взрыв первого рода, когда его первопричиной является тепловая лавина, происходит так, что при температуре чуть ниже взрывной идет небольшая, но все же вполне измеримая реакция. Взрыв второго рода, когда его первопричиной является цепная лавина, отличается тем, что при температуре чуть ниже взрывной реакция практически может не идти вовсе.

В качестве примера приведем схему реакции окисления водорода (рис. 5).

Уже из этой схемы видно, что примеси в ничтожном количестве могут сильно тормозить реакции, соединяясь с атомами Н, О или с ОН и тем обрывая цепь.

Хотя схемы цепных реакций могут быть весьма разнообразны, удалось установить ряд общих законов цепных реакций и объяснить и предсказать ряд удивительных фактов. Из огромного числа таковых, открытых у нас и за границей, я продемонстрирую здесь лишь один.

Мы привыкли думать, что чем больше давление горючей смеси, тем легче она воспламеняется и горит. Во многих случаях цепных лавин это не так. Не только воспламенения, но и следов реакции нет при большом давлении. При уменьшении давления ниже некоторого критического происходит воспламенение.

Мне часто ставили в упрек, что мы говорим с большой легкостью о радикалах и промежуточных продуктах, не установив их наличия при цепных реакциях. Мне кажется, что опыты Института химической физики последних двух лет освобождают нас от этого упрека. Проф. Кондратьев и его сотрудники показали, что в пламенах водорода при низких давлениях (несколько миллиметров ртутного столба), где температура пламени по желанию может варьировать от 600 до 800°, присутствуют сравнительно очень большие концентрации радикалов ОН, достигающие 0,1 мм ртутного столба, т. е. нескольких процентов от исходной смеси. Регистрация радикалов производилась методом спектров поглощения. На пути пучка света, испускаемого разрядной трубкой, заполненной парами воды (такая трубка испускает линии ОН), ставилось пламя. Проходя сквозь пламя, пучок света попадал на щель спектрографа. В результате поглощения света радикалами ОН интенсивность линии испускания ослаблялась. По падению интенсивности можно было рассчитать концентрацию ОН в пламени. Интересно отметить, что концентрация ОН в сотни тысяч раз превышает термодинамически равновесные его значения при температурах пламен Кондратьева. Это доказывает, что ОН появляется в результате химической лавины, а не в результате термической диссоциации. Подобным же методом Кондратьев с сотрудниками доказал наличие больших количеств радикала CS и молекул SO в холодных пламенах сероуглерода.

Изучая автоускоряющуюся медленную реакцию окисления сероводорода H 2 S, Эмануэль, Павлов и я в этом году показали, что продуктами этой давно известной реакции является не только SO 2 (сернистый газ) и Н 2 О, но в весьма значительных количествах появляется и такой "экзотический" продукт, как SO. В первых стадиях реакции SO появляется в очень большом количестве, достигая 7% от исходного вещества и до 40% от превращенного к этому моменту Н 2 S, и лишь в конечных стадиях SO исчезает, переходя в SO 2 . SO регистрировалось по спектрам поглощения по ходу реакции, а также вторым, новым методом, в подробности которого я здесь не могу входить. Таким образом, SO является типичным промежуточным продуктом. Можно показать, что именно его образование вызывает автоускорение реакции и облегчает взрыв.

Подобные же опыты проводятся Нейманом, Соколиком и сотрудниками над промежуточными продуктами окисления углеводородов и эфиров. Все эти опыты кладут начало химии промежуточных соединений, которая должна стать экспериментальной базой нового раздела химии - химии процесса, или химической кинетики, подобно тому как опыты с микроскопом стали базой развития бактериологии.

Мы полагаем, что теория самовоспламенения в основных чертах нами закончена. Она прочно вошла в мировую научную литературу.

До сих пор мы рассматривали химические реакции, протекающие сравнительно просто. В таких реакциях каждый элементарный акт взаимодействия - каждое столкновение между активными молекулами реагирующих веществ - протекает независимо от результатов предшествующих элементарных актов. Образование макроскопических количеств продукта реакции является здесь результатом большого количества этих независящих друг от друга актов.

Существует, однако, обширная группа реакций, протекающих более сложно. В этих реакциях возможность протекания каждого элементарного акта сопряжена с успешным исходом предыдущего акта и, в свою очередь, обусловливает возможность последующего. Здесь образование макроскопических количеств продукта реакции представляет собой результат цепи элементарных актов взаимодействия. Такие реакции называются цепными.

Цепные реакции протекают с участием активных центров - атомов, ионов или радикалов (осколков молекул), обладающих неспаренными электронами и проявляющих, вследствие этого, очень высокую реакционную активность.

Роль активных центров могут играть, например, атомы и группы атомов .

При актах взаимодействия активных центров с молекулами исходных веществ образуются молекулы продукта реакции, а также новые активные частицы - новые активные центры, способные к акту взаимодействия. Таким образом, активные центры служат создателями цепей последовательных превращений веществ.

Простым примером цепной реакции может служить реакция синтеза хлороводорода

Эта реакция вызывается действием света. Поглощение кванта лучистой энергии молекулой хлора приводит к ее возбуждению - к появлению в ней энергичных колебаний атомов. Если энергия колебаний превышает энергию связи между атомами, то молекула распадается. Этот процесс фотохимической диссоциации можно выразить уравнением:

Образующиеся атомы хлора легко реагируют с молекулами водорода:

Атом водорода, в свою очередь, легко реагирует с молекулой хлора:

Эта последовательность процессов продолжается дальше: в рассматриваемом случае число звеньев может достигать 100 000. Иначе говоря, один поглощенный квант света приводит к образованию до ста тысяч молекул . Заканчивается цепь при столкновении свободного атома со стенкой сосуда, в котором происходит реакция. Цепь может аакончиться также при таком соударении двух активных частиц и одной неактивной, в результате которого активные частицы соединяются в молекулу, а выделяющаяся энергия уносится неактивной частицей. В подобных случаях происходит обрыв цепи.

Таков механизм цепной керазветвленной реакции; при каждом элементарном взаимодействии один активный центр образует кроме молекулы продукта реакции один новый активный центр.

В двадцатых годах XX века Н. Н. Семенов совместно с сотрудниками, изучая кинетику различных процессов, открыл явления, необъяснимые на основе существовавших в то время представлений о механизме химических реакций. Для их объяснения Н. Н. Семенов выдвинул теорию разветвленных цепных реакций, в ходе которых взаимодействие свободного радикала с молекулой исходного вещества приводит к образованию не одного, а двух или большего числа новых активных центров. Один из них продолжает старую цепь, а другие дают начало новым; цепь разветвляется, и реакция прогрессивно ускоряется.

К разветвленным цепным реакциям относится, например, реакция образования воды из простых веществ. Экспериментально установлен и подтвержден расчетами следующий механизм этой реакции. В смеси водорода с кислородом при нагревании или пропускании электрического разряда происходит взаимодействие молекул этих газов с образованием двух гидроксильных радикалов:

Радикалы легко реагируют с молекулой водорода

что приводит к образованию молекулы воды и свободного атома водорода. Последний реагирует с молекулой , давая уже две новых активных частицы:

Атом кислорода, реагируя с молекулой , в свою очередь, может породить два новых активных центра:

Таким образом происходит прогрессивное увеличение числа активных частиц и, если обрывы цепей не препятствуют этому процессу, скорость реакции резко возрастает.

По цепному механизму протекают такие важные химические реакции, как горение, взрывы, процессы окисления углеводородов (получение спиртов, альдегидов, кетонов, органических кислот) и реакции полимеризации. Поэтому теория цепных реакций служит научной основой ряда важных отраслей техники и химической технологии.

К цепным процессам относятся и ядерные цепные реакции, протекающие, например, в атомных реакторах или при взрыве атомной бомбы. Здесь роль активной частицы играет нейтрон, проникновение которого в ядро атома может приводить к его распаду, сопровождающемуся выделением большой энергии и образованием новых свободных нейтронов, продолжающих цепь ядерных превращений.

Цепная реакция представляет собой последовательность реакций, в которых реакционный продукт или побочный продукт вызывают дополнительные реакции. В цепной реакции положительная обратная связь приводит к саморасширяющейся цепочке событий.

Цепные реакции — это один из способов, при котором системы, находящиеся в термодинамическом неравновесном состоянии, могут высвобождать энергию или увеличивать энтропию, чтобы достичь состояния с более высокой энтропией. Например, система не может быть в состоянии достичь более низкого энергетического состояния, выделяя энергию в окружающую среду, поскольку она каким-то образом препятствует или препятствует прохождению пути, который приведет к высвобождению энергии. Если реакция приводит к небольшому энерговыделению, позволяющему высвобождать больше энергии в расширяющейся цепочке, то система, как правило, разрушается взрывом до тех пор, пока большая или вся запасенная энергия не будет освобождена.

Таким образом, макроскопическая метафора цепных реакций представляет собой снежный ком, вызывающий больший снежный ком, пока, наконец, не произойдет лавинный эффект (« эффект снежного кома »). Это результат накопленной гравитационной потенциальной энергии, ищущей путь высвобождения по трению. Химически эквивалент снежной лавине — это искра, вызывающая лесной пожар. В ядерной физике одиночный беспризорный нейтрон может привести к быстрому критическому событию, которое может, наконец, оказаться достаточно энергичным для ядерного взрыва или (в бомбе) ядерного взрыва.

Химические цепные реакции

История

В 1913 году немецкий химик Макс Боденштейн впервые выдвинул идею химических цепных реакций. Если две молекулы реагируют, образуются не только молекулы конечных продуктов реакции, но также некоторые нестабильные молекулы, которые могут далее взаимодействовать с исходными молекулами с гораздо большей вероятностью, чем исходные реагенты. В новой реакции помимо стабильных продуктов образуются и другие нестабильные молекулы и т. Д.

В 1918 году Вальтер Нернст предположил, что фотохимическая реакция водорода и хлора является цепной реакцией, чтобы объяснить большой квантовый выход, означающий, что один фотон света ответственен за образование целых 10 6 молекул продукта HCl. Он предположил, что фотон диссоциирует молекулу Cl 2 на два атома Cl, каждый из которых инициирует длинную цепочку реакционных стадий, образующих HCl.

В 1923 году датские и голландские ученые Кристиан Кристиансен и Хендрик Энтони Крамерс в анализе образования полимеров указывали, что такая цепная реакция не должна начинаться с молекулы, возбуждаемой светом, но также может начинаться с того, что две молекулы, К тепловой энергии, как это было предложено ранее для инициирования химических реакций Ван-т-Гоффа.

Кристиансен и Крамерс также отметили, что если в одном звене реакционной цепи образуются две или более нестабильные молекулы, цепь реакции будет ветвиться и расти. В результате на самом деле происходит экспоненциальный рост, что приводит к взрывному увеличению скоростей реакций и даже к самим химическим взрывам. Это было первое предложение о механизме химических взрывов.

Количественная теория цепной химической реакции была создана советским физиком Николаем Семеновым в 1934 году. Семёнов поделился Нобелевской премией в 1956 году с сэром Кириллом Норманном Хиншелвудом, который независимо разработал многие из тех же количественных понятий.

Типичные шаги

Основными типами ступеней цепной реакции являются следующие типы.

  • Инициирование (образование активных частиц или носителей цепи, часто свободных радикалов, на тепловой или фотохимической стадии)
  • Распространение (может содержать несколько элементарных шагов в цикле, когда активная частица в результате реакции образует другую активную частицу, которая продолжает цепочку реакции, введя следующую элементарную стадию). Фактически активная частица служит катализатором для общей реакции цикла распространения. Частными случаями являются:
* Разветвление цепи (шаг распространения, который формирует более новые активные частицы, чем вход в стадию); * Перенос цепи (стадия распространения, в которой активная частица представляет собой растущую полимерную цепь, которая реагирует с образованием неактивного полимера, рост которого заканчивается, и активной небольшой частицы (такой как радикал), которая затем может реагировать с образованием новой полимерной цепи).
  • Прекращение (элементарная стадия, на которой активная частица теряет свою активность, например, путем рекомбинации двух свободных радикалов).

Длина цепи определяется как среднее количество повторений цикла распространения и равно общей скорости реакции, деленной на скорость инициирования.

Некоторые цепные реакции имеют сложные уравнения скорости с дробным порядком или смешанной кинетикой порядка.

Подробный пример: реакция водород-бромин

Реакция H 2 + Br 2 → 2 HBr протекает по следующему механизму:

  • инициирование
Br 2 → 2 Br (термический) или Br 2 + hν → 2 Br (фотохимический) Каждый атом Br является свободным радикалом, обозначаемым символом « », представляющим собой неспаренный электрон.
  • Распространение (цикл из двух этапов)
Br + H 2 → HBr + H H + Br 2 → HBr + Br Сумма этих двух этапов соответствует общей реакции H 2 + Br 2 → 2 HBr, причем катализатором является Br ·, который участвует в первой стадии и регенерируется на второй стадии.
  • Замедление (торможение)
H + HBr → H 2 + Br Этот шаг специфичен для этого примера и соответствует первому шагу распространения в обратном направлении.
  • Окончание 2 Br → Br 2
Рекомбинации двух радикалов, соответствующих в этом примере инициации в обратном направлении.

Как можно объяснить с помощью стационарного приближения, тепловая реакция имеет начальную скорость дробного порядка (3/2) и полное уравнение скорости с двухчленным знаменателем (кинетика смешанного порядка).

Ядерные цепные реакции

Ядерная цепная реакция была предложена Лео Сциллардом в 1933 году, вскоре после открытия нейтрона, но более чем за пять лет до того, как ядерное деление было впервые обнаружено. Силард знал химические цепные реакции, и он читал о ядерной энергии, производящей энергию, в которой участвуют высокоэнергичные протоны, бомбардирующие литий, продемонстрированные Джоном Кокрофтом и Эрнестом Уолтоном в 1932 году. Теперь Силард предложил использовать нейтроны, теоретически полученные из определенных ядер Реакции в более легких изотопах, чтобы вызвать дальнейшие реакции в легких изотопах, которые дали больше нейтронов. Это теоретически привело бы к цепной реакции на уровне ядра. Он не рассматривал деление как одну из этих реакций, производящих нейтроны, так как эта реакция не была известна в то время. Эксперименты, которые он предложил использовать бериллий и индий, потерпели неудачу.

Позднее, после того, как деление было открыто в 1938 году, Силард сразу осознал возможность использования нейтронного деления как особой ядерной реакции, необходимой для создания цепной реакции, пока деление также дает нейтроны. В 1939 году Сильбард с Энрико Ферми доказал эту реакцию размножения нейтронов в уране. В этой реакции нейтрон плюс делящийся атом вызывает деление, приводящее к большему числу нейтронов, чем одно, которое было израсходовано в начальной реакции. Так родилась практическая ядерная цепная реакция по механизму нейтронного деления ядер.

В частности, если один или несколько из произведенных нейтронов взаимодействуют с другими делящимися ядрами и они также подвергаются делению, то существует вероятность того, что макроскопическая общая реакция деления не прекратится, а продолжится по всему материалу реакции. Это тогда является самораспространяющейся и, таким образом, самоподдерживающейся цепной реакцией. Это принцип для ядерных реакторов и атомных бомб.

Демонстрация самоподдерживающейся цепной ядерной реакции была выполнена Энрико Ферми и другими, в успешной эксплуатации первого искусственного ядерного реактора Chicago Pile-1 в конце 1942 года.

ГЛАВА 22. ЦЕПНЫЕ РЕАКЦИИ

22.1. Основные понятия о цепных реакциях

В ряде случаев в химических реакциях в качестве промежуточных продуктов выступают такие активные частицы как свободные атомы и радикалы, которые имеют свободные валентности и потому обладают высокой реакционной способностью. Эти частицы вступают в реакции, в результате которых вновь возникают свободные атомы и радикалы. Такая последовательность периодически повторяющихся реакций с участием активных частиц (свободных атомов и радикалов) называется цепной реакцией .

Хотя процесс образования свободных атомов или радикалов требует большой энергии активации, но их высокая реакционная способность и возникновение новых активных частиц при реакциях с насыщенными молекулами приводят к тому, что скорость цепных реакций оказывается обычно значительно выше скорости нецепных реакций. Зарождение в начале реакции небольшого количества реакционноспособных частиц приводит к превращению большого количества исходных веществ. Так как цепные реакции протекают циклически, то активная частица, возникающая в конце цикла, дает начало новому циклу, в конце которого происходит вновь регенерация активной частицы.

К цепным относятся реакции различных классов. По цепному механизму протекают, например, реакции горения или медленного окисления в газовой фазе:

2Н 2 + О 2 2Н 2 О

СН 4 + 2О 2 СО 2 + 2Н 2 О

К цепным относятся многие реакции с участием углеводородов (реакции полимеризации, разложения), фотохимические реакции (образование НСl, НВr, СОСl 2 и др.), цепные ядерные реакции – распад урана-235 или плутония в ядерном реакторе или бомбе.

Характерной особенностью цепных реакций является большая чувствительность скорости этих реакций к наличию некоторых примесей. Например, тщательно высушенные водород и кислород реагируют между собой очень медленно, но реакция протекает с нормальной скоростью в присутствии незначительного количества паров воды. Смесь водорода с хлором не реагирует в темноте при комнатной температуре, но быстро реагирует при введении в систему малых количеств паров натрия. В других случаях присутствие примесей приводит к резкому снижению скорости реакции. Например, при фотохимическом инициировании реакции водорода с хлором скорость образования хлороводорода уменьшается примерно в тысячу раз в присутствии одного процента кислорода.

На скорость многих газовых реакций влияет форма и материал сосуда, в котором протекает реакция. Обычно реакции замедляются при увеличении отношения S /V (S – площадь поверхности сосуда,V – его объем). Это отношение практически можно изменять, вводя в сосуд осколки материала сосуда – стекла, кварца и т.п.

Для многих реакций окисления в газовой фазе характерно то, что быстрая реакция (самопроизвольное воспламенение) протекает лишь в определенных пределах давления и температуры. На рисунке 22.1 показана зависимость пределов воспламенения от давления и температуры, которая наблюдается при окислении водорода, паров фосфора, сероуглерода и др.

Рис. 22.1. Пределы воспламенения для реакции окисленияводорода

Воспламенение смеси происходит только в условиях, соответствующих на рисунке заштрихованной площади, которая получила названиеполуострова воспламенения . Вне пределов полуострова воспламенения не происходит и реакция идет с малой скоростью или практически вовсе не происходит. Исходя из точкиА , воспламенение можно вызвать нагреванием смеси или снижением давления смеси до значений, лежащих в области между кривыми II и I.

Объяснение указанных особенностей дает теория цепных реакций, начало развития которой относится к 1913 г., когда Боденштейном было введено понятие цепной реакции.

Различают два типа цепных реакций: с неразветвленными и разветвленными цепями . Примером первого типа реакций может служить реакция образования хлороводорода из водорода и хлора

Н 2 + Сl 2 2НСl,

схема механизма которой была предложена Нернстом.

В схеме можно выделить три группы реакций. Начинается процесс с реакции зарождения цепи :

Cl 2  Cl + Cl

Эта реакция диссоциации молекулы хлора на атомы может происходить при поглощении света

Cl 2 +h Cl + Cl,

термическим путем – при столкновении, например, двух молекул хлора с повышенной энергией:

Cl 2 + Cl 2  Cl + Cl + Cl 2 ,

химическим путем – например, при взаимодействии молекулы хлора с атомом натрия, пары которого введены в систему. Образующиеся атомы хлора обладают высокой реакционной способностью и вступают в дальнейшее взаимодействие с исходными веществами, протекает вторая группа реакций – развитие цепи :

Cl + H 2 HCl + H

H + Cl 2 HCl + Cl

В результате первой реакции появляется атом водорода, который легко вступает во взаимодействие молекулой хлора, в результате чего образуется хлороводород и регенерируется атом хлора, который дает начало следующему звену:

Cl + H 2 HCl + H

Cl  H  Cl  H  Cl  ...

При благоприятных условиях такая цепь может состоять из многих тысяч звеньев. В результате на одну первоначально активированную молекулу хлора образуется не две молекулы HCl, как при обычной бимолекулярной реакции, а тысячи и десятки тысяч молекул.

Для приведенной реакции характерным является то, что на одну вступающую в реакцию активную частицу Сl или Н вновь образуется одна активная частица. Такие цепи и называют неразветвленными .

Кроме приведенных реакций зарождения и развития цепи в системе протекает третья группа реакций – реакции обрыва цепи , приводящие к гибели активных частиц при соударении с какой-либо третьей частицей М или стенкой сосуда S:

Н + Н + М Н 2 + М

Н + Н + S Н 2 + S

Cl + Cl + M(S)  Cl 2 + M(S)

Н + Cl + M(S)  HCl + M(S)

В присутствии, например, кислорода обрыв цепи может происходить в результате реакции

Н + О 2 + М
+ М

Образующийся малоактивный радикал
гибнет на стенках сосуда или по реакции

+ НН 2 + О 2

При низких давлениях активные центры гибнут в основном на стенках сосуда, а при высоких давлениях происходит тримолекулярный обрыв в объеме. Поэтому для цепных реакций и характерны особенности, о которых говорилось выше – зависимость скорости реакции от величины удельной поверхности сосуда, от присутствия какого-либо инертного вещества, от давления или концентрации реагирующих веществ.

Кинетическое уравнение неразветвленной цепной реакции можно получить, исходя из механизма реакции. Например, детальное изучение реакции между водородом и бромом

Н 2 +Br 2 2HBr

показало, что реакция проходит в несколько элементарных стадий с разными константами скорости k :

Br 2 Br+Brk 1

Br+H 2 HBr+H k 2

H+Br 2 HBr+Brk 3

H+HBrH 2 +Brk 4

Br+BrBr 2 k 5

Исходя из этой схемы, скорость образования бромистого водорода можно представить уравнением:


+

. (22.1)

Рассматривая атомы брома и водорода как промежуточные продукты, можно применить к ним принцип стационарных концентраций Боденштейна (см. разд. 20.6):

Из суммы этих равновесий находим концентрацию атомов брома:

. (22.4)

После подстановки этой концентрации в уравнение (22.3) получим концентрацию атомов водорода:

. (22.5)

Подстановка концентраций атомов брома и водорода в уравнение (22.1) дает окончательное уравнение для скорости реакции:

. (22.6)

Это уравнение совпадает с уравнением (20.6), полученным по экспериментальным данным.

В ряде реакций в результате одного элементарного акта может возникать не одна, а две или больше химически активных частиц, т.е. происходит разветвление цепи. Такие реакции получили название разветвленных цепных реакций . В таких реакциях в начальный период времени число активных частиц, а следовательно, и скорость реакции лавинообразно нарастают вплоть до того момента, когда из-за израсходования исходного вещества скорость реакции начинает уменьшаться. Примером таких процессов может служить реакция окисления водорода, механизм которой по современным представлениям можно представить совокупностью последовательно протекающих элементарных химических актов:

Зарождение цепи

(4)
+ Н 2 Н 2 О + Н Продолжение цепи

Разветвление цепи

Обрыв цепи на стенке

(9) Н + О 2 + М
+ М Обрыв цепи в объеме

Образующиеся малоактивные радикалы
могут распадаться на стенке:

2
+ SН 2 О 2 + О 2 + S

При больших давлениях возможны реакции в объеме:

(10)
+ Н 2 Н 2 О 2 + Н Продолжение цепи через

(11)
+ Н 2 ОН 2 О 2 +
малоактивний радикал

Если разветвление цепи осуществляется часто, то даже одна первоначально возникшая цепь может привести к развитию многих цепей. В предельном случае можно представить, что разветвление происходит в каждом звене, и тогда говорят о сплошь разветвленной цепной реакции. В других случаях разветвление может происходить более редко.

Существование нижнего и верхнего пределов воспламенения качественно можно объяснить следующим образом. При давлениях, меньших нижнего предела, активные частицы легко диффундируют к стенкам сосуда, где происходит их гибель. Обрыв цепей на стенках преобладает над разветвлением, и быстрая реакция не развивается. При повышении давления диффузия к стенкам затрудняется, а возрастает число двойных соударений типа (5) и (6), которые ведут к разветвлению цепей; зарождение и разветвление цепей начинают преобладать над обрывом. В результате реакция самоускоряется и может закончиться самовоспламенением или взрывом, что и происходит внутри полуострова воспламенения.

Рис. 22.2. Зависимость скорости разветвленной цепной реакции от времени внутри полуострова воспламенения

При дальнейшем повышении давления все более вероятными становятся тройные соударения в объеме, приводящие к обрыву цепей. Если давление превышает значение верхнего предела II (рисунок 22.1), обрыв начинает преобладать над развитием цепей и возможность быстрого протекания реакции исчезает.

Воспламенению горючей смеси внутри полуострова воспламенения предшествует индукционный период t инд (рис. 22.2). Он объясняется тем, что сначала число цепей может быть очень малым и практически реакция незаметна из-за недостаточной чувствительности методов анализа. Но по истечении некоторого времениt инд число цепей очень быстро нарастает вследствие их размножения и наступает самовоспламенение или взрыв. Зависимость скорости реакцииv от времениt можно представить уравнением:

, (22.7)

где A и– постоянные для данной реакции и зависящие от ряда условий. При выводе этой зависимости не учитывалось уменьшение концентрации реагирующих веществ вследствие выгорания, поэтому стремление скорости к бесконечности с течением времени не имеет физического смысла – скорость становится большой, но не бесконечной.

В некоторых случаях наблюдается и третий предел воспламенения (рис. 22.1), лежащий при более высоких давлениях. Его существование связывают с протеканием цепных реакций за счет малоактивных радикалов или с развитием теплового взрыва.

22.2. Элементарная теория цепных реакций

Имеется два варианта теории цепных реакций – более строгий, основанный на решении системы дифференциальных уравнений, и менее строгий, но более наглядный вероятностный вариант, который и рассматривается далее.

Важной характеристикой цепной реакции является средняя длина цепи - среднее число элементарных реакций, вызываемых одной активной частицей (атомом или радикалом), возникшей первоначально каким-либо независимым путем. Еслиn o – число таких независимо возникающих частиц в единицу времени в единице объема, тоn o можно назватьскоростью зарождения цепей .

Величина, обратная средней длине цепи, представляет собой вероятность обрыва цепи . Эту связь можно понять с помощью схематического изображения цепи на рисунке 22.3. На схеме точка означает появление и регенерацию активной частицы, а крестик – ее гибель, т.е. обрыв цепи.

Рис. 22.3. Схематическое изображение цепной реакции:

а – неразветвленная цепь; б – разветвленная цепь

На один благоприятствующий случай – обрыв – приходится всегослучаев, следовательно,

 =1/. (22.8)

Допустим также возможность разветвления цепи – появление в каком-либо звене двух или более активных частиц и охарактеризуем такую возможность вероятностью разветвления цепи .

Обозначим через время, в течение которого в среднем протекает одно звено цепной реакции. Тогда произведение равно среднему времени прохождения всей цепи от момента зарождения до обрыва. Концентрация активных частиц, т.е. их число в единице объема, пусть будетn . Скорость изменения концентрации этих частиц будет равна разности скоростей их образованияn o и исчезновения.

Если длина цепи = 1 (т.е. фактически цепь отсутствует), то активная частица гибнет в каждом звене. Тогда за среднее время развития одного звенапрореагируют всеn частиц, а скорость исчезновения будет равнаn /частиц/см 3 с . Если же цепи развиваются и их средняя длина равна> 1, частица в среднем будет реагироватьраз, а среднее время ее жизни будет равно . Следовательно, скорость уменьшения концентрации частиц выразится соотношением

. (22.9)

Если возможно разветвление цепи, т.е. > 0, то его влияние можно учесть, считая, что разветвление действует как бы в направлении, обратном обрыву, удлиняя цепь и уменьшая вероятность обрыва до величины (). Тогда для скорости изменения концентрации активных частиц можно записать выражение:

. (22.10)

Решение этого дифференциального уравнения можно провести следующим образом. Для простоты записи введем обозначение a = ()/. Тогда

. (22.11)

Полагаем вначале, что n o = 0, и после разделения переменных получаем:

, (22.12)

интегрирование которого дает:

lnn = –at + lnZ (t ), (22.13)

где Z (t ) – некоторая условная “постоянная” интегрирования. Тогда

n =Z (t )e –at . (22.14)

Продифференцируем это уравнение с учетом того, что Z не является постоянной величиной:

Из сопоставления этого уравнения с уравнением (22.11) следует, что

(22.16)

. (22.17)

После интегрирования этого уравнения получим

, (22.18)

где I – постоянная интегрирования. Подстановка этой величины в уравнение (22.15) дает

. (22.19)

Из условия, что в начальный момент реакции (t = 0) величинаn = 0, следует, что

(22.20)

. (22.21)

После подстановки значения a получим

. (22.22)

Скорость реакции v можно определить как скорость увеличения концентрации молекул продукта реакции. Так как в одном звене за времяпоявляется одна молекула, то общее число молекул, образующихся в единице объема за единицу времени, равноn /. Таким образом, мы получаем основное уравнение теории цепных реакций:

. (22.23)

Рассмотрим использование этого уравнения для некоторых частных случаев.

При протекании неразветвленной цепной реакции = 0. Так как средняя длина цепи= 1/, то скорость такой реакции

. (22.24)

Рис. 22.4. Зависимость скорости цепной реакции от времени:

1 – = 0; 2 – 0 < < ; 3 – >

Как следует из этого уравнения, скорость реакции должна нарастать с течением времени и достигать предела, равногоn o =n o /(рис. 22.4), т.е. система должна достигать стационарного состояния, в котором скорость реакции постоянна. Эта скорость враз больше скорости зарождения первичных реакционноактивных частицn o , т.е. скорости реакции в отсутствие цепей (=1).

При возможности протекания разветвленной цепной реакции вероятность разветвления может оказаться меньше вероятности обрыва, т.е. 0 < <. В этом случае, согласно уравнению (22.23), система также должна достигать стационарной скорости, но эта скорость больше, чем в первом случае:

Если же вероятность разветвления больше вероятности обрыва, т.е. >, уравнение (22.23) принимает вид:

, (22.25)

где A иявляются положительными постоянными. Полученное уравнение совпадает с приведенным ранее уравнением (22.7). Уравнение показывает, что скорость реакции может стать бесконечно большой (рис. 22.4), т.е. свидетельствует о возможности развития цепного воспламенения или взрыва.

Следует, однако, отметить, что полученные зависимости относятся к некоторым идеализированным условиям протекания реакции – предполагается, что концентрации исходных веществ поддерживаются постоянными, а продукты реакции выводятся из реакционной зоны. В реальных условиях, например, при проведении реакции в замкнутом сосуде, происходит “выгорание” исходных веществ, а продукты остаются в реакционной смеси. Поэтому для неразветвленных цепных реакций или для разветленных реакций с <скорость проходит через максимум (пунктир на рис.22.4). Возможно, что стационарное состояние вообще не будет достигнуто, так как максимальная скорость может оказаться меньше стационарной. В случае разветвленной цепной реакции с>учет выгорания реагентов должен дать, как уже указывалось ранее, очень большую, но все же конечную скорость.

Условие >соответствует протеканию реакции в области полуострова воспламенения, а условие> – вне него. Таким образом, теория разветвленных цепных реакций количественно объясняет существование нижнего и верхнего пределов воспламенения.

К воспламенению или взрыву может также привести, независимо от механизма реакции, саморазогрев реагирующей смеси. По уравнению Аррениуса, скорость реакции увеличивается при повышении температуры по экспоненциальному закону, в то время как скорость теплоотвода – более медленно (пропорционально разности температур). В случае экзотермической реакции, если теплота не будет отводиться из реакционной зоны с достаточной скоростью, реакционная смесь начнет саморазогреваться, а скорость реакции все более возрастать. Развитие этих процессов может привести к воспламенению реакционной смеси или взрыву. В этом случае говорят о тепловом самовоспламенении (тепловом взрыве ). Кинетика теплового самовоспламенения внешне может не отличаться от кинетики цепного воспламенения, что нужно иметь в виду при изучении реакций, переходящих в воспламенение или взрыв.

Разветвлённые цепные реакции. 5

Основные понятия и стадии цепных реакций.

Цепные реакции – это сложные превращения реагентов в продукты. Особенностью цепных реакций является их цикличность . Эта цикличность обусловлена регулярным чередованием реакций с участием активных центров. Этими активными центрами могут быть атомы и свободные радикалы с высокой реакционной способностью, а также ионы и возбуждённые молекулы.

Различают реакции с энергетическими и материальными цепями в зависимости от природы активных центров. В первом случае происходит возбуждение молекулы без разрыва связей. Во втором – гомолитический распад молекулы с образованием частиц с неспаренными электронами.

Примеров цепных реакций можно привести множество: взаимодействие водорода и углеводородов с хлором и бромом, термическое разложение озона, крекинг углеводородов, реакции полимеризации и поликонденсации, ядерные реакции.

Любая цепная реакция трёхстадийна. На первой стадии образуются исходные активные центры, т.е. происходит зарождение цепи. Эти активные центры взаимодействуют со стабильными молекулами с образованием одной или нескольких активных частиц. Эта стадия имеет название стадии развития или продолжения цепи. Наконец, две активные частицы могут рекомбинировать в стабильную молекулу, в результате чего цепь обрывается, поэтому эта стадия – стадия обрыва цепи.

Первая стадия – наиболее энергоёмкая и, как правило, инициируется квантом света, участием фотосенсибилизатора, либо неустойчивыми соединениями типа пероксидов и азосоединений, а также парами легколетучих металлов (натрий, ртуть и др.) и многими неорганическими соединениями.

Стадия развития цепи может включать в себя реакции продолжения и развития цепи. Энергии активации этих элементарных стадий невелики, поэтому они протекают со значительными скоростями. К этим реакциям относятся:

1. Взаимодействие атома или свободного радикала с молекулой реагента с образованием новых свободных радикалов;

2. Взаимодействие атома или свободного радикала с молекулой реагента с образованием нового радикала и продукта реакции;

3. Мономолекулярная изомеризация радикала;

4. Мономолекулярный распад свободного радикала с образованием нового радикала и продукта;

5. Взаимодействие свободных радикалов с образованием нового радикала и продукта.

Если на стадии развития цепи протекают реакции, в результате которых число активных центров вырастает, то говорят о разветвлении цепей.

И, наконец, стадии обрыва цепи , это элементарные стадии, приводящие к исчезновению свободной валентности. Обрыв цепи может быть гомогенным (с участием инертной частицы) или гетерогенным (взаимодействие радикалов со стенкой реактора). Следует иметь в виду, что рекомбинация радикалов в объёме без участия третьей частицы невозможна, т.к. образованная молекула будет находиться в возбуждённом состоянии и требуется «отбор» лишней энергии для стабилизации молекулы, полученной рекомбинацией радикалов.

Процессы обрыва цепи в объёме протекают при больших давлениях, и скорость обрыва будет иметь второй порядок по концентрациям активных центров. В этом случае обрыв цепи называют квадратичным .

В общем случае любую цепную реакцию можно представить в виде следующей схемы:

реагент+αХ → продукт+β Y

Х и Y – активные центры.

α и β – целые числа большие или равные 0.

Исходя из этой схемы, стадии можно представить следующим образом:

α=0, β≠0 – зарождение цепи.

α=β – продолжение цепи.

α<β – разветвление цепи.

α≠0, β=0 – обрыв цепи.

Неразветвлённые цепные реакции.

Неразветвлённые цепные реакции – это реакции, включающие в себя стадии зарождения, продолжения и обрыва цепи.

Теория этих реакций разработана школой Боденштейна. Типичным, классическим примером этого типа реакций является синтез HCl из H 2 и С l 2 при действии света.

Неразветвлённые цепные реакции характеризуются понятиями звено и длина цепи. Началом звена цепи считается реакция продолжения с участием радикала, который образуется в стадии зарождения цепи. Звено цепи- это совокупность последовательных стадий реакций продолжения цепи с регенерацией активного центра, уже участвовавшего в реакции.

Например, в радикальной реакции хлорирования алкана:

звено цепи включает 2 элементарные реакции:

Сумма этих элементарных реакций приводит к молекулярной реакции. Число полных звеньев, приходящихся в среднем на каждый активный центр, образовавшийся в реакции зарождения цепи – средняя длина цепи. Так, в приведённой реакции:

В феноменологической (формальной) кинетике цепных реакций возможны два подхода. Первый основан на решении дифференциальных и алгебраических уравнений, полученных на основе закона действующих масс и механизма данной цепной реакции. Для неразветвлённых цепных реакций применим метод стационарных концентраций Боденштейна. Второй подход основан на вероятностном характере химических процессов вообще и цепных реакций в частности.

Любая активная частица, образовавшаяся в результате акта зарождения цепи, входит в цикл реакций продолжения цепи – звено цепи. При этом она реализует превращение молекул реагента в молекулы продукта и выходит из этого цикла в виде частицы, неотличимой от вошедшей в него. Далее она либо участвует в следующем звене, либо выходит из цикла путём рекомбинации. Вероятность рекомбинации одинакова на любом его звене, т.е. она постоянна. Таким образом, процессы обрыва цепи – это процессы стохастические и могут быть охарактеризованы постоянным параметром – вероятностью обрыва цепи β. Но поскольку на каждой стадии происходит либо обрыв цепи, либо продолжение, то очевидно, что вероятность продолжения цепи α=1-β .

Исходя из этого, средняя длина цепи может быть вычислена:

где r r – скорость роста цепи.

r f – скорость обрывацепи.

Очевидно, при β<<1 , т.е. при большой длине цепи:

Для цепных реакций ν сильно зависит от концентрации и чистоты реагентов, интенсивности света, температуры, материала ректора и его размеров.

Условием стационарности в неразветвлённых цепных реакциях является равенство скоростей инициирования и обрыва цепей:

r 0 = r f

Скорость реакции будет выражаться:

Для скорости изменения концентрации активных центров можно записать уравнение (при линейном обрыве цепи, т.е. при низких давлениях):

где g – удельная скорость обрыва цепи.

При n=0, t=0 и r 0 =const, g=const получаем:

Зависимость скорости реакции от времени примет вид:

где l – удельная скорость реакции продолжения цепи.

Из последнего уравнения видно, что при , т.е. устанавливается стационарный режим.

Теория обрыва цепей разработана Н.Н. Семёновым .

Различают диффузионную и кинетическую области реакции обрыва цепи. В кинетической области скорость обрыва определяется скоростью адсорбции частиц на стенке. Эта скорость пропорциональна и зависит от - вероятности захвата стенкой свободных радикалов ( ). Константа скорости обрыва цепи для цилиндрического сосуда рассчитывается по уравнению:

где D – коэффициент диффузии,

d – диаметр реактора,

Средняя скорость (арифметическая).

Если обрыв цепи обусловлен диффузией, то

В кинетической области:

Разветвлённые цепные реакции.

Цепные реакции, включающие стадии зарождения, разветвления и обрыва цепи называются разветвлёнными. Это процессы окисления белого фосфора и фосфина, водорода и оксида углерода (IV ).

Теория этих реакций разработана Н.Н. Семёновым и Хиншелвудом. Было показано, что при описании развития этих реакций система кинетических уравнений для активных центров может быть сведена к уравнению для активных центров одного вида.

В дифференциальном уравнении появляется член, учитывающий скорость образования активных центров.


где

После интегрирования получаем:

где gn – скорость гибели активных центров.

fn – скорость образования активных центров.

По аналогии с неразветвлёнными цепными реакциями можно получить выражение для скорости:

где l – удельная скорость реакции продолжения цепи.

Анализ этих уравнений показывает:

а) t =0

т.е. в начальный момент n и r линейно зависят от t .

б)

и .

т.е. с течением времени устанавливается стационарный режим.

2. т.е.

и

т.е. по истечению некоторого времени, если скорость образования активных центров превышает скорость их гибели, скорость процесса экспоненциально возрастает и по завершению периода индукции заканчивается взрывом даже при постоянной температуре. В этом случае воспламенение обусловлено спонтанным ростом скорости реакции из-за быстрого размножения активных центров.

3. f = g

Тогда выражение для скорости после раскрытия неопределённости по правилу Лопиталя примет вид:

т.е. реакция протекает без воспламенения, часто с чрезвычайно малой скоростью.

Дифференциальное уравнение

для конкретных реакций можно получить, как было показано Н.Н, Семёновым, методом частично стационарных концентраций. Метод стационарных концентраций для цепных реакций неприменим, поскольку концентрация одного из активных центров существенно возрастает в ходе процесса. Так, при окислении водорода в соответствии с общепринятым механизмом можно считать:

Но

т.е. при определении скорости убыли атомарного водорода необходимо решить полное дифференциальное уравнение.

Анализ кинетических уравнений позволяет объяснить удивительные явления при окислении фосфора и водорода. Было обнаружено экспериментально, что при окислении воспламенение наблюдается только при определённых давлениях. Это можно показать графически.

В области с координатами точки А реакционная смесь не воспламеняется. Чтобы смесь воспламенилась, можно не только увеличить температуру до Т 1 , но и уменьшить давление до р 1 , т.е. для этих реакций наблюдается явление увеличения скорости реакции при уменьшении числа частиц в единице объёма, что противоречит закону действующих масс.

Эта закономерность объясняется следующим образом. При малых давлениях увеличивается длина свободного частиц и увеличивается вероятность обрыва цепи на стенках реактора, т.е. реакция переходит в стационарный режим:

при .

При давлениях в области воспламенения разветвление преобладает над обрывом, т.е.

и скорость процесса становится экспоненциальной. При дальнейшем увеличении давления возрастает вероятность квадратичного обрыва цепей, и система вновь переходит на стационарный режим.

Примером разветвлённой цепной реакции является реакция деления урана:

В результате реакции выделяется энергия и в форме теплоты передаётся в окружающую среду, но в каждом акте деления урана образуется в среднем 2,5 нейтрона, которые «размножаются» в геометрической прогрессии и приводят к лавинообразному возрастанию числа делящихся атомов и к взрыву.

Отметим следующий факт. Мы рассмотрели пример, когда пределы воспламенения смеси Н 2 + О 2 не зависят от r 0 . Этот результат связан с тем, что реакции разветвления и обрыва цепей рассматриваются как линейные относительно концентрации активных центров, а квадратичные процессы не учитываются.

Однако эксперимент показывает, что увеличение скорости зарождения цепей приводит к значительному расширению области воспламенения гремучей смеси и к ускорению разветвления. В этом случае считают, что наблюдается положительное взаимодействие цепей.

Для скорости изменения концентраций с положительным взаимодействием цепей дифференциальное уравнение имеет вид:

где cn 2 – скорость квадратичного разветвления цепей.

Принципиально от разветвлённых цепных реакций отличаются реакции с вырожденным разветвлением. Для них не наблюдается перехода в режим самовоспламенения и взрыва.

Рассмотрим окисление углеводородов. При низкотемпературном окислении на одной из стадий продолжения цепи образуется гидропероксид:

может стать источником свободных радикалов:

что приводит к возникновению новых цепей.

Когда степень превращения реагентов невелика и можно пренебречь убылью промежуточных продуктов, то кинетику этих реакций можно описать системой:

р – концентрация промежуточного продукта.

l – удельная скорость продолжения цепи.