Днк и гены. Схема строения репликационной вилки ДНК

Страница 3

1. По принципу комплементарности выстраивает вторую цепь данной молекулы ДНК: Т-Т-Ц-А-Г-А-Т-Т-Г-Ц-А-Т-А.

2. Зная длину одного нуклеотида (0,34 нм) определяем длину данного фрагмента ДНК (в ДНК длина одной цепи равна длине всей молекулы): 13х0,34 = 4,42 нм.

3. Рассчитываем процентное содержание нуклеотидов в данной цепи ДНК:

13 нуклеотидов – 100%

5 А – х%, х=38% (А).

2 Г – х%, х=15,5% (Г).

4 Т – х%, х=31% (Т).

2 Ц – х%, х=15,5% (Ц).

Ответ: Т-Т-Ц-А-Г-А-Т-Т-Г-Ц-А-Т-А; 4,42 нм; А=38%; Т=31%; Г=15,5%; Ц=15,5%.

Задача 21. На фрагменте одной цепи ДНК нуклеотиды расположены в последовательности: А-А-Г-Т-Ц-Т-А-Ц-Г-Т-А-Т.

1. Нарисуйте схему структуры второй цепи данной молекулы ДНК.

2. Какова длина в нм этого фрагмента ДНК, если один нуклеотид занимает около 0,34 нм?

3. Сколько (в %) содержится нуклеотидов в этом фрагменте молекулы ДНК?

1. Достраиваем вторую цепь данного фрагмента молекулы ДНК, пользуясь правилом комплементарности: Т-Т-Ц-А-Г-А-Т-Г-Ц-А-Т-А.

2. Определяем длину данного фрагмента ДНК: 12х0,34=4,08 нм.3. Рассчитываем процентное содержание нуклеотидов в этом фрагменте ДНК.

24 нуклеотида – 100%

8А – х%, отсюда х=33,3%(А);

т.к. по правилу Чаргаффа А=Т, значит содержание Т=33,3%;

24 нуклеотида – 100%

4Г – х%, отсюда х=16,7%(Г);

т.к. по правилу Чаргаффа Г=Ц, значит содержание Ц=16,6%.

Ответ: Т-Т-Ц-А-Г-А-Т-Г-Ц-А-Т-А; 4,08 нм; А=Т=33, 3%; Г=Ц=16,7%

Задача 22. Каков будет состав второй цепочки ДНК, если первая содержит 18% гуанина, 30% аденина и 20% тимина?

1. Зная, что цепи молекулы ДНК комплементарны друг другу, определяем содержание нуклеотидов (в %) во второй цепи:

т.к. в первой цепи Г=18%, значит во второй цепи Ц=18%;

т.к. в первой цепи А=30%, значит во второй цепи Т=30%;

т.к. в первой цепи Т=20%, значит во второй цепи А=20%;

2. Определяем содержание в первой цепи цитозина (в %).

определяем долю цитозина в первой цепи ДНК: 100% – 68% = 32% (Ц);

если в первой цепи Ц=32%, тогда во второй цепи Г=32%.

Ответ: Ц=18%; Т=30%; A=20%; Г=32%

Задача 23. В молекуле ДНК насчитывается 23% адениловых нуклеотидов от общего числа нуклеотидов. Определите количество тимидиловых и цитозиловых нуклеотидов.

1. По правилу Чаргаффа находим содержание тимидиловых нуклеотидов в данной молекуле ДНК: А=Т=23%.

2. Находим сумму (в %) содержания адениловых и тимидиловых нуклеотидов в данной молекуле ДНК: 23% + 23% = 46%.

3. Находим сумму (в %) содержания гуаниловых и цитозиловых нуклеотидов в данной молекуле ДНК: 100% – 46% = 54%.

4. По правилу Чаргаффа, в молекуле ДНК Г=Ц, в сумме на их долю приходится 54%, а по отдельности: 54% : 2 = 27%.

Ответ: Т=23%; Ц=27%

Задача 24. Дана молекула ДНК с относительной молекулярной массой 69 тыс., из них 8625 приходится на долю адениловых нуклеотидов. Относительная молекулярная масса одного нуклеотида в среднем 345. Сколько содержится нуклеотидов по отдельности в данной ДНК? Какова длина ее молекулы?

1. Определяем, сколько адениловых нуклеотидов в данной молекуле ДНК: 8625: 345 = 25.

2. По правилу Чаргаффа, А=Г, т.е. в данной молекуле ДНК А=Т=25.

3. Определяем, сколько приходится от общей молекулярной массы данной ДНК на долю гуаниловых нуклеотидов: 69 000 – (8625х2) = 51 750.

4. Определяем суммарное количество гуаниловых и цитозиловых нуклеотидов в данной ДНК: 51 750:345=150.

5. Определяем содержание гуаниловых и цитозиловых нуклеотидов по отдельности: 150:2 = 75;

6. Определяем длину данной молекулы ДНК: (25 + 75) х 0,34 = 34 нм.

Ответ: А=Т=25; Г=Ц=75; 34 нм.

Задача 25. По мнению некоторых ученых общая длина всех молекул ДНК в ядре одной половой клетки человека составляет около 102 см. Сколько всего пар нуклеотидов содержится в ДНК одной клетки (1 нм = 10–6 мм)?

1. Переводим сантиметры в миллиметры и нанометры: 102 см = 1020 мм = 1 020 000 000 нм.

2. Зная длину одного нуклеотида (0,34 нм), определяем количество пар нуклеотидов, содержащихся в молекулах ДНК гаметы человека: (102 х 107) : 0,34 = 3 х 109 пар.

Ответ: 3´109 пар.

Задача 26. Напишите формулы дипептидов, образованных:

а) тирозином и цистеноином; б) серином и фенилаланином; в) глицином и цистеином.

Задача 27. Из метана получите глицин, не используя другие углесодержащие вещества.

Темы «Молекулярная биология» и «Генетика» – наиболее интересные и сложные темы в курсе «Общая биология». Эти темы изучаются и в 9-х, и в 11­х классах, но времени на отработку умения решать задачи в программе явно недостаточно. Однако умение решать задачи по генетике и молекулярной биологии предусмотрено Стандартом биологического образования, а также такие задачи входят в состав КИМ ЕГЭ.

Для решения задач по молекулярной биологии необходимо владеть следующими биологическими понятиями: виды нуклеиновых кислот,строение ДНК, репликация ДНК, функции ДНК, строение и функции РНК, генетический код, свойства генетического кода,мутация.

Типовые задачи знакомят с основными приемами рассуждений в генетике, а "сюжетные"– полнее раскрывают и иллюстрируют особенности этой науки, делая ее интересной и привлекательной для учащихся. Подобранные задачи характеризуют генетику как точную науку, использующую математические методы анализа. Решение задач в биологии требует умения анализировать фактический материал, логически думать и рассуждать, а также определенной изобретательности при решении особенно трудных и запутанных задач.

Для закрепления теоретического материала по способам и приемам решения задач предлагаются задачи для самостоятельного решения, а также вопросы для самоконтроля.

Примеры решения задач

Необходимые пояснения:

  • Один шаг это полный виток спирали ДНК–поворот на 360 o
  • Один шаг составляют 10 пар нуклеотидов
  • Длина одного шага – 3,4 нм
  • Расстояние между двумя нуклеотидами – 0,34 нм
  • Молекулярная масса одного нуклеотида – 345 г/моль
  • Молекулярная масса одной аминокислоты – 120 г/мол
  • В молекуле ДНК: А+Г=Т+Ц (Правило Чаргаффа: ∑(А) = ∑(Т), ∑(Г) = ∑(Ц), ∑(А+Г) =∑(Т+Ц)
  • Комплементарность нуклеотидов: А=Т; Г=Ц
  • Цепи ДНК удерживаются водородными связями, которые образуются между комплементарными азотистыми основаниями: аденин с тимином соединяются 2 водородными связями, а гуанин с цитозином тремя.
  • В среднем один белок содержит 400 аминокислот;
  • вычисление молекулярной массы белка:

Где М min – минимальная молекулярная масса белка,
а – атомная или молекулярная масса компонента,
в – процентное содержание компонента.

Задача № 1. Одна из цепочек ДНК имеет последовательность нуклеотидов: АГТ АЦЦ ГАТ АЦТ ЦГА ТТТ АЦГ... Какую последовательность нуклеотидов имеет вторая цепочка ДНК той же молекулы. Для наглядности можно использовать магнитную "азбуку" ДНК (прием автора статьи) .
Решение: по принципу комплементарности достраиваем вторую цепочку (А-Т,Г-Ц) .Она выглядит следующим образом: ТЦА ТГГ ЦТА ТГА ГЦТ ААА ТГЦ.

Задача № 2. Последовательность нуклеотидов в начале гена, хранящего информацию о белке инсулине, начинается так: ААА ЦАЦ ЦТГ ЦТТ ГТА ГАЦ. Напишите последовательности аминокислот, которой начинается цепь инсулина.
Решение: Задание выполняется с помощью таблицы генетического кода, в которой нуклеотиды в иРНК (в скобках – в исходной ДНК) соответствуют аминокислотным остаткам.

Задача № 3. Большая из двух цепей белка инсулина имеет (так называемая цепь В) начинается со следующих аминокислот: фенилаланин-валин-аспарагин-глутаминовая кислота-гистидин-лейцин. Напишите последовательность нуклеотидов в начале участка молекулы ДНК, хранящего информацию об этом белке.

т.к. одну аминокислоту могут кодировать несколько триплетов, точную структуру и-РНК и участка ДНКопределить невозможно, структура может варьировать. Используя принцип комплементарности и таблицу генетического кода получаем один из вариантов:

Задача № 4. Участок гена имеет следующее строение, состоящее из последовательности нуклеотидов: ЦГГ ЦГЦ ТЦА ААА ТЦГ... Укажите строение соответствующего участка белка, информация о котором содержится в данном гене. Как отразится на строении белка удаление из гена четвертого нуклеотида?

Решение (для удобства используем табличную форму записи решения):

При удалении из гена четвертого нуклеотида – Ц произойдут заметные изменения – уменьшится количество и состав аминокислот в белке:

Задача № 5. Вирусом табачной мозаики (РНК-содержащий вирус) синтезируется участок белка с аминокислотной последовательностью: Ала – Тре – Сер – Глу – Мет-. Под действием азотистой кислоты (мутагенный фактор) цитозин в результате дезаминирова ния превращается в урацил. Какое строение будет иметь участок белка вируса табачной мозаики, если все цитидиловые нуклеотиды подвергнутся указанному химическому превращению?

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности и таблицу генетического кода получаем:

Задача № 6. При синдроме Фанкоми (нарушение образования костной ткани) у больного с мочой выделяются аминокислоты, которым соответствуют кодоны в и -РНК: АУА ГУЦ АУГ УЦА УУГ ГУУ АУУ. Определите, выделение каких аминокислот с мочой характерно для синдрома Фанкоми, если у здорового человека в моче содержатся аминокислоты аланин, серин, глутаминовая кислота, глицин.

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности и таблицу генетического кода получаем:

Таким образом, в моче больного человека только одна аминокислота (серин) такая же как, у здорового человека, остальные – новые, а три, характерные для здорового человека, отсутствуют.

Задача № 7. Цепь А инсулина быка в 8-м звене содержит аланин, а лошади – треонин, в 9-м звене соответственно серин и глицин. Что можно сказать о происхождении инсулинов?

Решение (для удобства сравнения используем табличную форму записи решения): Посмотрим, какими триплетами в и-РНК кодируются упомянутые в условии задачи аминокислоты.

Организм

Лошадь

Т.к. аминокислоты кодируются разными триплетами, взяты триплеты, минимално отличающиеся друг от друга. В данном случае у лошади и быка в 8-м и 9-м звеньях изменены аминокислоты в результате замены первых нуклеотидов в триплетах и -РНК: гуанин заменен на аденин (или наоборот). В двухцепочечной ДНК это будет равноценно замене пары Ц-Г на Т-А (или наоборот).
Следовательно, отличия цепей А инсулина быка и лошади обусловлены транзициями в участке молекулы ДНК, кодирующей 8-е и 9-е звенья цепи А инсулинов быка и лошади.

Задача № 7 . Исследования показали, что в и- РНК содержится 34% гуанина,18% урацила, 28% цитозина и 20% аденина.Определите процентный состав азотистых оснваний в участке ДНК, являющейся матрицей для данной и-РНК.
Решение (для удобства используем табличную форму записи решения): Процентное соотношение азотистых оснований высчитываем исходя из принципа комплементарности:

Суммарно А+Т и Г+Ц в смысловой цепи будут составлять: А+Т=18%+20%=38% ; Г+Ц=28%+34%=62%. В антисмысловой (некодируемой) цепи суммарные показатели будут такими же, только процент отдельных оснований будет обратный: А+Т=20%+18%=38% ; Г+Ц=34%+28%=62%. В обеих же цепях в парах комплиментарных оснований будет поровну, т.е аденина и тимина – по 19%, гуанина и цитозина по 31%.

Задача № 8. На фрагменте одной нити ДНК нуклеотиды расположены в последователь ности: А–А–Г–Т–Ц–Т–А–Ц–Г–Т–А–Т. Определите процентное содержание всех нукле отидов в этом фрагменте ДНК и длину гена.

Решение :

1) достраиваем вторую нить (по принципу комплементарности)

2) ∑(А +Т+Ц+Г) = 24,из них ∑(А) = 8 = ∑(Т)

24 – 100%

=> х = 33,4%

=> х = 16,6%

∑(Г) = 4 = ∑(Ц)

3) молекула ДНК двуцепочечная, поэтому длина гена равна длине одной цепи:

12 × 0,34 = 4,08 нм

Задача № 9. В молекуле ДНК на долю цитидиловых нуклеотидов приходится 18%. Определите процентное содержание других нуклеотидов в этой ДНК.

Решение:

1) т.к. Ц = 18%, то и Г = 18%;
2) на долю А+Т приходится 100% – (18% +18%) = 64%, т.е. по 32%

Задача № 10. В молекуле ДНК обнаружено 880 гуанидиловых нуклеотидов, которые составляют 22% от общего числа нуклеотидов в этой ДНК. Определите: а) сколько других нуклеотидов в этой ДНК? б) какова длина этого фрагмента?

Решение:

1) ∑(Г) = ∑(Ц)= 880 (это 22%); На долю других нуклеотидов приходится 100% – (22%+22%)= 56%, т.е. по 28%; Для вычисления количества этих нуклеотидов составляем пропорцию:

22% – 880
28% – х, отсюда х = 1120

2) для определения длины ДНК нужно узнать, сколько всего нуклеотидов содержится в 1 цепи:

(880 + 880 + 1120 + 1120) : 2 = 2000
2000 × 0,34 = 680 (нм)

Задача № 11. Дана молекула ДНК с относительной молекулярной массой 69 000, из них 8625 приходится на долю адениловых нуклеотидов. Найдите количество всех нуклеотидов в этой ДНК. Определите длину этого фрагмента.

Решение:

1) 69 000: 345 = 200 (нуклеотидов в ДНК), 8625: 345 = 25 (адениловых нуклеотидов в этой ДНК),∑(Г+Ц) = 200 – (25+25)= 150, т.е. их по 75;
2) 200 нуклеотидов в двух цепях, значит в одной – 100. 100 × 0,34 = 34 (нм)

Задача № 12. Что тяжелее: белок или его ген?

Решение: Пусть х – количество аминокислот в белке, тогда масса этого белка – 120х, количество нуклеотидов в гене, кодирующем этот белок, – 3х, масса этого гена – 345 × 3х. 120х < 345 × 3х, значит ген тяжелее белка.

Задача № 13. Гемоглобин крови человека содержит 0, 34% железа. Вычислите минимальную молекулярную массу гемоглобина.

Решение: М min = 56: 0,34% · 100% = 16471

Задача №14. Альбумин сыворотки крови человека имеет молекулярную массу 68400. Определите количество аминокислотных остатков в молекуле этого белка.

Решение: 68400: 120 = 570 (аминокислот в молекуле альбумина)

Задача №15. Белок содержит 0,5% глицина. Чему равна минимальная молекулярная масса этого белка, если М глицина = 75,1? Сколько аминокислотных остатков в этом белке?

Решение: М min = 75,1: 0,5% · 100% = 15020 ; 15020: 120 = 125 (аминокислот в этом белке)

Задачи для самостоятельной работы

  1. Молекула ДНК распалась на две цепочки. одна из них имеет строение: ТАГ АЦТ ГГТ АЦА ЦГТ ГГТ ГАТ ТЦА... Какое строение будет иметь вторая молекула ДНК,когда указанная цепочка достроится до полной двухцепочечной молекулы?
  2. Полипептидная цепь одного белка животных имеет следующее начало: лизин-глутамин-треонин-аланин-аланин-аланин-лизин-... С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?
  3. Участок молекулы белка имеет следующую последовательность аминокислот: глутамин-фенилаланин-лейцин-тирозин-аргинин. Определите одну из возможных последовательностей нуклеотидов в молекуле ДНК.
  4. Участок молекулы белка имеет следующую последовательность аминокислот: глицин-тирозин-аргинин-аланин-цистеин. Определите одну из возможных последовательностей нуклеотидов в молекуле ДНК.
  5. Одна из цепей рибонуклеазы (фермента поджелудочной железы) состоит из 16 аминокислот: Глу-Гли-асп-Про-Тир-Вал-Про-Вал-Про-Вал-Гис-фен-Фен-Асн-Ала-Сер-Вал. Определите структуру участка ДНК, кодирующего эту часть рибонуклеазы.
  6. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ГТЦ ЦТА АЦЦ ГГА ТТТ. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  7. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ТЦГ ГТЦ ААЦ ТТА ГЦТ. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  8. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ТГГ АЦА ГГТ ТТЦ ГТА. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  9. Определите порядок следования аминокислот в участке молекулы белка, если известно, что он кодируется такой последовательностью нуклеотидов ДНК: ТГА ТГЦ ГТТ ТАТ ГЦГ ЦЦЦ. Как изменится белок, если химическим путем будут удалены 9-й и 13-й нуклеотиды?
  10. Кодирующая цепь ДНК имеет последовательность нуклеотидов: ТАГ ЦГТ ТТЦ ТЦГ ГТА. Как изменится структура молекулы белка, если произойдет удвоение шестого нуклеотида в цепи ДНК. Объясните результаты.
  11. Кодирующая цепь ДНК имеет последовательность нуклеотидов: ТАГ ТТЦ ТЦГ АГА. Как изменится структура молекулы белка, если произойдет удвоение восьмого нуклеотида в цепи ДНК. Объясните результаты.
  12. Под воздействием мутагенных факторов во фрагменте гена: ЦАТ ТАГ ГТА ЦГТ ТЦГ произошла замена второго триплета на триплет АТА. Объясните, как изменится структура молекулы белка.
  13. Под воздействием мутагенных факторов во фрагменте гена: АГА ТАГ ГТА ЦГТ ТЦГ произошла замена четвёртого триплета на триплет АЦЦ. Объясните, как изменится структура молекулы белка.
  14. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: ГЦА УГУ АГЦ ААГ ЦГЦ. Определите последовательность аминокислот в молекуле белка и её молекулярную массу.
  15. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: ГАГ ЦЦА ААУ АЦУ УУА. Определите последовательность аминокислот в молекуле белка и её молекулярную массу.
  16. Ген ДНК включает 450пар нуклеотидов. Какова длина, молекулярная масса гена и сколько аминокислот закодировано в нём?
  17. Сколько нуклеотидов содержит ген ДНК, если в нем закодировано 135 аминокислот. Какова молекулярная масса данного гена и его длина?
  18. Фрагмент одной цепи ДНК имеет следующую структуру: ГГТ АЦГ АТГ ТЦА АГА. Определите первичную структуру белка, закодированного в этой цепи, количество (%) различных видов нуклеотидов в двух цепях фрагмента и его длину.
  19. Какова молекулярная масса гена и его длина, если в нем закодирован белок с молекулярной массой 1500 г/моль?
  20. Какова молекулярная масса гена и его длина, если в нем закодирован белок с молекулярной массой 42000 г/моль?
  21. В состав белковой молекулы входит 125 аминокислот. Определите количество нуклеотидов в и-РНК и гене ДНК, а также количества молекул т-РНК принявших участие в синтезе данного белка.
  22. В состав белковой молекулы входит 204 аминокислоты. Определите количество нуклеотидов в и-РНК и гене ДНК, а также количества молекул т-РНК принявших участие в синтезе данного белка.
  23. В синтезе белковой молекулы приняли участие 145 молекул т-РНК. Определите число нуклеотидов в и-РНК, гене ДНК и количество аминокислот в синтезированной молекуле белка.
  24. В синтезе белковой молекулы приняли участие 128 молекул т-РНК. Определите число нуклеотидов в и-РНК, гене ДНК и количество аминокислот в синтезированной молекуле белка.
  25. Фрагмент цепи и-РНК имеет следующую последовательность: ГГГ УГГ УАУ ЦЦЦ ААЦ УГУ. Определите, последовательность нуклеотидов на ДНК, антикодоны т-РНК, и последовательность аминокислот соответствующая фрагменту гена ДНК.
  26. Фрагмент цепи и-РНК имеет следующую последовательность: ГУУ ГАА ЦЦГ УАУ ГЦУ. Определите, последовательность нуклеотидов на ДНК, антикодоны т-РНК, и последовательность аминокислот соответствующая фрагменту гена ДНК.
  27. В молекуле и-РНК содержится 13% адениловых, 27% гуаниловых и 39% урациловых нуклеотидов. Определите соотношение всех видов нуклеотидов в ДНК, с которой была транскрибирована данная и-РНК.
  28. В молекуле и-РНК содержится 21% цитидиловых, 17% гуаниловых и 40% урациловых нуклеотидов. Определите соотношение всех видов нуклеотидов в ДНК, с которой была транскрибирована данная и-РНК
  29. Молекула и-РНК содержит 21% гуаниловых нуклеотидов, сколько цитидиловых нуклеотидов содержится в кодирующей цепи участка ДНК?
  30. Если в цепи молекулы ДНК, с которой транскрибирована генетическая информация, содержалось 11% адениловых нуклеотидов, сколько урациловых нуклеотидов будет содержаться в соответствующем ему отрезке и-РНК?

Используемая литература.


Зацепления двух цепей ДНК - процесс образования зацеплений цепей ДНК при ее циклизации . При замыкании пары или большего числа полимерных цепей они могут образовывать зацепления различных типов. В частности, зацепление образуют нити двойной спирали в кольцевой замкнутой форме ДНК (здесь двойная спираль ДНК будет рассматриваться, в основном, как единая полимерная цепь). Зацепленные молекулы ДНК довольно часто встречаются в природе и могут быть получены в лабораторных условиях. Зацепления двух цепей имеют, вообще говоря, бесконечно много топологически неэквивалентных типов. Понятие порядка зацепления однозначно характеризует только зацепления определенного класса, образующиеся в кольцевых замкнутых ДНК. Общая картина выглядит значительно сложнее.

При случайной циклизации полимерной цепи в растворе она может оказаться в различных топологических состояниях. В случае изолированных цепей, т.е. без учета образующихся зацеплений, этот вопрос о вероятности этих топологических состояний сводится к вероятности образования различных узлов при случайном замыкании. Если же учитывать вероятность зацеплений, следует прежде всего рассмотреть вопрос о вероятности образования зацепленного состояния (или незацепленного состояния) при случайном замыкании двух цепей с заданным расстоянием между их центрами масс, R ( Klenin K.V. ea, 1988 , Frank-Kamenetskii M.D. ea, 1975 , Вологодский А.В. и др., 1974a и Iwata K., 1983). Результаты таких расчетов для модели бесконечно тонкой цепи ( Klenin K.V. ea, 1988) приведены на . Различные кривые соответствуют разному числу сегментов в каждой из цепей (обе цепи предполагаются состоящими из одинакового числа сегментов): 1 - 20 сегментов, 2 - 40, 3 - 80 сегментов. Значительная вероятность образования зацеплений при малых R означает, что число состояний системы из двух незацепленных цепей существенно уменьшается при их сближении. В результате раствор незацепленных бесконечно тонких кольцевых полимерных цепей не будет идеальным. В нем возникает отталкивание между цепями, имеющее энтропийную природу. В статистической механике такое отталкивание принято количественно характеризовать вторым вириальным коэффициентом B ( Ландау Л. и Лифшиц Е.М., 1964). Значения B для раствора незацепленных колец можно рассчитать на основании данных на Рис. Вероятность образования зацепления двух цепей . Эти значения (см. Рис. Расчет второго вириального коэффициента) оказываются близкими к величине B, отвечающей сферическим непроницаемым друг для друга частицам, имеющим радиус, равный среднеквадратичному радиусу инерции замкнутой полимерной цепи ( Klenin K.V. ea, 1988). Таким образом, даже идеальные бесконечно тонкие замкнутые цепи должны испытывать сильное взаимное отталкивание, которое целиком обусловлено топологическими ограничениями.

Катенаны, т.е. зацепления молекул ДНК, были обнаружены в некоторых клетках ( Clayton D.A. and Vinograd J., 1967 , Hudson B. and Vinograd J., 1967). Пример топологической структуры с зацеплениями представляют собой гигантские сети из зацепленных кольцевых ДНК кинетопластов (см. обзор Borst P. and Hoeijmakers J.H.J., 1979). Эти сети включают в себя десятки тыяч кольцевых молекул ДНК, структура большей части которых идентична.

Основными методами изучения топологии двунитевой ДНК являются электронная микроскопия и электрофорез в геле. На обычной электронно - микроскопической фотографии ДНК, однако, довольно трудно анализировать топологию молекул, так как трудно судить о том, какая из нитей в точках их пересечения на подложке идет выше, а какая ниже. В значительной мере эту трудность удалось впервые преодолеть за счет связывания двойной спирали с белком recA ( Krasnow M.A. ea, 1983). При этом нить ДНК утолщается настолько, что структура пересечений сегментов ДНК на фотографиях хорошо просматривается. С другой стороны, зацепленные молекулы ДНК отличаются по подвижности в геле от незацепленных молекул, что позволяет разделять их при электрофорезе (смотри Wasserman S.A. and Cozzarelli N.R., 1986). Этот метод требует, естественно, специальной калибровки, так как заранее нельзя сказать, какое положение в геле должна занимать та или иная топологическая структура относительно незаузленной кольцевой формы ДНК. В настоящее время, однако, уже накоплен достаточно большой экспериментальный материал о подвижности различных топологических структур относительно незаузленных топоизомеров исследуемой ДНК. Естественно, что при исследовании этим методом зацепленных молекул ДНК они должны содержать однонитевые разрывы, так как иначе подвижность будет зависеть и от порядка зацепления нитей двойной спирали.

C Б О Р Н И К З А Д А Ч

ПО МЕДИЦИНСКОЙ ГЕНЕТИКЕ И БИОЛОГИИ

УЧЕБНОЕ ПОСОБИЕ

2-е издание, переработанное и дополненное

Уфа - 2014

УДК 575.1:57(076.1)

ББК 52.5+28 я 7

Рецензенты:

Исламов Р.Р. – д.м.н., профессор, заведующий кафедрой медицинской биологии и генетики ГБОУ ВПО «Казанский ГМУ» МЗ РФ,

Хуснутдинова Э.К. – д.б.н., профессор, заведующая отделом геномики Института биохимии и генетики УНЦ РАН.

Сборник задач по медицинской генетике и биологии: учебное пособие для студентов, 2-ое издание, дополненное, переработанное/ сост: Викторова Т.В., Измайлова С.М., Куватова Д.Н., Данилко К.В., Мусыргалина Ф.Ф., Лукманова Г.И., Целоусова О.С., Белалова Г.В., Исхакова Г.М., Сулейманова Э.Н., Казанцева С.Р. – Уфа: Изд-во ГБОУ ВПО БГМУ Минздрава России, 2015 г. – 123 с.

Учебное пособие содержит современную информацию по основным разделам общей и молекулярной генетике. Содержание включает краткое изложение теоретического материала по каждому разделу, образцы решения задач, типовые и ситуационные задачи с эталонами ответов.

Учебное пособие подготовлено на основании рабочей программы по дисциплине «Биология» (2012 г.), действующего учебного плана ГБОУ ВПО БГМУ Минздрава РФ (2014 г.) и в соответствии с требованиями ФГОС ВО, утвержденного Министерством образования и науки РФ по направлениям подготовки (специальностям): Лечебное дело и Педиатрия для самостоятельной аудиторной работы по дисциплине биология.

УДК 575.1:57(076.1)

ББК 52.5+28 я 7

© Т.В. Викторова, С.М. Измайлова,

Д.Н. Куватова и др.

© Изд-во ГОУ ВПО БГМУ МЗ РФ

Введение

По мнению специалистов-биологов разных профилей XXI век – это век генетики – науки о наследственности и изменчивости. Велико значение генетики для прогрессивного развития современной медицины. Многочисленные эпидемиологические исследования последних лет указывают на то, что не только наследственные, но практически все широко распространенные, так называемые многофакторные заболевания в существенной степени обусловлены генетической предрасположенностью. Без знания основных закономерностей наследственности и изменчивости невозможно понять генетические предпосылки развития патологических процессов и, следовательно, научиться управлять этими процессами на этапах диагностики, лечения и, что самое важное, эффективной профилактики. Уже сегодня квалифицированный врач должен понимать ключевые механизмы передачи генетической информации и ее реализации в признак. Для формирования основ врачебного мышления необходимо выработать умение решать ситуационные задачи. Предлагаемый сборник задач разработан на основе рабочей программы по дисциплине Биология (2012 г.), учебного плана, утвержденного Ученым советом ГБОУ ВПО БГМУ Минздрава РФ (2014 г.) и в соответствии с требованиями ФГОС ВО, утвержденного Министерством образования и науки РФ.



Данное учебное пособие направлено на формирование следующих компетенций:

ОК-1 способен и готов использовать на практике методы естественнонаучных и медико-биологических наук в различных видах профессиональной и социальной деятельности
ПК-2 способен и готов выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности врача
ПК-3 способен и готов к формированию системного подхода к анализу медицинской информации, опираясь на всеобъемлющие принципы доказательной медицины, основанной на поиске решений с использованием теоретических знаний и практических умений в целях совершенствования профессиональной деятельности
ПК-17 способен и готов выявлять у пациентов основные патологические симптомы и синдромы заболеваний, используя знания основ медико-биологических дисциплин с учетом законов возникновения патологии в органах, системах и организме в целом, анализировать закономерности функционирования различных органов и систем при различных заболеваниях и патологических процессах
ПК-32 способен и готов к участию в освоении современных теоретических и экспериментальных методов исследования с целью создания новых перспективных средств, в организации работ по практическому использованию и внедрению результатов исследований

1. Молекулярная генетика

2. Цитогенетика

3. Закономерности наследования признаков

4. Изменчивость

5. Методы исследования генетики человека

6. Медико-генетическое консультирование

Каждому разделу предшествует краткое изложение теоретического материала, приведены образцы решения задач, типовые и ситуационные задачи. При составлении и рубрикации сборника учитывалось поэтапное освоение материала от простого к сложному, с целью формирования у студентов навыков систематизации, логического мышления, принятия решения. Учебное пособие предназначено для самостоятельной аудиторной работы студентов при изучении учебного модуля «Генетика». В приложении приведены справочные материалы, необходимые для решения задач, дан краткий словарь с общей характеристикой ряда наследственных синдромов.

Сборник задач по медицинской генетике и биологии рекомендуется для студентов специальностей: лечебное дело и педиатрия.

РАЗДЕЛ I

МОЛЕКУЛЯРНАЯ ГЕНЕТИКА

Молекулярная генетика исследует процессы, связанные с наследственностью и изменчивостью на молекулярном уровне. Ген - это участок молекулы ДНК, включающий регуляторные последовательности и соответствующий одной единице транскрипции, в которой находится информация о структуре одной полипептидной цепи или молекулы РНК. Это участок ДНК, ответственный за формирование какого-то определенного признака. Однако ген не превращается в признак, и от гена до признака существует серия промежуточных реакций. Он определяет лишь первичную структуру белка, т.е. последовательность расположения в нем аминокислот, от которой во многом и зависит его функция. Белки-ферменты управляют биохимическими реакциями в организме. Для каждой реакции существует свой специфический белок-фермент. Ход биохимических реакций обуславливает проявление того или иного признака. Таким образом, функцию гена можно представить следующей схемой: ген - белок - биохимическая реакция - признак.

В молекулярном плане ген - это фрагмент молекулы дезоксирибонуклеиновой кислоты (ДНК) - знаменитой двойной спирали, открытой еще в 1953 году Джеймсом Уотсоном и Фрэнсисом Криком. Молекула ДНК - полимер, мономером которой является нуклеотид. Нуклеотид состоит из моносахарида - дезоксирибозы, остатка фосфорной кислоты и азотистого основания. В состав ДНК входят азотистые основания четырех типов: пурины (аденин (А) и гуанин (Г)), и пиримидины (тимин (Т) и цитозин (Ц)). Нуклеотиды соединяются в полинуклеотидную цепь посредством фосфодиэфирных связей через остаток фосфорной кислоты, который присоединяется к 3’-положению одной дезоксирибозы и к 5’-положению - другой. Цепи соединяются друг с другом за счет водородных связей между азотистыми основаниями по принципу комплементарности так, что аденин располагается напротив тимина, гуанин – напротив цитозина. Именно в чередовании азотистых оснований закодирована последовательность аминокислот в белковой молекуле и специфичность самого белка.

Местоположение каждой аминокислоты в белковой цепи предопределяется триплетами нуклеотидов, т.е. тремя рядом стоящими азотистыми основаниями в одной из цепочек ДНК. Расшифровка кода осуществляется с помощью рибонуклеиновых кислот (РНК).

«Центральная догма молекулярной биологии»:

ДНК®иРНК® белок®признак.

Процесс расшифровки начинается с синтеза информационной РНК (иРНК). иРНК - полимер, состоящий из одной цепочки нуклеотидов. В состав ее нуклеотидов также входит моносахарид (рибоза), остаток фосфорной кислоты и одно из азотистых оснований (аденин, гуанин, цитозин или урацил (У)).

Синтез РНК происходит по матричной цепи ДНК. Построение молекулы осуществляется таким образом, что комлементарные азотистые основания РНК строятся напротив соответствующих азотистых оснований ДНК: Ц-Г, А-У, Т-А, Г-Ц. Процесс считывания информации на иРНК называется транскрипцией . Естественно, что иРНК эукариот копирует не только кодирующие участки- экзоны, но и некодирующие участки – интроны, вырезаемые позднее. Первичный транскрипционный продукт (незрелая иРНК), синтезированная в ядре подвергается процессингу: кэпирование 5 I – конца, полиаденилирование 3 I – конца, вырезание интронов и сшивание экзонов (сплайсинг).

Следующий этап расшифровки происходит в цитоплазме на рибосомах, где осуществляется сборка полипептидной цепи из аминокислот, т.е. процесс синтеза белка. В этом процессе участвуют транспортные РНК (тРНК), функция которых – перенос аминокислот к рибосоме и нахождение в полипептидной цепи предусмотренного иРНК - кодом места для каждой аминокислоты. Все аминокислоты распознаются собственными тРНК. Комплекс тРНК с аминокислотой называется аминоацил-тРНК.

Сборка полипептидной цепи происходит по следующей схеме. С места контакта иРНК с рибосомой начинается отсчет триплетов. К рибосоме же подходят аминоацил-тРНК. Так как, у эукариот стартовым кодоном в иРНК является АУГ, то в антикодоне первой аминоацил-тРНК, которая транспортирует аминокислоту метионин, будет триплет УАЦ. Одновременно в рибосоме размещается два триплета а аминоацильном и пептидильном центрах и соответственно две аминоацил-тРНК. Между двумя аминокислотами образуется пептидная связь, а рибосома по иРНК продвигается на один триплет. Объединение аминокислот в пептидильном центре коллинеарно триплетам называется трансляцией.

Предлагаемые задачи рассчитаны главным образом на расшифровку структуры белка по известным данным о строении ДНК и обратный анализ с помощью таблицы кодирования аминокислот (прил. 1)

Образцы решения задач

Задача: Полипептид состоит из следующих аминокислот: валин-аланин-глицин-лизин-триптофан-валин-серин-глутаминовая кислота. Определить структуру участка ДНК, кодирующего указанный полипептид.

Решение:

По последовательности аминокислот устанавливается порядок нуклеотидов иРНК (по таблице генетического кода, см. прил. 1):

а/к: вал–ала–гли–лиз–три–вал–сер–глу

По цепочке иРНК можно восстановить участок матричной нити ДНК, по которой она собиралась.

иРНК: 5’ ГУУГЦУГГУАААУГГГУУУЦУГАА 3’

Матричная цепь ДНК: 3’ЦААЦГАЦЦАТТТАЦЦЦАААГАЦТТ 5’

Но ДНК состоит из 2-х цепей, значит, последовательность кодогенной цепи ДНК будет следующей: 5’ ГТТГЦТГГТАААТГГГТТТЦТГАА 3’

Таким образом, полная структура молекулы ДНК:

5’ ГТТГЦТГГТАААТГГГТТТЦТГАА 3’ – кодогенная цепь.

3’ ЦААЦГАЦЦАТТТАЦЦЦАААГАЦТТ 5’ – матричная цепь

ЗАДАЧИ:

1. Участок матричной цепи молекулы ДНК, кодирующий часть полипептида, имеет следующее строение: 3’ ЦЦАТАГТЦЦААГГАЦ 5’. Определите последовательность аминокислот в полипептиде.

2. Участок гена, кодирующего белок, состоит из последовательно расположенных нуклеотидов 5’ ААЦГАЦТАТЦАЦТАТАЦЦГАА 3’. Определите состав и последовательность аминокислот в полипептидной цепи, закодированной в этом участке гена.

3. Определите аминокислотный состав полипептида, который кодируется следующей последовательностью иРНК: 5’ ЦЦАЦЦУГГУУУУГГЦ 3’.

4. Полипептид состоит из следующих аминокислот: вал-ала-гли-лиз-три-вал-сер-глу. Определите один из вариантов структуры участка ДНК, кодирующего указанный полипептид.

5. Полипептид состоит из следующих аминокислот: ала-цис-лей-мет-тир. Определите один из вариантов структуры участка ДНК, кодирующего эту полипептидную цепь.

6. Первые 10 аминокислот в цепи В инсулина: фен-вал-асп-глн-гис-лей-цис-гли-сер-гис. Определите один из вариантов структуры участка ДНК, кодирующего эту часть цепи инсулина.

7. Начальный участок цепи А инсулина представлен следующими аминокислотами: гли-иле-вал-глн-глн. Определите один из вариантов структуры участка ДНК, кодирующего эту часть цепи инсулина.

8. Одна из цепей глюкагона имеет следующий порядок аминокислот: треонин-серин-аспарагин-тирозин-серин-лизин-тирозин. Определите один из вариантов строения участка ДНК, кодирующего эту часть цепи глюкагона.

9. Антикодоны тРНК поступают к рибосомам в следующей последователь­ности нуклеотидов УЦГ, ЦГА, ААУ, ЦЦЦ. Определите последовательность нуклеотидов на иРНК, последовательность нуклеотидов на ДНК, кодирующих определенный белок и последовательность аминокислот во фрагменте молеку­лы синтезируемого белка, переносимые данной тРНК.

10. Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на котором синтезируется участок тРНК, имеет следующую по­следовательность нуклеотидов ТТГГАААААЦГГАЦТ. Установите нуклеотид­ную последовательность участка тРНК, который синтезируется на данном фрагменте. Какой кодон иРНК будет соответствовать третьему антикодону этой тРНК? Какая аминокислота будет транспортироваться этой тРНК?

11. В процессе трансляции участвовало 30 молекул т-РНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число трипле­тов и нуклеотидов в гене, который кодирует белок, образовавшийся в результате трансляции.

12. У человека, больного цистинурией (содержание в моче большего, чем в норме, числа аминокислот), с мочой выделяются аминокислоты, которым соответствуют следующие кодоны иРНК: 5’УЦУУГУГЦУГГУЦАГЦГУААА3’. У здорового человека в моче обнаруживаются аланин, серин, глутаминовая кислота и глицин. Какие аминокислоты выделяются с мочой у больных цистинурией? Напишите триплеты, соответствующие аминокислотам, имеющимся в моче здорового человека.

13. Исследования показали, что 34% общего числа нуклеотидов данной иРНК приходится на гуанин, 18%-на урацил, 28%-на цитозин и 20%-на аденин. Определите процентный состав азотистых оснований двухцепочечной ДНК, слепком с которой является указанная иРНК.

14. Известно, что расстояние между двумя соседними нуклеотидами в спирализованной молекуле ДНК, измеренной вдоль оси спирали, составляет 0,34 нм. Какую длину имеет кодирующий участок гена, определяющего молекулу нормального гемоглобина, включающего 287 аминокислот?

15. Какую длину имеет часть молекулы ДНК, кодирующая инсулин быка, если известно, что молекула инсулина быка имеет 51 аминокислоту, а расстояние между двумя соседними нуклеотидами в ДНК равно 0,34 нм?

16. Белок состоит из 200 аминокислот. Какую длину имеет определяющий его ген, если расстояние между двумя соседними нуклеотидами в спирализованной молекуле ДНК (измеренное вдоль оси спирали) составляет 0,34 нм?

17. В молекуле ДНК на долю цитозиновых нуклеотидов приходится 18%. Определите процентное соотношение других нуклеотидов, входящих в молекулу ДНК.

18. Сколько содержится адениловых, тимидиловых, гуаниловых и цитидиловых нуклеотидов во фрагменте молекулы ДНК, если в нем обнаружено 950 цитидиловых нуклеотидов, составляющих 20% от общего количества нуклеотидов в этом фрагменте ДНК?

19. Примем условно массу одного нуклеотида за 1. Определите в условных единицах массу оперона бактерии, в котором промотор с инициатором состоит из 10 нуклеотидов, оператор с терминатором – из 10 нуклеотидов каждый, а каждый из трех структурных генов содержит информацию о структуре белка, состоящего из 50 аминокислот. Можно ли, располагая такой информацией, определить массу транскриптона в эукариотической клетке?

20. В пробирку поместили рибосомы из разных клеток, весь набор аминокис­лот и одинаковые молекулы и-РНК и т-РНК, создали все условия для синтеза белка. Почему в пробирке будет синтезироваться один вид белка на разных ри­босомах?

21. Белок состоит из 100 аминокислот. Установите, во сколько раз молекуляр­ная масса участка гена, кодирующего данный белок, превышает молекулярную массу белка, если средняя молекулярная масса аминокислоты – 110, а нуклеоти­да - 300. Ответ поясните.

22. Участок молекулы ДНК имеет следующий состав: ГАТГААТАГТГЦТТЦ. Перечислите не менее 3 последствий, к которым может привести случайная за­мена седьмого нуклеотида тимина на цитозин.

23. В результате мутации во фрагменте молекулы белка аминокислота фе­нилаланин заменилась на лизин. Определите аминокислотный состав фрагмен­та молекулы нормального и мутированного белка и фрагмент мутированной иРНК, если в норме иРНК имеет последовательность: ЦУЦГЦААЦГУУЦААУ.


РАЗДЕЛ II

ЦИТОГЕНЕТИКА

Жизнь клетки с момента ее возникновения до собственного деления или смерти называется жизненным (клеточным) циклом. Для того чтобы в ряде клеточных поколений сохранялось и строго поддерживалось определенное количество ДНК, делению обязательно предшествует удвоение хромосом. Если количество хромосом в гаплоидном наборе обозначить через n, а содержание ДНК - с, то в диплоидном наборе до репликации будет - 2n2с, а после репликации - 2n4с.

Митоз – непрямое деление соматических клеток, сопровождающееся спирализацией хромосом. Митозу предшествует репликация (удвоение) ДНК, в результате которого набор генетического материала в клетке становится 2n4c (диплоидный набор двухроматидных хромосом - двунитевых хромосом).

В митозе выделяют четыре фазы:

1. Профаза (2n4c). Происходит спирализация хроматиновых нитей, формирование митотического аппарата, исчезновение ядрышек, растворение оболочки ядра.

2. Метафаза (2n4c). Хромосомы максимально конденсированы, расположены в экваториальной плоскости веретена деления клетки, образуя метафазную пластинку.

3. Анафаза (4n4с). Микротрубочки начинают укорачиваться, у кинетохоров хромосом происходит их разборка, в результате этого хроматиды направляются к полюсам клетки. Образуется две дочерних звезды на полюсах клетки (по одному одинаковому набору (2n2c) хромосом).

4. Телофаза (2n2c). Разделившиеся группы хромосом подходят к полюсам, теряют хромосомные микротрубочки, разрыхляются, деконденсируются, переходя в хроматин. К концу телофазы восстанавливается ядерная оболочка, формируются ядрышки. Митоз заканчивается делением цитоплазмы – цитокинезом и образуются две дочерние клетки. Обе дочерние клетки диплоидны (2n2c). Из мембранных пузырьков собираются комплекс Гольджи и ЭПС.

В результате митоза дочерние клетки получают точно такой же набор хромосом, который был у материнской клетки, поэтому митоз лежит в основе развития и роста организма (во всех клетках тела поддерживается постоянное число хромосом).

Мейоз – это вид деления клеток, при котором из одной диплоидной клетки образуется четыре гаплоидные клетки (гаметы). Мейоз происходит в стадии созревания гаметогенеза. В результате мейоза число хромосом уменьшается вдвое (становится гаплоидным).

Мейоз включает два следующих друг за другом деления: редукционное и эквационное.

Интерфаза I/Клетки вступают в первое мейотическое деление с незаконченным синтезом ДНК (от 0,3 до 2%) и белков – гистонов (от 7 до 25%), что является необходимым условием для коньюгации гомологичных хромосом в стадии зиготены профазы I.

Редукционное деление:

Профаза I. Набор генетическог материала 2n4с. Профаза состоит из 5 стадий:

a. Лептотена (стадия тонких нитей).Хорошо видны отдельные нити слабо спирализованных и длинных хромосом. Хромосомы в это время состоят из двух хроматид, соединеных центромерой.

b. Зиготена (стадия коньюгирующих нитей). Хромосомы, одинаковые по размеру и морфологии, т.е. гомологичные, притягиваются друг к другу – коньюгируют. Синаптонемальный комплекс обеспечивает тесный контакт между гомологичными сегментами хроматид. Образуются бивалент. Каждая хромосома из одного бивалента происходит либо от отца, либо от матери. Число бивалентов равно гаплоидному набору хромосом.

c. Пахитена (стадия толстых нитей). Хромосомы несколько укорачиваются и утолщаются. Между хроматидами материнского и отцовского происхождения в нескольких местах возникают соединения – хиазмы . В области каждой хиазмы происходит кроссинговер - обмен соответствующих участков гомологичных хромосом – от отцовской к материнской и наоборот. Кроссинговер обеспечивает новое сочетание генов в хромосомах (рекомбинация генов в хромосомах).

d. Диплотена (стадия двойных нитей). Продолжается спирализация хромосом: происходит терминализация хиазм, в результате взаимного отталкивания гомологичных хромосом. Это обеспечивает возможность движения хромосом к полюсам в анафазе.

e. Диакинез (стадия расхождения нитей). Биваленты, которые заполняли весь объем ядра, начинают перемещаться ближе к ядерной оболочке. К концу диакинеза контакт между хроматидами сохраняется на одном или обоих концах. Исчезновение оболочки ядря и ядрышек, а также окончательное формирование веретена деления завершают профазу I.

Метафаза I. Набор генетического материала n4с . Биваленты – тетрады выстраиваются по экватору так, что оба члена каждой гомологичной пары направлены своими центромерами к противоположным полюсам.

Анафаза I. набор генетического материала в клетке 2n4с (по n2c на противоположных полюсах клетки). К полюсам клетки расходятся гомологичные хромосомы из каждого бивалента, но центромеры пока не делятся. В результате расхождения хромосом происходит независимое сочетание отцовских и материнских хромосом на полюсах клетки, у каждого полюса число хромосом уменьшается вдвое, т.е. происходит редукция числа хромосом (n2c ). В этот редуцированный гаплоидный набор попадает обязательно по одной гомологичной хромосоме из каждого бивалента.

Телофаза I. Хромосомы достигают полюсов, у каждого полюса оказывается гаплоидное число хромосом (истинная редукция хромосом). Полной деспирализации хромосом на происходит. Формируется Ядерная оболочка и ядрышко, образуется и углубляется борозда деления, происходит цитокинез. В результате цитокинеза в каждой дочерней клетке сосредоточивается по 23 хромосомы.

Интеркинез (интерфаза II) отличается от интерфазы I тем, что в ней не происходит репликация ДНК. Поэтому во второе мейотическое деление вступают клетки с гаплоидным набором хромосом, но двойным набором ДНК.

Эквационное деление происходит по типу митоза:

Профаза – n2с.

Метафаза – n2с.

Анафаза – 2n2c.

Телофаза – nc. (вкаждом ядре – гаплоидное число однонитевых хромосом). После окончания мейоза происходит цитокинез, в результате которого из каждой клетки с набором n2c образуются по две гаплоидные клетки (всего четыре) с набором nc в каждой.

Гаметогенез

Гаметогенез – процесс образования половых клеток.

Сперматогенез – образование сперматозоидов, протекает в семенных канальцах в четыре периода:

1. Размножение – исходные клетки - сперматогонии делятся путем митоза.

2. Рост – увеличение размеров клетки, редупликация ДНК и образование сперматоцитов I порядка.

3. Созревание – сперматоциты I порядка претерпевают два мейотических деления. После первого образуются сперматоциты II порядка, после второго – сперматиды.

4. Формирование–сперматиды преобразуются в зрелые сперматозоиды.

Овогенез – протекает в яичниках в три периода:

1. Размножение – первичные клетки овогонии делятся митозом.

2. Рост–увеличение размеров клетки, репликация ДНК и образование овоцитов I порядка.

3. Созревание - в результате мейоза из овоцитов I порядка сначала образуются овоцит II порядка и направительное тельце, а затем овотида или яйцеклетка и три направительных тельца.

Размножение и рост происходят в эмбриогенезе, мейоз до метафазы II – в период половой зрелости, второе мейотическое деление завершается после оплодотворения.

Образец решения задач

Задача: Какие гаметы и в каком соотношении образуются из сперматоцита I порядка с набором 2А+ХУ при нерасхождении половых хромосом в двух делениях мейоза.

Решение: 46 хр.

Ответ: из сперматоцита 1-го порядка с набором хромосом 2А + ХУ при нерасхождении половых хромосом в анафазах двух делений мейоза образуется 2 вида гамет: А + 2ХУ (26 хромосом) с вероятностью 25% и А + О (22 хромосомы) с вероятностью 75%.

ЗАДАЧИ:

1. Какие гаметы и в каком соотношении образуются у человека из овоцита I-го порядка с набором хромосом 2А+ХХ при нерасхождении половых хромосом в первом мейотическом делении? Указать в них число хромосом.

2. Какие гаметы и в каком соотношении образуются у человека из овоцита I-го порядка с набором хромосом 2А+ХХ при нерасхождении аутосом во втором делении мейоза? Указать число хромосом в гаметах.

3. Какие гаметы и в каком соотношении формируются у человека из овоцита I-порядка с набором 2А+ХХ при нерасхождении половых хромосом в двух делениях мейоза? Указать в них число хромосом.

4. Какие гаметы и в каком соотношении образуются у человека из сперматоцита I-го порядка с набором хромосом 2А+ХУ при нерасхождении половых хромосом в первом мейотическом делении? Указать в них число хромосом.

5. Какие гаметы и в каком соотношении образуются у человека из сперматоцита I-го порядка с набором хромосом 2А+ХУ при нерасхождении аутосом в первом, а половых хромосом во втором делении мейоза? Указать число хромосом в гаметах.

6. Какие гаметы и в каком соотношении образуются из сперматоцита 1 порядка с набором 2А+ХУ при нерасхождении половых хромосом в анафазу 1 деления, а аутосом во втором делении мейоза? Указать число хромосом в гаметах.

7. Какие гаметы и в каком соотношении образуются из овоцита 1 порядка с набором ВВDDХХ при нерасхождении половых хромосом в анафазу 1 деления мейоза, а второй пары аутосом во втором делении мейоза? Указать число хромосом в гаметах.

8. Какие гаметы и в каком соотношении образуются из овоцита 1 порядка с набором ВВFFХХ при нерасхождении первой пары аутосом в первом делении мейоза, а второй пары аутосом – во втором? Указать число хромосом в гаметах.

9. Какие гаметы и в каком соотношении образуются из овоцита 1 порядка с набором ВВССDDХХ при нерасхождении всех аутосом в первом делении мейоза? Указать число хромосом в гаметах.

10. Какие гаметы и в каком соотношении образуются из овоцита 1 порядка с набором DDEЕХХ при нерасхождении половых хромосом в анафазу первого, а первой пары аутосом в анафазу второго деления мейоза? Указать число хромосом в гаметах.

11. Какие гаметы и в каком соотношении образуются из сперматоцита 1 порядка с набором CCEЕХУ при нерасхождении второй пары аутосом в анафазу первого, а первой пары аутосом в анафазу второго деления мейоза? Указать число хромосом в гаметах.

12. Какие гаметы и в каком соотношении образуются из овоцита 1 порядка с набором ВBEЕХХ при нерасхождении половых хромосом в двух делениях мейоза? Указать число хромосом в гаметах.

13. Какие гаметы и в каком соотношении образуются из овоцита 1 порядка с набором MMNNХХ при нерасхождении аутосом в двух делениях мейоза? Указать число хромосом в гаметах.

14. Какие гаметы и в каком соотношении образуются из овоцита 1 порядка с набором ВBХХ при нерасхождении аутосом в анафазу первого, а половых хромосом в анафазу второго деления мейоза? Указать число хромосом в гаметах.

15. Какие гаметы и в каком соотношении образуются из овоцита 1 порядка с набором ССEЕDDХХ при нерасхождении половых хромосом в анафазу первого, а третьей пары аутосом - в анафазу второго деления мейоза? Указать число хромосом в гаметах.

16. Какие гаметы и в каком соотношении образуются из овоцита 1 порядка с набором РРККХХ при нерасхождении всех аутосом в анафазу первого, а половых хромосом - в анафазу второго деления мейоза? Указать число хромосом в гаметах.

17. Какие гаметы и в каком соотношении образуются из сперматоцита 1 порядка с набором ВВССDDХY при нерасхождении второй пары аутосом в первом, а первой пары аутосом - во втором делении мейоза? Указать число хромосом в гаметах.

18. Какие гаметы и в каком соотношении образуются из овоцита 1 порядка с набором 2А+ХХ при нерасхождении полного набора хромосом в первом делении мейоза? Указать число хромосом в гаметах.