Движение частицы в электрическом поле. Движение заряженных частиц в электрическом поле

Цель работы:

    изучить движение заряженных частиц в электрическом и магнитных полях.

    определить удельный заряд электрона.

В электрическом поле на заряженную частицу, например, электрон, действует сила, пропорциональная величине заряда e и направленности поля Е

Под действием этой силы электрон, имеющий отрицательный заряд, перемещается в направлении, обратном направлению вектора (рис 1 a)

Пусть между плоскопараллельными пластинами приложена некоторая разность потенциалов U. Между пластинами создаётся однородное электрическое поле, напряжённость которого равна (2), где d – расстояние между пластинами.

Рассмотрим траекторию электрона, влетающего в однородное электрическое поле с некоторой скоростью (рис 1 б) .

Горизонтальная составляющая силы равна нулю, поэтому и составляющая скорости электрона остаётся постоянной и равна . Следовательно координата Х электрона определяется как

В вертикальном направлении под действием силы электрону сообщается некоторое ускорение , которое согласно второму закону Ньютона равно

(4)

Следовательно за время электрон приобретает вертикальную составляющую скорости (5)

Откуда .

Изменение координаты У электрона от времени получим, проинтегрировав последнее выражение:

(6)

Подставим значение t из (3) в (6) и получим уравнение движения электрона У (Х)

(7)

Выражение (7) представляет собой уравнение параболы.

Если длина пластин равна , то за время пролёта между пластинами электрон приобретает горизонтальную составляющую

(8)

из (рис 1 б) следует, что тангенс угла отклонения электрона равен

Таким образом, смещение электрона, как и любой другой заряженной частицы, в электрическом поле пропорционально напряжённости электрического поля и зависит от величины удельного заряда частицы е/m.

Движение заряженных частиц в магнитном поле.

Рассмотрим теперь траекторию электрона, влетающего в однородное магнитное поле со скоростью (рис.2)

Магнитное поле воздействует на электрон с силой F л, величина которой определяется соотношением Лоренца

(10)

или в скалярном виде

(11)

где В – индукция магнитного поля;

 - угол между векторами и . Направление силы Лоренца определяется по правилу левой руки с учётом знака заряда частицы.

Отметим, что сила, действующая на электрон, всегда перпендикулярна вектору скорости и, следовательно, является центростремительной силой. В однородном магнитном поле под действием центростремительной силы электрон будет двигаться по окружности радиуса R. Если электрон движется прямолинейно вдоль силовых линий магнитного поля, т.е. =0, то сила Лоренца F л равна нулю и электрон проходит магнитное поле, не меняя направления движения. Если вектор скорости перпендикулярен вектору , то сила действия магнитного поля на электрон максимальна

Так как сила Лоренца является центростремительной силой, то можно записать: , откуда радиус окружности, по которой движется электрон, равен:

Более сложную траекторию описывает электрон, влетающий в магнитное поле со скоростью под некоторым углом  к вектору (рис.3). В этом случае скорость электрона имеет нормальную и тангенциальную составляющие. Первая из них вызвана действием силы Лоренца, вторая обусловлена движением электрона по инерции. В результате электрон движется по цилиндрической спирали. Период его обращения равен (14) , а частота (15). Подставим значение R из (13) в (15):

Из последнего выражения следует, что частота обращения электрона не зависит ни от величины, ни от направления его начальной скорости и определяется только величинами удельного заряда и магнитного поля. Это обстоятельство используется для фокусировки электронных пучков в электронно-лучевых приборах. Действительно, если в магнитном поле попадает пучок электронов, содержащий частицы с различными скоростями (рис.4), то все они опишут спираль разного радиуса, но встретятся в одной и той же точке согласно уравнению (16). Принцип магнитной фокусировки электронного пучка и лежит в основе одного из методов определения е/m. Зная величину В и измерив частоту обращения электронов , по формуле (16) легко вычислить значение удельного заряда.

Если зона действия магнитного поля ограничена, а скорость электрона достаточно велика, то электрон движется по дуге и вылетает из магнитного поля, изменив направление своего движения (рис 5). Угол отклонения  рассчитывается так же, как и для электрического поля и равен: , (17) где в данном случае – протяжённость зоны действия магнитного поля. Таким образом, отклонение электрона в магнитном поле пропорционально е/m и В и обратно пропорционально.

В скрещенных электрическом и магнитном полях отклонение электрона зависит от направления векторов и и соотношения их модулей. На рис. 6 электрическое и магнитное поля взаимно перпендикулярны и направлены таким образом, что первое из них стремиться отклонить электрон вверх, а второе – вниз. Направление отклонения зависит от соотношения сил F л и . Очевидно, что при равенстве сил и F л (18) электрон не изменит направления своего движения.

Предположим, что под действием магнитного поля электрон отклонился на некоторый угол . Затем приложим электрическое поле некой величины, чтобы смещение оказалось равным нулю. Найдём из условия равенства сил (18) скорость и подставим её значение в уравнение (17).

Откуда

(19)

Таким образом зная угол отклонения , вызванный магнитным полем , и величину электрического поля , компенсирующую это отклонение, можно определить величину удельного заряда электрона е/m .

Определение удельного заряда методом магнетрона.

Определение е/m в скрещенных электрическом и магнитном полях может быть выполнено также с помощью двухэлектродного электровакуумного прибора – диода. Этот метод известен в физике, как метод магнетрона. Название метода связано с тем, что используемая в диоде конфигурация электрического и магнитного полей идентична конфигурации полей в магнетронах – приборах, используемых для генерации электромагнитных колебаний в СВЧ - области.

Между цилиндрическим анодом А и цилиндрическим катодом К (рис.7), расположенным вдоль анода, приложена некоторая разность потенциалов U , создающая электрическое поле E, направленное по радиусу от анода к катоду. В отсутствие магнитного поля (В=0) электроны движутся прямолинейно от катода к аноду.

При наложении слабого магнитного поля, направление которого параллельно оси электродов, траектория электронов искривляется под действием силы Лоренца, но они достигают анода. При некотором критическом значении индукции магнитного поля В=В кр, траектория электронов искривляется настолько, что в момент достижения электронами анода вектор их скорости направлен по касательной к аноду. И, наконец, при достаточно сильном магнитном поле В>В кр, электроны не попадают на анод. Значение В кр не является постоянной величиной для данного прибора и зависит от величины приложенной между анодом и катодом разности потенциалов.

Точный расчёт траектории движения электронов в магнетроне сложен, так как электрон движется в неоднородном радиальном электрическом поле. Однако, если радиус катода много меньше радиуса анода b , то электрон описывает траекторию, близкую к круговой, так как напряжённость электрического поля, ускоряющего электроны, будет максимальной в узкой прикатодной области. При В=В кр радиус круговой траектории электрона, как видно из рис.8. будет равен половине радиуса анода R=b /2. Следовательно, согласно (13) для В кр имеем:b ... Показатель преломления. Связь напряженностей электрического и магнитного полей в электромагнитной волне. ... магнитном поле с индукцией B. 13.Заряженная частица движется в магнитном поле по окружности радиуса 1 см со скоростью106 м/с. Индукция магнитного поля ...

Электрически заряженная частица - это частица, которая обладает положительным или отрицательным зарядом. Это могут быть как атомы, молекулы, так и элементарные частицы. Когда электрически заряженная частица находится в электрическом поле, на нее действует сила Кулона. Значение этой силы, если известно значение в конкретной точке, вычисляется по следующей формуле: F = qE.

мы определили, что электрически заряженная частица, которая находится в электрическом поле, движется под воздействием кулоновской силы.

Теперь рассмотрим Экспериментально было обнаружено, что магнитное поле воздействует на движение заряженных частиц. равна максимальной силе, которая воздействует на скорость движения такой частицы со стороны магнитного поля. Заряженная частица движется с единичной скоростью. Если электрически заряженная частица влетит в магнитное поле с заданной скоростью, то сила, которая действует со стороны поля, будет перпендикулярна скорости частицы и соответственно вектору магнитной индукции: F = q. Поскольку сила, которая действует на частицу, перпендикулярна скорости движения, то и ускорение, задаваемое этой силой также перпендикулярно движению, является нормальным ускорением. Соответственно, прямолинейная будет искривляться при попадании заряженной частицы в магнитное поле. Если частица влетает параллельно линиям магнитной индукции, то не действует на заряженную частицу. Если она влетает перпендикулярно линиям магнитной индукции, то сила, которая действует на частицу, будет максимальной.

Теперь запишем II qvB = mv 2 /R, или R = mv/qB, где m - это масса заряженной частицы, а R - это радиус траектории. Из этого уравнения следует, что частица двигается в однородном поле по окружности радиуса. Так, период обращения заряженной частицы по окружности не зависит от скорости движения. Необходимо отметить, что у электрически заряженной частицы, попавшей в магнитное поле, кинетическая энергия неизменна. Вследствие того что сила перпендикулярна движению частицы в любой из точек траектории, поля, которая действует на частицу, не совершает работу, связанную с перемещением движения заряженной частицы.

Направление силы, воздействующей на движение заряженной частицы в магнитном поле, можно определить при помощи «правила левой руки». Для этого необходимо расположить левую ладонь таким образом, чтобы четыре пальца указывали направление скорости движения заряженной частицы, ну а линии магнитной индукции были направлены в центр ладони, в таком случае отогнутый под углом в 90 градусов большой палец будет показывать направление силы, которая действует на положительно заряженную частицу. В том случае, если частица имеет отрицательный заряд, то направление силы будет противоположным.

Если же электрически заряженная частица попадет в область совместного воздействия магнитного и электрического полей, то на нее будет действовать сила, называемая силой Лоренца: F = qE + q. Первое слагаемое при этом относиться к электрическому компоненту, а второе - к магнитному.

влетает в плоский конденсатор под углом (= 30 град) к отрицательно заряженной пластине или под углом () к положительно заряженной пластине, на расстоянии = 9 мм., от отрицательно заряженной пластины.

Параметры частицы.

m - масса, q - заряд, - начальная скорость, - начальная энергия;

Параметры конденсатора.

D - расстояние между пластинами, - длина стороны квадратной пластины, Q - заряд пластины, U - разность потенциалов, C - электроемкость, W - энергия электрического поля конденсатора;

Построить зависимость:

зависимость скорости частицы от координаты “x”

а? (t) - зависимость тангенциального ускорения частицы от времени полета в конденсаторе,

Рис 1. Исходные параметры частицы.

Краткое теоретическое содержание

Вычисление параметров частицы

Всякий заряд изменяет свойства окружающего его пространства - создает в нем электрическое поле. Это поле проявляет себя в том, что помещенный в какую-либо его точку электрический заряд оказывается под действием силы. Также частица обладает энергией.

Энергия частицы равна сумме кинетической и потенциальной энергий, т.е

Вычисление параметров конденсатора

Конденсатор - это уединенный проводник, состоящий из двух пластинок, разделенных слоем диэлектрика (в данной задаче диэлектриком является воздух,). Чтобы внешние тела не оказывали влияния на емкость конденсатора, обкладкам придают такую форму и так располагают друг относительно друга, чтобы поле, создаваемое накапливаемыми на них зарядами, было сосредоточено внутри конденсатора. Поскольку поле заключено внутри конденсатора, линии электрического смещения начинаются на одной обкладке и заканчиваются на другой. Следовательно, сторонние заряды, возникающие на обкладках, имеют одинаковую величину и различны по знаку.

Основной характеристикой конденсатора является его емкость, под которой принимают величину, пропорциональную заряду Q и обратно пропорциональную разности потенциалов между обкладками:

Также величина емкости определяется геометрией конденсатора, а также диэлектрическими свойствами среды, заполняющей пространство между обкладками. Если площадь обкладки S, а заряд на ней Q, то напряжение, поря между обкладками равна

а так как U=Ed, то емкость плоского конденсатора равна:

Энергия заряженного конденсатора выражается через заряд Q, и разность потенциалов между обкладками, воспользовавшись соотношением можно написать еще два выражения для энергии заряженного конденсатора, соответственно пользуясь данными формулами мы можем найти и другие параметры конденсатора: например

Сила со стороны поля конденсатора

Определим значение силы, действующей на частицы. Зная, что на частицу действуют: сила F е (со стороны поля конденсатора) и Р (сила тяжести), можно записать следующее уравнение:

где, т.к F e = Eq, E=U/d

P = mg (g - ускорение свободного падения, g = 9,8м/с 2)

Обе эти силы действуют в направлении оси Y, а в направлении оси ОХ они не действуют, то

А=. (2-й закон Ньютона)

Основные расчётные формулы:

1. Емкость плоского конденсатора:

2. Энергия заряженного конденсатора:

3. Энергия частицы:

конденсатор ион заряженный частица

Конденсатор:

1) Расстояние между пластинами:

0,0110625 м = 11,06 мм.

2) Заряд пластины

3) Разность потенциалов

4) Сила со стороны поля конденсатора:

6,469*10 -14 Н

Сила тяжести:

P=mg=45,5504*10 -26 Н.

Значение очень мало, поэтому ей можно пренебречь.

Уравнения движения частицы:

ax=0; a y =F/m=1,084*10 -13 /46,48·10 -27 =0,23*10 13 м/c 2

1) Начальная скорость:

Зависимость V(x):

V x =V 0 cos? 0 =4?10 5 cos20 0 =3,76?10 5 м/c

V y (t)=a y t+V 0 sin ? 0 =0,23?10 13 t+4?10 5 sin20 0 =0,23?10 13 t+1,36?10 5 м/с

X(t)=V x t; t(x)=x/V x =x/3,76?10 5 с;


=((3,76*10 5) 2 +(1,37+

+(0,23 М10 13 /3,76?10 5)*х) 2) 1/2 = (3721*10 10 *х 2 +166*10 10 * х+14,14*10 10) 1/2

Найдем а(t):



Найдем предел t, т.к. 0

t max =1,465?10 -7 с

Найдем предел x, т.к. 0

l=0,5 м; x max

Графики зависимостей:

В результате расчетов мы получили зависимости V(x) и a(t):

V(x)= (3721*10 10 *х 2 +166*10 10 * х+14,14*10 10) 1/2

Используяe Excel, построим график зависимости V(x) и график зависимости a(t):

Вывод: В расчетно-графическом задании «Движение заряженной частицы в электрическом поле» рассматривалось движение иона 31 P + в однородном электрическом поле между обкладками заряженного конденсатора. Для его выполнения я ознакомился с устройством и основными характеристиками конденсатора, движением заряженной частицы в однородном магнитном поле, а также движением материальной точки по криволинейной траектории и рассчитал необходимые по заданию параметры частицы и конденсатора:

· D - расстояние между пластинами: d = 11,06 мм

· U - разность потенциалов; U = 4,472 кВ

· - начальная скорость; v 0 = 0,703·10 15 м/с

· Q - заряд пластины; Q = 0,894 мкКл;

Построенные графики отображают зависимости: V(x) - зависимость скорости частицы «V» от её координаты“x”, a(t)- зависимость тангенциального ускорения частицы от времени полета в конденсаторе, при этом учтено, что время полета конечно, т.к. ион заканчивает свое движение на отрицательно заряженной пластине конденсатора. Как видно из графиков эти не линейные они степенные.

И электрическое и магнитное поля действуют на движущиеся в них заряженные частицы. Поэтому заряженная частица, влетающая в электрическое или магнитное поле, отклоняется от своего первоначального направления движения (изменяет траекторию), если только это направление не совпадает с направлением поля. В последнем случае электрическое поле только ускоряет (или замедляет) движущуюся частицу, а магнитное поле вообще не действует на нее, Рассмотрим практически наиболее важные случаи, когда заряженная частица влетает в однородное поле, созданное в вакууме имея направление, перпендикулярное полю.

1. Частица в электрическом поле. Пусть частица, имеющая заряд и массу влетает со скоростью в электрическое поле плоского конденсатора (рис. 235, а). Длина конденсатора

равна напряженность поля равна Предположим для определенности, что частица является электроном Тогда, смещаясь в электрическом поле вверх, она пролетит через конденсатор по криволинейной траектории и вылетит из него, отклонившись от первоначального направления на отрезок у. Рассматривая смещение у как проекцию перемещения на ось равномерно ускоренного движения частицы под действием силы поля

можем написать

где напряженность электрического поля, а - ускорение, сообщаемое частице полем, время, в течение которого совершается смещение у. Так как, с другой стороны, есть время равномерного движения частицы вдоль оси конденсатора с постоянной скоростью то

Подставляя это значение ускорения в формулу (32), получим соотношение

представляющее собой уравнение параболы. Таким образом, заряженная частица движется в электрическом поле по параболе; величина отклонения частицы от первоначального направления обратно пропорциональна квадрату скорости частицы.

Отношение заряда частицы к ее массе называется удельным зарядом частицы.

2. Частица в магнитном поле. Пусть та же частица, которую мы рассматривали в предыдущем случае, влетает теперь в магнитное поле напряженностью (рис. 235, б). Силовые линии поля, изображенные точками, направлены перпендикулярно плоскости рисунка (на читателя). Движущаяся заряженная частица представляет собой электрический ток. Поэтому магнитное поле отклонит частицу вверх от ее первоначального направления движения (следует учесть, что направление движения электрона противоположно направлению тока). Согласно формуле Ампера (29), сила, отклоняющая частицу на любом участке траектории (участке тока) равна

где время, за которое заряд проходит по участку Поэтому

Учитывая, что получим

Сила называется лоренцевой силой. Направления и взаимно перпендикулярны. Направление лоренцевой силы можно определять по правилу левой руки, подразумевая при этом под направлением тока I направление скорости и учитывая, что для положительно заряженной частицы направления совпадают, а для отрицательно заряженной частицы эти направления противоположны.

Будучи перпендикулярна скорости лоренцева сила изменяет только направление скорости движения частицы, не изменяя величины этой скорости. Отсюда следуют два важных вывода:

1. Работа лоренцевой силы равна нулю, т. е. постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей (не изменяет кинетической энергии частицы).

Напомним, что в отличие от магнитного поля электрическое поле изменяет энергию и величину скорости движущейся частицы.

2. Траектория частицы является окружностью, на которой частицу удерживает лоренцева сила, играющая роль центростремительной силы. Радиус этой окружности определим, приравнивая между собой лоренцеву и центростремительную силы:

Таким образом, радиус окружности, по которой движется частица, пропорционален скорости частицы и обратно пропорционален напряженности магнитного поля.

На рис. 235, б видно, что отклонение у частицы от ее первоначального направления движения уменьшается с ростом радиуса Из этого можно заключить, учитывая формулу (35), что отклонение частицы в магнитном поле уменьшается при увеличении скорости частицы. При увеличении напряженности поля отклонение частицы увеличивается. Если бы в случае, изображенном на рис. 235, б, магнитное поле было более сильным или охватывало более обширную область, то частица не смогла бы вылететь из этого поля, а стала бы все время двигаться по окружности радиусом Период обращения частицы равен отношению длины окружности к скорости частицы

или, учитывая формулу (35),

Следовательно, период обращения частицы в магнитном пом не зависит от ее скорости.

Если в пространстве, где движется заряженная частица, создать магнитное поле, направленное под углом а к ее скорости то дальнейшее движение частицы представит собой геометрическую сумму двух одновременных движений: вращения по окружности со скоростью в плоскости, перпендикулярной силовым линиям, и перемещения вдоль поля со скоростью (рис. 236, а). Очевидно, что результирующая траектория частицы окажется винтовой линией, навивающейся на силовые линии поля. Это свойство магнитного поля используется в некоторых приборах для предотвращения рассеивания потока заряженных частиц. Особый интерес в этом отношении представляет магнитное поле тороида (см. § 98, рис. 226). Оно является своеобразной ловушкой для движущихся заряженных частиц: «навиваясь» на силовые линии, частица будет сколь угодно долго двигаться в таком поле, не покидая его (рис. 236, б). Отметим, что магнитное поле тороида предполагается использовать в качестве «сосуда» для хранения плазмы в термоядерном реакторе будущего (о проблеме управляемой термоядерной реакции будет сказано в § 144).

Влиянием магнитного поля Земли объясняется преимущественное возникновение полярных сияний в высоких широтах. Заряженные частицы, летящие к Земле из космоса, попадают в магнитное поле Земли и перемещаются вдоль силовых линий поля, «навиваясь» на них. Конфигурация магнитного поля Земли такова (рис. 237), что частицы приближаются к Земле преимущественно в полярных областях, вызывая тлеющий разряд в свободной атмосфере (см. § 93).

С помощью рассмотренных закономерностей движения заряженных частиц в электрическом и магнитном полях можно экспериментально определять удельный заряд и массу этих частиц. Именно таким путем были впервые определены удельный заряд и масса электрона. Принцип определения состоит в следующем. Поток электронов (например, катодные лучи) направляют в электрическое и магнитное поля, ориентированные так, что они отклоняют этот поток в противоположных направлениях. При этом подбирают такие значения напряженностей чтобы отклонения, вызванные силами электрического и магнитного полей, полностью взаимно компенсировались и электроны летели прямолинейно. Тогда, приравнивая между собой выражения электрической (32) и лоренцевой (34) сил, получим

Пусть частица массой m и с зарядом e влетает со скоростью v в электрическое поле плоского конденсатора. Длина конденсатора x, напряженность поля равна Е. Смещаясь в электрическом поле вверх, электрон пролетит через конденсатор по криволинейной траектории и вылетит из него, отклонившись от первоначального направления на y. Под действием силы поля, F = eE = ma частица движется ускоренно по вертикали, поэтому . Время движения частицы вдоль оси ох с постоянной скоростью . Тогда . А это есть уравнение параболы. Т.о. заряженная частица движется в электрическом поле по параболе.

3. Движение заряженных частиц в магнитном поле .

Рассмотрим движение заряженной частицы в магнитном поле напряженностью Н. Силовые линии поля изображены точками и направлены перпендикулярно к плоскости рисунка (к нам).

Движущаяся заряженная частица представляет собой электрический ток. Поэтому магнитное поле отклоняет частицу вверх от ее первоначального направления движения (направление движения электрона противоположно направлению тока)

Согласно формуле Ампера сила, отклоняющая частицу на любом участке траектории равна , ток , где t - время, за которое заряд e проходит по участку l. Поэтому . Учитывая, что , получим

Сила F называется лоренцевой силой. Направления F, v и H взаимно перпендикулярны. Направление F можно определить по правилу левой руки.

Будучи перпендикулярна скорости , лоренцева сила изменяет только направление скорости движения частицы, не изменяя величины этой скорости. Отсюда следует, что:

1. Работа силы Лоренца равна нулю, т.е. постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей (не изменяет кинетической энергии частицы).

Напомним, что в отличие от магнитного поля электрическое поле изменяет энергию и величину скорости движущейся частицы.

2. Траектория частицы является окружностью, на которой частицу удерживает лоренцева сила, играющая роль центростремительной силы.

Радиус r этой окружности определим, приравнивая между собой лоренцеву и центростремительную силы:

Откуда .

Т.о. радиус окружности, по которой движется частица, пропорционален скорости частицы и обратно пропорционален напряженности магнитного поля.

Период обращения частицы T равен отношению длины окружности S к скорости частицы v: . Учитывая выражение для r, получим . Следовательно, период обращения частицы в магнитном поле не зависит от ее скорости.

Если в пространстве, где движется заряженная частица, создать магнитное поле, направленное под углом к ее скорости , то дальнейшее движение частицы представит собой геометрическую сумму двух одновременных движений: вращения по окружности со скоростью в плоскости, перпендикулярной силовым линиям, и перемещения вдоль поля со скоростью . Очевидно, что результирующая траектория частицы окажется винтовой линией.



4. Электромагнитные счетчики скорости крови.

Принцип действия электромагнитного счетчика основан на движении электрических зарядов в магнитном поле. В крови имеется значительное количество электрических зарядов в виде ионов.

Предположим, что некоторое количество однозарядных ионов движется внутри артерии со скоростью . Если артерию поместить между полюсами магнита, ионы будут двигаться в магнитном поле.

Для направлений и B, показанных на рис.1., магнитная сила , действующая на положительно заряженные ионы направлена вверх, а сила , действующая на отрицательно заряженные ионы, направлена вниз. Под влиянием этих сил ионы движутся к противоположным стенкам артерии. Эта поляризация артериальных ионов создает поле E (рис.2), эквивалентное однородному полю плоского конденсатора. Тогда разность потенциалов в артерии U диаметром d связан с Е формулой . Это электрическое поле, действуя на ионы, создает электрические силы и , направление которых противоположно направлению и , как показано на рис.2.

Концентрация зарядов на противоположных стенках артерии будет продолжаться до тех пор, пока электрическое поле не возрастет настолько, что = .

Для состояния равновесия можно записать ; , откуда .

Таким образом, скорость крови пропорциональна напряжению, возрастающему поперек артерии. Зная напряжение, а также значения B и d, можно определить скорость крови.

Примеры решения задач

  1. Вычислить радиус дуги окружности, которую описывает протон в магнитном поле с индукцией 15 мТ, если скорость протона 2 Мм/с.


Радиус дуги окружности определится по формуле

2. Протон, прошедший ускоряющую разность потенциалов U=600 В, влетел в однородное магнитное поле с индукцией В = 0,3Т и стал двигаться по окружности. Вычислить радиус R окружности.

Работа, совершаемая электрическим полем при прохождении протона ускоряющей разности потенциалов, превращается в кинетическую энергию протона:

Радиус окружности можно найти по формуле

Найдем из (1) v: Подставим это в (2):

3. Какую энергию приобретет электрон, сделав 40 оборотов в магнитном поле циклотрона, используемого в целях радиационной терапии, если максимальное значение переменной разности потенциалов между дуантами U = 60кВ? Какую скорость приобретет протон?

За 1 оборот протон дважды пройдет между дуантами циклотрона и приобретет энергию 2eU. За N оборотов энергия T = 2eUN = 4,8 МэВ.

Скорость протона можно определить из соотношения , откуда

Лекция №7

1. Электромагнитная индукция. Закон Фарадея. Правило Ленца.

2. Взаимная индукция и самоиндукция. Энергия магнитного поля.

3. Переменный ток. Работа и мощность переменного тока.

4. Емкостное и индуктивное сопротивление.

5. Использование переменного тока в медицинской практике, его воздействие на организм.

  1. Электромагнитная индукция. Закон Фарадея. Правило Ленца.

Ток, возбуждаемый магнитным полем в замкнутом контуре, называется индукционным током, а само явление возбуждения тока посредством магнитного поля – электромагнитной индукцией.

Электродвижущая сила, обуславливающая индукционный ток, называется электродвижущей силой индукции.

В замкнутом контуре индуцируется ток во всех случаях, когда происходит изменение потока магнитной индукции через площадь, ограниченную контуром – это закон Фарадея .

Величина ЭДС индукции пропорциональна скорости изменения потока магнитной индукции:

Направление индукционного тока определяется правилом Ленца:

Индукционный ток имеет такое направление, что его собственное магнитное поле компенсирует изменение потока магнитной индукции, вызывающей этот ток:

2. Взаимная индукция и самоиндукция являются частным случаем электромагнитной индукции.

Взаимной индукцией называется возбуждение тока в контуре при изменении тока в другом контуре.

Предположим, что в контуре 1 идет ток I 1 . Магнитный поток Ф 2 , связанный с контуром 2, пропорционален магнитному потоку, связанному с контуром 1.

В свою очередь магнитный поток, связанный с контуром 1, ~ I 1, поэтому

где M - коэффициент взаимной индукции. Предположим, что за время dt ток в контуре 1 изменяется на величину dI 1 . Тогда, согласно формуле (3), магнитный поток, связанный с контуром (2), изменится на величину , в результате чего в этом контуре появится ЭДС взаимной индукции (по закону Фарадея)

Формула (4) показывает, что электродвижущая сила взаимной индукции, возникающая в контуре, пропорциональна скорости изменения тока в соседнем контуре и зависит от взаимной индуктивности этих контуров.

Из формулы (3) следует, что

Т.е. взаимная индуктивность двух контуров равна магнитному потоку, связанному с одним из контуров, когда в другом контуре идет ток, равный единице. M измеряется в Генри [Г = Вб/А].

Взаимная индуктивность зависит от формы, размеров и взаимного расположения контуров и от магнитной проницаемости среды, но не зависит от силы тока в контуре.

Контур, в котором изменяется ток, индуцирует ток не только в других, соседних, контурах, но и в себе самом: это явление называется самоиндукцией .

Магнитный поток Ф, связанный с контуром, пропорционален току I в контуре, поэтому

где L - коэффициент самоиндукции, или индуктивность контура.

Предположим, что за время dt ток в контуре изменяется на величину dI. Тогда из (6) , в результате чего в этом контуре появится ЭДС самоиндукции:

Из (6) следует, что . Т.е. индуктивность контура равна связанному с ним магнитному потоку, если в контуре идет ток, равный единице.

Явление электромагнитной индукции основано на взаимных превращениях энергий электрического тока и магнитного поля.

Пусть в некотором контуре с индуктивностью L включается ток. Возрастая от 0 до I, он создает магнитный поток .

Изменение на малую величину dI сопровождается изменением магнитного потока на малую величину

При этом ток совершает работу dA = IdФ, т.е. . Тогда

. (9)

  1. Переменный ток. Работа и мощность переменного тока.

Синусоидальная ЭДС возникает в рамке, которая вращается с угловой скоростью в однородном магнитном поле индукцией В.

Поскольку магнитный поток

где - угол между нормалью к рамке n и вектором магнитной индукции В, прямо пропорционален времени t.

По закону электромагнитной индукции Фарадея

где - скорость изменения потока электромагнитной индукции. Тогда

где амплитудное значение ЭДС индукции.

Эта ЭДС создает в контуре синусоидальный переменный ток силой:

, (13)

где максимальное значение силы тока, R 0 - омическое сопротивление контура.

Изменение ЭДС и силы тока совершаются в одинаковых фазах.

Эффективная сила переменного тока равна силе такого постоянного тока, который имеет ту же мощность, что и данный переменный ток:

Аналогично рассчитывается эффективное (действующее) значение напряжения:

Работа и мощность переменного тока рассчитываются с помощью следующих выражений:

(16)

(17)

4. Емкостное и индуктивное сопротивление .

Емкостное сопротивление. В цепи постоянного тока конденсатор представляет собой бесконечно большое сопротивление: постоянный ток не проходит через диэлектрик, разделяющий обкладки конденсатора. Цепи переменного тока конденсатор не разрывает: попеременно заряжаясь и разряжаясь, он обеспечивает движение электрических зарядов, т.е. поддерживает переменный ток во внешней цепи. Т.о., для переменного тока конденсатор представляет собой конечное сопротивление, называемое емкостным сопротивлением. Его величина определяется выражением:

где - круговая частота переменного тока, С - емкость конденсатора

Индуктивное сопротивление . Из опыта известно, что сила переменного тока в проводнике, свернутом в виде катушки, значительно меньше, чем в прямом проводнике той же длины. Это означает, что помимо омического сопротивления проводник имеет еще дополнительное сопротивление, зависящее от индуктивности проводника и потому называемое индуктивным сопротивлением. Физический смысл его состоит в возникновении в катушке ЭДС самоиндукции, препятствующей изменениям тока в проводнике, а, следовательно, уменьшающей эффективный ток. Это равносильно появлению дополнительного (индуктивного) сопротивления. Его величина определяется выражением:

где L - индуктивность катушки. Емкостное и индуктивное сопротивления называются реактивными сопротивлениями. На реактивном сопротивлении электроэнергия не расходуется, этим оно существенно отличается от активного сопротивления. Организм человека обладает только емкостными свойствами.

Полное сопротивление цепи, содержащей активное, индуктивное и емкостное сопротивления, равно: .

5. Использование переменного тока в медицинской практике, его воздействие на организм .

Действие переменного тока на организм существенно зависит от его частоты. При низких, звуковых и ультразвуковых частотах переменный ток, как и постоянный, вызывает раздражающее действие на биологические ткани. Это обусловлено смещением ионов растворов электролитов, их разделением, изменением их концентрации в разных частях клетки и межклеточного пространства. Раздражение тканей зависит также и от формы импульсного тока, длительности импульса и его амплитуды.

Так как специфическое физиологическое действие электрического тока зависит от формы импульсов, то в медицине для стимуляции нервной системы (электросон, электронаркоз), нервно-мышечной системы (кардиостимуляторы, дефибрилляторы) и т.д. используют токи с различной временной зависимостью.

Воздействуя на сердце, ток может вызвать фибрилляцию желудочков, которая приводит к гибели человека. Пропускание тока высокой частоты через ткань используют в физиотерапевтических процедурах, называемых диатермией и местной дарсонвализацией.

Токи высокой частоты используются также и для хирургических целей (электрохирургия). Они позволяют прижигать, «сваривать», ткани (диатермокоагуляция) или рассекать их (диатермотомия).

Примеры решения задач

1. В однородном магнитном поле индукцией В = 0,1 Т равномерно вращается рамка, содержащая N=1000 витков. Площадь рамки S=150см 2 . Рамка вращается с частотой . Определить мгновенное значение ЭДС, соответствующее углу поворота рамки в 30º. =-

Подставив в (1) выражение для L из (2), получаем:

Подставляя в (3) объем сердечника как V = Sl, получим:

(4)

Подставим в (4) численные значения.