Как решать системы графическим. Раз, два, три- теперь налево

АЛГЕБРА 9 КЛАСС

Графический способ

решения систем уравнений


1. Найдите по графику:

а) нули функции;

б) область значений функции;

в) промежутки возрастания и убывания функции;

с) промежутки, в которых у ≤0, у≥0.

d ) наименьшее значение функции.


1.Из предложенных формул выберите ту формулу,

которая задает функцию, представленную на графике

а ) у = - 3х+1; б) у = 2х+1;

в) у =3х+1 .


Из предложенных формул выберите ту формулу, которая

задает функцию, представленную на графике

б) у = - 2x 2 ; в) у = x 2 +1.

а) у = х 2 ;


Из предложенных формул выберите ту формулу, которая задает функцию, представленную на графике.

б) у = 2 х 3 ; в) y =х 3

а) у= 0,5х 3 ;


Из предложенных формул выберите ту формулу, которая задает функцию, представленную на графике

а) у= 4/х; б) у= - 4/х;


Линейное уравнение с

одной переменной

ax=b

  • Линейное уравнение с

двумя переменными


Уравнение с двумя переменными

Графиком уравнения с двумя переменными называется множество точек координатной плоскости, координаты которых обращают уравнение в верное равенство


Уравнение

Выражаем у через х

3х+2у=6

2у-х 2 =0

Данной формулой задается …..

Графиком служит

2х+у=0

гипербола

квадратичная

функция

у= -1,5х+3

Линейная

функция

прямая

у=0,5 х 2

обратная

пропорц-ность

у= -2х

парабола

прямая, пр-я

через нач. коорд.

прямая

пропорц-ность


Эллипс


х 2 у= 4 (2-у),

у=8 /(х 2 +4)



Система уравнений и её решение

Определения

  • Системой уравнений называется некоторое количество уравнений, объединенных фигурной скобкой. Фигурная скобка означает, что все уравнения должны выполняться одновременно
  • Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство
  • Решить систему уравнений - это значит найти все её решения или установить, что их нет

Способ

подстановки

Способ

сложения


Методы решения систем уравнений

Способ

подстановки

Способ

сложения


Графический способ

решения систем уравнений


1.Выразить у через х в каждом уравнении.

2.Построить в одной системе координат график

каждого уравнения.

3.Выразить у через х в каждом уравнении.

4.Построить в одной системе координат график

каждого уравнения

5.Определить координаты точки пересечения

графиков.

6.Записать ответ: х=…; у=… , или (х; у)


Решение системы графическим способом

Выразим у

Построим график

первого уравнения

Построим график второго

уравнения -окружность с

центром в точке О(0;0) и

радиуса 2.


Решение системы графическим способом

Выразим у

Построим график

первого уравнения

Построим график второго

уравнения -окружность с

центром в точке О(0;0) и

радиуса 2.

х 2 2 =4*

Система имеет 2 решения:

Ответ: (0;2), (-2;0)


1.Мы зарядку начинаем,

Наши руки разминаем,

Разминаем спину, плечи,

Чтоб сидеть нам было легче

2. Крутим-вертим головой.

Разминаем шею, стой!

Раз, два, три –наклон направо,

Раз, два, три- теперь налево.

3. А теперь остановись!

Поднимаем руки выше,

Вдох и выдох. Глубже дышим.

А теперь за парты сядем.

Видеоурок «Графический способ решения систем уравнений» представляет учебный материал для освоения данной темы. Материал содержит общее понятие о решении системы уравнений, а также подробное объяснение на примере, каким образом решается система уравнений графическим способом.

Наглядное пособие использует анимацию для более удобного и понятного выполнения построений, а также разные способы выделения важных понятий и деталей для углубленного понимания материала, лучшего его запоминания.

Видеоурок начинается с представления темы. Ученикам напоминается, что такое система уравнений, и с какими системами уравнений им уже пришлось ознакомиться в 7 классе. Ранее ученикам приходилось решать системы уравнений вида ах+by=c. Углубляя понятие о решении систем уравнений и с целью формирования умения их решать в данном видеоуроке рассматривается решение системы, состоящей из двух уравнений второй степени, а также из одного уравнения второй степени, а второго - первой степени. Напоминается о том, что такое решение системы уравнений. Определение решения системы как пары значений переменных, обращающих ее уравнения при подстановке в верное равенство, выводится на экран. В соответствии с определением решения системы, конкретизируется задача. На экран выведено для запоминания, что решить систему - означает, найти подходящие решения или доказать их отсутствие.

Предлагается освоить графический способ решения некоторой системы уравнений. Применение данного способа рассматривается на примере решения системы, состоящей из уравнений х 2 +у 2 =16 и у=-х 2 +2х+4. Графическое решение системы начинается с построения графика каждого из данных уравнений. Очевидно, графиком уравнения х 2 +у 2 =16 будет окружность. Точки, принадлежащие данной окружности, являются решением уравнения. Рядом с уравнением строится на координатной плоскости окружность радиусом 4 с центром О в начале координат. График второго уравнения представляет собой параболу, ветви которой опущены вниз. На координатной плоскости построена данная парабола, соответствующая графику уравнения. Любая точка, принадлежащая параболе, представляет собой решение уравнения у=-х 2 +2х+4. Объясняется, что решение системы уравнений - точки на графиках, принадлежащие одновременно графикам обоих уравнений. Это значит, что точки пересечения построенных графиков будут являться решениями системы уравнений.

Отмечается, что графический метод состоит в нахождении приближенного значения координат точек, находящихся на пересечении двух графиков, которые отражают множество решений каждого уравнения системы. На рисунке отмечаются координат найденных точек пересечения двух графиков: А, B, C, D[-2;-3,5]. Данные точки - решения системы уравнений, найденные графическим способом. Проверить их правильность можно, подставив в уравнение и получив справедливое равенство. После подстановки точек в уравнение, видно, что часть точек дает точное значение решения, а часть представляет приближенное значение решения уравнения: х 1 =0, у 1 =4; х 2 =2, у 2 ≈3,5; х 3 ≈3,5, у 3 =-2; х 4 =-2, у 4 ≈-3,5.

Видеоурок подробно объясняет суть и применение графического способа решения системы уравнений. Это дает возможность использовать его в качестве видеопособия на уроке алгебры в школе при изучении данной темы. Также материал будет полезен при самостоятельном изучении учениками и может помочь объяснить тему при дистанционном обучении.














Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели и задачи урока:

  • продолжить работу по формированию навыков решения систем уравнений графическим методом;
  • провести исследования и сделать выводы о количестве решений системы двух линейных уравнений;
  • развивать интерес к предмету через игру.

ХОД УРОКА

1. Организационный момент (Планерка) – 2 мин.

– Добрый день! Начинаем нашу традиционную планерку. Мы рады приветствовать всех, кто сегодня у нас в гостях, в нашей лаборатории (представляю гостей). Наша лаборатория называется: «ТРУД с интересом и удовольствием» (показываю слайд 2). Название служит девизом в нашей работе. «Твори, Решай, Учись, Добивайся с интересом и удовольствием ». Дорогие гости, представляю вам руководителей нашей лаборатории (слайд 3).
Наша лаборатория занимается изучением научных трудов, исследованиями, экспертизой, работает над созданием творческих проектов.
Сегодня тема нашего обсуждения: «Графическое решение систем линейных уравнений». (Предлагаю записать тему урока)

Программа дня: (слайд 4)

1. Планерка
2. Расширенный ученый совет:

  • Выступления по теме
  • Допуск к работе

3. Экспертиза
4. Исследования и открытия
5. Творческий проект
6. Отчет
7. Планирование

2. Опрос и устная работа (Расширенный ученый совет) – 10 мин.

– Сегодня мы проводим расширенный ученый совет, на котором присутствуют не только руководители отделов, но и все члены нашего коллектива. Лаборатория только начала работу по теме: «Графическое решение систем линейных уравнений». Мы должны постараться добиться самых высоких достижений в этом вопросе. Наша лаборатория должна славиться качеством исследований по этой теме. Я, как старший научный сотрудник, желаю всем удачи!

Результаты исследований будут сообщены начальнику лаборатории.

Слово для доклада о решении систем уравнений имеет…(вызываю ученика к доске). Даю заданию задание (карточка 1).

А лаборант…(называю фамилию) напомнит, как строить график функции с модулем. Даю карточку 2.

Карточка 1 (решение задания на слайде 7)

Решить систему уравнений:

Карточка 2 (решение задания на слайде 9)

Построить график функции: y = | 1,5x – 3 |

Пока сотрудники готовятся к докладу, я проверю, как вы готовы к выполнению исследований. Каждый из вас должен получить допуск к работе. (Начинаем устный счет с записью ответов в тетрадь)

Допуск к работе (задания на слайдах 5 и 6)

1) Выразить у через x:

3x + y = 4 (y = 4 – 3x)
5x – y = 2 (y = 5x – 2)
1/2y – x = 7 (y = 2x + 14)
2x + 1/3y – 1 = 0 (y = – 6x + 3)

2) Решить уравнение:

5x + 2 = 0 (x = – 2/5)
4x – 3 = 0 (x = 3/4)
2 – 3x = 0 (x = 2/3)
1/3x + 4 = 0 (x = – 12)

3) Дана система уравнений:

Какая из пар чисел (– 1; 1) или (1; – 1) является решением данной системы уравнений?

Ответ: (1; – 1)

Сразу после каждого фрагмента устного счета учащиеся обмениваются тетрадями (с рядом сидящим учеником в одном отделе), на слайдах появляются верные ответы; проверяющий ставит плюс или минус. По окончании работы начальники отделов вносят результаты в сводную таблицу (см ниже); за каждый пример дается 1 балл (возможно получить 9 баллов).
Те, кто набрал 5 и более баллов, получают допуск к работе. Остальные получают условный допуск, т.е. должны будут работать под контролем начальника отдела.

Таблица (заполняет начальник)

(Таблицы выдаются до начала урока)

После получения допуска слушаем ответы учащихся у доски. За ответ ученик получает 9 баллов, если ответ полный (максимальное количество при допуске), 4балла, если ответ не полный. Баллы вносят в графу «допуск».
Если на доске правильное решение, то слайды 7 и 9 можно не показывать. Если решение правильное, но нечетко выполненное или решение неправильное, то слайды демонстрируются обязательно с пояснениями.
Слайд 8показываю обязательно после ответа ученика по карточке 1. На этом слайде выводы важные для урока.

Алгоритм решения систем графическим способом:

  • Выразить y через x в каждом уравнении системы.
  • Построить график каждого уравнения системы.
  • Найти координаты точек пересечения графиков.
  • Сделать проверку (обращаю внимание учащихся на то, что графический метод обычно дает приближенное решение, но в случае попадания пересечения графиков в точку с целыми координатами, можно выполнить проверку и получить точный ответ).
  • Записать ответ.

3. Упражнения (Экспертиза) – 5 мин.

Вчера в работе некоторых сотрудников были допущены грубые ошибки. Сегодня вы уже более компетентны в вопросе графического решения. Вам предлагается провести экспертизу предложенных решений, т.е. найти ошибки в решениях. Демонстрируется слайд 10.
Работа идет в отделах. (На каждый стол выдаются ксерокопии заданий с ошибками; в каждом отделе сотрудники должны найти ошибки и подчеркнуть их или исправить; ксерокопии сдать старшему научному сотруднику, т.е. учителю). Тем, кто найдет и исправит ошибку, начальник добавляет 2 балла. Затем обсуждаем допущенные ошибки и указываем их на слайде 10.

Ошибка 1

Решить систему уравнений:

Ответ: решений нет.

Учащиеся должны продолжить прямые до пересечения и получить ответ: (– 2; 1).

Ошибка 2.

Решить систему уравнений:

Ответ: (1; 4).

Учащиеся должны найти ошибку в преобразовании первого уравнения и исправить на готовом чертеже. Получить другой ответ: (2; 5).

4. Объяснение нового материала (Исследования и открытия) – 12 мин.

Учащимся предлагаю решить графически три системы. Каждый ученик решает самостоятельно в тетради. Консультироваться могут только те, у кого условный допуск.

Решение

Без построения графиков понятно, что прямые совпадут.

На слайде 11 показано решение систем; ожидаемо, что учащиеся будут испытывать затруднение при записи ответа в примере 3. После работы в отделах проверяем решение (за верное начальник добавляет 2 балла). Теперь пришло время обсудить, сколько решений может иметь система двух линейных уравнений.
Учащиеся должны сделать выводы самостоятельно и объяснить их, перечислив случаи взаимного расположения прямых на плоскости (слайд 12).

5. Творческий проект (Упражнения) – 12 мин.

Задание дается для отдела. Начальник дает каждому лаборанту по способностям фрагмент его выполнения.

Решить системы уравнений графически:

После раскрытия скобок учащиеся должны получить систему:

После раскрытия скобок первое уравнение имеет вид: y = 2/3x + 4.

6. Отчет (проверка выполнения задания) – 2 мин.

После выполнения творческого проекта учащиеся сдают тетради. На слайде 13 показываю то, что должно было получиться. Начальники сдают таблицу. Последнюю графу заполняет учитель и ставит отметку (отметки можно сообщить ученикам на следующем уроке). В проекте решение первой системы оценивается тремя баллами, а второй – четырьмя.

7. Планирование (подведение итогов и домашнее задание) – 2 мин.

Подведем итоги нашего труда. Мы неплохо поработали. Конкретно о результатах поговорим завтра на планерке. Безусловно, все без исключения лаборанты овладели графическим методом решения систем уравнений, усвоили, какое количество решений может иметь система. Завтра каждого из вас ждет персональный проект. Для дополнительной подготовки: п.36; 647-649(2); повторите аналитические методы решение систем. 649(2) решите и аналитическим методом.

Нашу работу в течение всего дня контролировал директор лаборатории Ноумэн Ноу Мэнович. Ему слово. (Показываю заключительный слайд).

Примерная шкала для выставления оценок

Отметка Допуск Экспертиза Исследование Проект Всего
3 5 2 2 2 11
4 7 2 4 3 16
5 9 3 5 4 21

Более надежные, чем графический метод, который рассмотрели в предыдущем параграфе.

Метод подстановки

Этот метод мы применяли в 7-м классе для решения систем линейных уравнений. Тот алгоритм, который был выработан в 7-м классе, вполне пригоден для решения систем любых двух уравнений (не обязательно линейных) с двумя переменными х и у (разумеется, переменные могут быть обозначены и другими буквами, что не имеет значения). Фактически этим алгоритмом мы воспользовались в предыдущем параграфе, когда задача о двузначном числе привела к математической модели, представляющей собой систему уравнений. Эту систему уравнений мы решили выше методом подстановки (см. пример 1 из § 4).

Алгоритм использования метода подстановки при решении системы двух уравнений с двумя переменными х, у.

1. Выразить у через х из одного уравнения системы.
2. Подставить полученное выражение вместо у в другое уравнение системы.
3. Решить полученное уравнение относительно х.
4. Подставить поочередно каждый из найденных на третьем шаге корней уравнения вместо х в выражение у через х, полученное на первом шаге.
5. Записать ответ в виде пар значений (х; у), которые были найдены соответственно на третьем и четвертом шаге.


4) Подставим поочередно каждое из найденных значений у в формулу х = 5 - Зу. Если то
5) Пары (2; 1) и решения заданной системы уравнений.

Ответ: (2; 1);

Метод алгебраического сложения

Этот метод, как и метод подстановки, знаком вам из курса алгебры 7-го класса, где он применялся для решения систем линейных уравнений. Суть метода напомним на следующем примере.

Пример 2. Решить систему уравнений


Умножим все члены первого уравнения системы на 3, а второе уравнение оставим без изменения:
Вычтем второе уравнение системы из ее первого уравнения:


В результате алгебраического сложения двух уравнений исходной системы получилось уравнение, более простое, чем первое и второе уравнения заданной системы. Этим более простым уравнением мы имеем право заменить любое уравнение заданной системы, например второе. Тогда заданная система уравнений заменится более простой системой:


Эту систему можно решить методом подстановки. Из второго уравнения находим Подставив это выражение вместо у в первое уравнение системы, получим


Осталось подставить найденные значения х в формулу

Если х = 2, то

Таким образом, мы нашли два решения системы:

Метод введения новых переменных

С методом введения новой переменной при решении рациональных уравнений с одной переменной вы познакомились в курсе алгебры 8-го класса. Суть этого метода при решении систем уравнений та же самая, но с технической точки зрения имеются некоторые особенности, которые мы и обсудим в следующих примерах.

Пример 3. Решить систему уравнений

Введем новую переменную Тогда первое уравнение системы можно будет переписать в более простом виде: Решим это уравнение относительно переменной t:


Оба эти значения удовлетворяют условию , а потому являются корнями рационального уравнения с переменной t. Но значит, либо откуда находим, что х = 2у, либо
Таким образом, с помощью метода введения новой переменной нам удалось как бы «расслоить» первое уравнение системы, достаточно сложное по виду, на два более простых уравнения:

х = 2 у; у - 2х.

Что же дальше? А дальше каждое из двух полученных простых уравнений нужно поочередно рассмотреть в системе с уравнением х 2 - у 2 = 3, о котором мы пока не вспоминали. Иными словами, задача сводится к решению двух систем уравнений :

Надо найти решения первой системы, второй системы и все полученные пары значений включить в ответ. Решим первую систему уравнений:

Воспользуемся методом подстановки, тем более что здесь для него все готово: подставим выражение 2у вместо х во второе уравнение системы. Получим


Так как х = 2у, то находим соответственно х 1 = 2, х 2 = 2. Тем самым получены два решения заданной системы: (2; 1) и (-2; -1). Решим вторую систему уравнений:

Снова воспользуемся методом подстановки : подставим выражение 2х вместо у во второе уравнение системы. Получим


Это уравнение не имеет корней, значит, и система уравнений не имеет решений. Таким образом, в ответ надо включить только решения первой системы.

Ответ: (2; 1); (-2;-1).

Метод введения новых переменных при решении систем двух уравнений с двумя переменными применяется в двух вариантах. Первый вариант: вводится одна новая переменная и используется только в одном уравнении системы. Именно так обстояло дело в примере 3.Второй вариант: вводятся две новые переменные и используются одновременно в обоих уравнениях системы. Так будет обстоять дело в примере 4.

Пример 4. Решить систему уравнений

Введем две новые переменные:

Учтем, что тогда

Это позволит переписать заданную систему в значительно более простом виде, но относительно новых переменных а и b:


Так как а = 1, то из уравнения а + 6 = 2 находим: 1 + 6 = 2; 6=1. Таким образом, относительно переменных а и b мы получили одно решение:

Возвращаясь к переменным х и у, получаем систему уравнений


Применим для решения этой системы метод алгебраического сложения:


Так как то из уравнения 2x + y = 3 находим:
Таким образом, относительно переменных х и у мы получили одно решение:


Завершим этот параграф кратким, но достаточно серьезным теоретическим разговором. Вы уже накопили некоторый опыт в решении различных уравнений: линейных, квадратных, рациональных, иррациональных . Вы знаете, что основная идея решения уравнения состоит в постепенном переходе от одного уравнения к другому, более простому, но равносильному заданному. В предыдущем параграфе мы ввели понятие равносильности для уравнений с двумя переменными. Используют это понятие и для систем уравнений.

Определение.

Две системы уравнений с переменными х и у называют равносильными, если они имеют одни и те же решения или если обе системы не имеют решений.

Все три метода (подстановки, алгебраического сложения и введения новых переменных), которые мы обсудили в этом параграфе, абсолютно корректны с точки зрения равносильности. Иными словами, используя эти методы, мы заменяем одну систему уравнений другой, более простой, но равносильной первоначальной системе.

Графический метод решения систем уравнений

Мы уже с вами научились решать системы уравнений такими распространенными и надежными способами, как метод подстановки, алгебраического сложения и введения новых переменных. А теперь давайте с вами вспомним, метод, который вы уже изучали на предыдущем уроке. То есть давайте повторим, что вы знаете о графическом методе решения.

Метод решения систем уравнения графическим способом представляет собой построение графика для каждого из конкретных уравнений, которые входят в данную систему и находятся в одной координатной плоскости, а также где требуется найти пересечения точек этих графиков. Для решения данной системы уравнений являются координаты этой точки (x; y).

Следует вспомнить, что для графической системы уравнений свойственно иметь либо одно единственное верное решение, либо бесконечное множество решений, либо же не иметь решений вообще.

А теперь на каждом из этих решений остановимся подробнее. И так, система уравнений может иметь единственное решение в случае, если прямые, которые являются графиками уравнений системы, пересекаются. Если же эти прямые параллельны, то такая система уравнений абсолютно не имеет решений. В случае же совпадения прямых графиков уравнений системы, то тогда такая система позволяет найти множество решений.

Ну а теперь давайте с вами рассмотрим алгоритм решения системы двух уравнений с 2-мя неизвестными графическим методом:

Во-первых, вначале мы с вами строим график 1-го уравнения;
Вторым этапом будет построение графика, который относится ко второму уравнению;
В-третьих, нам необходимо найти точки пересечения графиков.
И в итоге мы получаем координаты каждой точки пересечения, которые и будут решением системы уравнений.

Давайте этот метод рассмотрим более подробно на примере. Нам дана система уравнений, которую необходимо решить:


Решение уравнений

1. Вначале мы с вами будем строить график данного уравнения: x2+y2=9.

Но следует заметить, что данным графиком уравнений будет окружность, имеющая центр в начале координат, а ее радиус будет равен трем.

2. Следующим нашим шагом будет построение графика такого уравнения, как: y = x – 3.

В этом случае, мы должны построить прямую и найти точки (0;−3) и (3;0).


3. Смотрим, что у нас получилось. Мы видим, что прямая пересекает окружность в двух ее точках A и B.

Теперь мы с вами ищем координаты этих точек. Мы видим, что координаты (3;0) соответствуют точке А, а координаты (0;−3) соответственно точке В.

И что мы получаем в итоге?

Получившиеся при пересечении прямой с окружностью числа (3;0) и (0;−3), как раз и являются решениями обоих уравнений системы. А из этого следует, что данные числа являются и решениями этой системы уравнений.

То есть, ответом этого решения являются числа: (3;0) и (0;−3).

На этом уроке мы будем рассматривать решение систем двух уравнений с двумя переменными. Вначале рассмотрим графическое решение системы двух линейных уравнений, специфику совокупности их графиков. Далее решим несколько систем графическим методом.

Тема: Системы уравнений

Урок: Графический метод решения системы уравнений

Рассмотрим систему

Пару чисел которая одновременно является решением и первого и второго уравнения системы, называют решением системы уравнений .

Решить систему уравнений - это значит найти все её решения, или установить, что решений нет. Мы рассмотрели графики основных уравнений, перейдем к рассмотрению систем.

Пример 1. Решить систему

Решение:

Это линейные уравнения, графиком каждого из них является прямая. График первого уравнения проходит через точки (0; 1) и (-1; 0). График второго уравнения проходит через точки (0; -1) и (-1; 0). Прямые пересекаются в точке (-1; 0), это и есть решение системы уравнений (Рис. 1).

Решением системы является пара чисел Подставив эту пару чисел в каждое уравнение, получим верное равенство.

Мы получили единственное решение линейной системы.

Вспомним, что при решении линейной системы возможны следующие случаи:

cистема имеет единственное решение - прямые пересекаются,

система не имеет решений - прямые параллельны,

система имеет бесчисленное множество решений - прямые совпадают.

Мы рассмотрели частный случай системы, когда p(x; y) и q(x; y) - линейные выражения от x и y.

Пример 2. Решить систему уравнений

Решение:

График первого уравнения - прямая, график второго уравнения - окружность. Построим первый график по точкам (Рис. 2).

Центр окружности в точке О(0; 0), радиус равен 1.

Графики пересекаются в т. А(0; 1) и т. В(-1; 0).

Пример 3. Решить систему графически

Решение: Построим график первого уравнения - это окружность с центром в т.О(0; 0) и радиусом 2. График второго уравнения - парабола. Она сдвинута относительно начала координат на 2 вверх, т.е. ее вершина - точка (0; 2) (Рис. 3).

Графики имеют одну общую точку - т. А(0; 2). Она и является решением системы. Подставим пару чисел в уравнение, чтобы проверить правильность.

Пример 4. Решить систему

Решение: Построим график первого уравнения - это окружность с центром в т.О(0; 0) и радиусом 1 (Рис. 4).

Построим график функции Это ломаная (Рис. 5).

Теперь сдвинем ее на 1 вниз по оси oy. Это и будет график функции

Поместим оба графика в одну систему координат (Рис. 6).

Получаем три точки пересечения - т. А(1; 0), т. В(-1; 0), т. С(0; -1).

Мы рассмотрели графический метод решения систем. Если можно построить график каждого уравнения и найти координаты точек пересечения, то этого метода вполне достаточно.

Но часто графический метод даёт возможность найти только приближенное решение системы или ответить на вопрос о количестве решений. Поэтому нужны и другие методы, более точные, и ими мы займемся на следующих уроках.

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

1. Раздел College.ru по математике ().

2. Интернет-проект «Задачи» ().

3. Образовательный портал «РЕШУ ЕГЭ» ().

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. № 105, 107, 114, 115.