Методическая разработка на тему: лабораторные работы по химии для естественнонаучного профиля. Оборудование и реактивы

Методы приготовления суспензий

Техника приготовления суспензий предопределяется физико-химическими свойствами прописанных медикаментов. Так, суспензии гидрофильных веществ готовят путем их растирания с выписанной жидкостью (водой), вводя ее постепенно. Приналичии в рецепте вязких жидкостей или слизей медикаменты предварительно растирают с ними, а уже затем с водой. Стабильные суспензии гидрофобных веществ получают иначе, с применением вспомогательных веществ - гидрофильных коллоидов. Суспензии могут быть приготовлены двумя методами - дисперсионным и конденсационным.

При дисперсионном методе суспензия образуется вследствие постепенного уменьшения до нужных размеров степени раздробленности частиц твердой фазы, т. е. в результате ее измельчения.

При конденсационном методе суспензия образуется благодаря увеличению размера частиц исходного лекарственного вещества, находившегося ранее в состоянии ионной, молекулярной или коллоидной дисперсии. Этот путь иногда также называется кристаллизационным.

В фармацевтической практике применяются оба метода приготовления суспензий.

Дисперсный метод.

Необходимость применения этого метода возникает на практике при назначении в составе жидкого лекарства лекарственного вещества, нерастворимого или малорастворимого в данной дисперсионной среде.

Если лекарственное вещество гидрофильно и лишено способности к набуханию, т. е. не увеличивается в объеме при контакте с водой или водными растворами и не превращается в упругий студень, то наиболее целесообразным приемом получения достаточно тонкой суспензии является взмучивание .

Процесс взмучивания заключается в растирании исходного вещества, смоченного небольшим количеством дисперсионной среды до состояния тончайшей пульпы. Последнюю разбавляют небольшим количеством дисперсионной среды и оставляют на некоторое время в покое. Полученная полидисперсная суспензия быстро разделяется на два слоя - грубодисперсный и мелкодисперсный.

Грубые, недостаточно диспергированные зерна быстро выделяются в осадок, в то время как тонкие частицы на известное время остаются во взвешенном состоянии. Тонкую суспензию сливают с осадка в отпускную склянку, а осадок подвергают повторному растиранию. Подобные операции повторяют до получения достаточно устойчивой суспензии.

По исследованиям Б. В. Дерягина, решающее влияние на результаты диспергирования суспендируемого вещества оказывает соотношение между твердой (Т) и жидкой (Ж) фазой в момент измельчения. Наивысшая степень дисперсности достигается при их оптимальном соотношении, называемом правилом Дерягина , Т/Ж = 1,6-2,5, т. е. 0,4-0,6 мл жидкости на 1 г измельчаемой твердой фазы. При таком соотношении обеспечивается максимальное трение частиц друг о друга и об измельчающие поверхности ступки и пестика. Кроме того, привыполнении этого правила смачивающая дисперсионная среда оказывает максимальное расклинивающее действие, способствующее измельчению.

Следует иметь в виду, что активным расклинивающим свойством обладают лишь смачивающие жидкости.

Рассмотрим следующий пример:

№ 73. Rp.: Extr. Belladonnae 0,1

Bismuthi subnitratis 2,0

Aq. destill. 100 мл

MDS. По 1 десертной ложке 3 раза в день

В первую очередь готовят раствор густого экстракта белладонны в дистиллированной воде. Полученный водный раствор используют для приготовления суспензии висмута нитрата основного способом взмучивания. Для этого 2 г препарата растирают в соответствии с правилом Дерягина с 1 мл ранее приготовленного раствора. Полученную пульпу смешивают с 5-10-кратным количеством раствора и оставляют на 2-3 мин. При этом крупные частицы висмута нитрата основного оседают, и их отделяют, сливая тонкую взвесь в отпускную склянку. Крупные частицы вновь растирают до тех пор, пока весь аппарат не будет доведен до состояния тонкой суспензии.

Взмучивание дает хорошие результаты при суспендировании в водных средах основных солей висмута, окисей цинка и м агния, кальция фосфата, карбоната и глицерофосфата, каолина, натрия гидрокарбоната, железа глицерофосфата, сульфаниламидов. Оно может быть применено для растирания гидрофобных лекарственных веществ в невязких жирных маслах, но практически непригодно для приготовления суспензий на касторовом масле или глицерине.

При изготовлении суспензий гидрофильных лекарственных веществ, способных к ограниченному набуханию в водных средах, взмучивание дает плохие результаты.

Набухающие препараты, например тенальбин и его аналоги (теальбин, санальбин), при растирании в присутствии воды подвергаются упругим деформациям, но очень плохо диспергируются.

В подобных случаях наиболее целесообразно тщательное растирание набухающего препарата в сухом виде, лучше всего в присутствии небольшого количества (20-30%) какого-либо легче растворимого порошка, например сахара или лактозы. Полученная тончайшая пудра при смешении в ступке с жидкой фазой дает хорошую суспензию, которую затем смывают в отпускную склянку.

№ 74. Rp.: Emulsionis Amygdalarum 100 мл

Phenyli salicylatis Tannalbini a a 1,0

Sirupi simplicis 10 мл

MDS. По 1 чайной ложке 4 раза в день

Вначале готовят 100 г миндальной эмульсии. Танальбин тщательно растирают в небольшой ступке в сухом виде, полностью выбирают его скребочком и переносят из ступки на листок бумаги. Ступку нагревают горячей водой (не перегревать!), вытирают насухо и затем эмульгируют расплавившийся в ней фенилсалицилат в небольшом количестве (~1 г) сиропа. К эмульсии прибавляют растертый танальбин, остаток сиропа и смесь сливают в отпускную склянку, куда предварительно наливают миндальную эмульсию. Ступку споласкивают частью полученной микстуры, которую возвращают в отпускную склянку.

Получение суспензий гидрофобных лекарственных веществ (терпингидрат, бензонафтол, фенилсалицилат, камфора, ментол, тимол, сера и т. п.) в водной дисперсионной среде требует обязательного применения стабилизаторов, лиофилизирующих (увеличивающих сродство к воде) поверхность частиц этих веществ и способствующих образованию сольватных оболочек. В противном случае частицы перечисленных веществ, не защищенные сольватными оболочками, будут коагулировать, осаждаясь или всплывая на поверхность суспензии.

При изготовлении подобных суспензий в качестве стабилизаторов обычно применяют абрикосовую и аравийскую камеди, желатозу и другие вещества белковой природы. Реже используют декстрин, слизи (салепа, льняного семени, алтея), крахмальный клейстер. В качестве стабилизатора могут быть применены также твин-80 и 5% раствор метилцеллюлозы.

При использовании указанных стабилизаторов целесообразно применять их растворы, растирая вместе с ними суспендируемое лекарственное вещество. Не следует брать излишне большие количества стабилизаторов, значительно увеличивающих вязкость суспензии. В общем случае количество указанных веществ не должно превышать количество суспендируемого лекарственного вещества.

Для стабилизации суспензий терпингидрата и бензонафтола вполне достаточно половинного по отношению к ним количества аравийской камеди или желатозы и втрое меньше количества абрикосовой камеди. Если указанные лекарственные вещества прописаны вместе со слизью салепа, крахмальным отваром, белковой водой, сахарным или алтейным сиропом, настоем алтейного корня, то добавление стабилизирующих веществ вообще излишне, так как указанные дисперсионные среды сами по себе будут играть роль стабилизаторов.

Приготовление суспензий камфоры, серы отличается специфическими особенностями и требует индивидуального рассмотрения.

Суспензии камфоры. Камфора - типично гидрофобное вещество, не смачивающееся водой. В водной среде она отличается резко выраженной способностью к агрегации. Прибавления половинного количества (от массы камфоры) аравийской камеди или желатозы оказывается недостаточным для надежной стабилизации взвеси, поэтому их количество увеличивают до равного с количеством камфоры.

Кроме того, камфора очень плохо растирается в порошок. Тонкие суспензии камфоры можно получить лишь при ее растирании со спиртом, причем раствор стабилизатора - камеди или желатозы - следует прибавлять к камфорно-спиртовой пульпе, не дожидаясь полного испарения спирта. При применении стабилизатора в виде порошка их следует смешать с камфорой до добавления спирта. К смеси при растирании добавляют сначала спирт, а затем, не дожидаясь его испарения, двукратное или трехкратное количество воды.

№ 75. Rp.: Camphorae 1,5

Natrii bromidi 2,0

Adonisidi 10 мл

Aq. destill. 150 мл

MDS. По 2 столовые ложки 3 раза в день.

Вначале готовят раствор натрия бромида в воде, используя для этого концентрат натрия бромида (1:5) в количестве 10 мл и воду в количестве 140 мл. Камфору растирают в присутствии 15-20 капель спирта и 0,7-0,8 г абрикосовой камеди. Затем, не дожидаясь испарения спирта, добавляют при растирании 6-8 капель раствора натрия бромида, после чего прибавляют весь остальной раствор и образовавшуюся суспензию сливают в отпускную склянку, в которую предварительно наливают 10 мл адонизида.

Суспензии серы. Сера, как и камфора, - вещество с выраженной гидрофобностью. Измельченная сера, находясь в водной среде, интенсивно адсорбируется пузырьками воздуха, появляющимися при встряхивании суспензии, и вместе с ними всплывает на поверхность, образуя обильную серную пену.

Для стабилизации суспензий серы применяют калийное мыло в количестве 0,1-0,2 г от массы или карбоксиметилцеллюлозу.

№ 76. Rp.: Sulfuris depurati 2,0

Glycerini 5,0

Aq. destill. 90 мл

MDS. Для смазывания кистей рук

Серу очищенную растирают в присутствии нескольких капель глицерина, который хорошо смачивает поверхность частиц серы, затем добавляют мыло в количестве 0,2 г, оставшийся глицерин и под конец частями дистиллированную воду. Полученную суспензию переносят в отпускную склянку.

Суспензии таких препаратов, как сульфаниламиды и антибиотики, готовят с применением в качестве стабилизаторов метилцеллюлозы, натрий-карбоксиметилцеллюлозы, твина-80.

Конденсационный метод.

Чаще всего суспензии с применением конденсационного метода получают путем объединения в одной лекарственной форме двух препаратов, порознь растворимых, но реагирующих при сливании с образованием нерастворимой взвеси. Обычным приемом при изготовлении таких суспензий является сливание двух растворов взаимодействующих веществ, приготовленных порознь.

№ 77. Rp.: Natrii hydrocarbonatis 4,0

Calcii chloridi 8,0

Aq. destill. 200 мл

MDS. По 1 столовой ложке 2 раза в день

В склянку для отпуска отмеривают 80 мл дистиллированной воды, 40 мл 20% раствора кальция хлорида и 80 мл 5% раствора натрия гидрокарбоната, используя бюреточную установку. В результате при смешении растворов солей прописанных веществ образуется тонкая суспензия кальция карбоната.

Разновидностью конденсационного метода является способ получения суспензий, основанный на разведении водой или водными растворами жидких экстрактов или настоек. В результате происходящего при этом значительного понижения концентрации спирта наблюдается выпадение их экстрактов или настоек веществ, растворимых в крепком спирте, но нерастворимых в слабом спирте (концентрация менее 20%) и воде.

В результате образуются так называемые мутные микстуры, издавна обозначаемые в фармацевтической практике особым термином - Mixturae turbide (лат. turbidus - мутный).

Спиртовые извлечения из растительных материалов, к числу которых относятся настойки и жидкие экстракты, часто содержат сложные комплексы разнообразных компонентов - растворимых и нерастворимых в воде и имеющих не всегда установленный состав. К числу трудно растворимых или нерастворимых в воде экстрактивных веществ, характерных для многих настоек и жидких экстрактов, относятся эфирные масла, смолы, стеарины, воск, жиры, хлорофилл и т. п. В спиртовых средах эти вещества находятся, как правило, в состоянии истинных растворов. При разведении спиртовых настоек и многих жидких экстрактов водой концентрация спирта понижается, растворимость водонерастворимых веществ уменьшается и, наконец, они выделяются из первичного раствора, образуя гетерогенные системы. В зависимости от условий замены одного растворителя другим (спирта водой), количества и свойств водонерастворимых веществ их выделение происходит различно и приводит к образованию систем с различной степенью дисперсности - золей, мутей, суспензий.

Необходимо иметь в виду, что дальнейшая судьба образовавшейся нерастворимой фазы сильно зависит от состава раствора, в котором она образовалась. Вследствие того, что в большинстве случаев водонерастворимые вещества, содержащиеся в спиртовых извлечениях из растительных материалов, обладают кислотным характером, щелочная реакция микстуры, содержащей, например, натрия гидрокарбонат, способствует возникновению дзета-потенциала нерастворимых частиц и оказывает стабилизирующее влияние. Таким же свойством обладают многие углеводы (сахар) и их производные (слизи, камеди), сапонины, глицерин и другие вещества, способствующие повышению гидрофильности поверхностного слоя водонерастворимых гранул и приводящие к их гидратации (сольватации).

В присутствии значительного количества нейтральных солей устойчивость возникающих дисперсий часто понижается вплоть до коацервации или коагуляции. Чем выше концентрация соли тем больше эта опасность. По указанной причине совершенно неправильным является способ работы, при котором отмеривают в отпускную склянку концентрированные растворы солей, как при использовании бюреточных установок, а затем без предварительного разведения этих растворов водой прибавляют к ним настойки. В результате, как правило, возникают грубодисперсные системы, часто спустя некоторое время просветляющиеся вследствие прилипания частиц дисперсной фазы к стеклу склянки. Во избежание получения грубодисперсных систем нужно взять за правило прибавлять к водным микстурам спиртовые препараты (настойки, жидкие экстракты и т. д.) после возможного разведения водного раствора, т. е. под самый конец приготовления микстуры, как этого требует ГФХ.

Во всех случаях, когда в микстуру, содержащую спиртовые экстракционные препараты, входят сиропы, слизи или содержащие слизь препараты, которые могут стабилизировать гидрофобную суспензию, целесообразно использовать эти ингредиенты лекарства для предварительного смешения с ними спиртовых препаратов. Разумеется, фильтрование мутных микстур сквозь бумагу совершенно неприемлемо. В случаях крайней необходимости следует ограничиваться лишь процеживанием этих систем через 1-2 слоя марли.

Осадки, образующиеся в мутных микстурах, иногда оказываются достаточно тонкими и хорошо распределяются в жидкой фазе при взбалтывании. Однако чаще всего выпадающий осадок склонен к агрегации и оседанию или флокуляции, а также прилипает к стенкам отпускной склянки. В последнем случае для получения достаточно устойчивых суспензий необходимо добавление стабилизаторов - аравийской или абрикосовой камеди, желатозы т. п., которые прибавляют либо к водной микстуре до прибавления настойки или жидкого экстракта, либо к последним до их сливания в микстуру. Во втором случае препараты, содержащие осаждаемые вещества, размешивают не только со стабилизатором, но и с приблизительно двойным количеством водной жидкости.

№ 78. Rp.: Sol. Calcii chloridi 5% 200 мл

Extr. Polygoni hydropiperis fluidi 20 мл

При изготовлении микстуры без стабилизаторов образуется обильный хлопьевидный осадок, прилипающий к стенкам склянки и плохо распределяющийся в жидкости при взбалтывании. Во избежание этого 5 г желатозы или 3 г абрикосовой камеди растирают в ступке с 10 мл воды и к полученной жидкости примешивают небольшими порциями 20 мл жидкого экстракта водяного перца. Полученную суспензию переносят в отпускную склянку. Туда же добавляют 20 мл 50% концентрата раствора кальция хлорида.

Микстура с нашатырно-анисовыми каплями.

№ 79. Rp.: Sol. Natrii

benzoatis 3% 150 мл

Natrii hydrocarbonatis 3,0

Liquoris ammonii anisati 4 мл

MDS. По 1 столовой ложке 3 раза в день

Отвешенные количества натрия бензоата и натрия гидрокарбоната растворяют в 100 мл воды, доводят объем раствора в мерной посуде до 150 мл и процеживают в отпускную склянку. Отливают небольшое количество раствора (3-5 мл) в отдельную баночку, добавляют в последнюю нашатырно-анисовые капли, перемешивают и выливают в отпускную склянку, где находится остальная микстура, и все тщательно перемешивают. Баночку ополаскивают несколько раз микстурой.

Оформление и отпуск суспензий.

Все отпускаемые из аптеки суспензионные лекарства снабжаются этикеткой «Перед употреблением взбалтывать». Отпускать суспензии следует в склянках из бесцветного прозрачного стекла с тем, чтобы было легко визуально определить результаты взбалтывания. Исключение составляют лекарства, разлагающиеся на свету; их суспензии отпускают в склянках из темного стекла. Отпускные склянки с суспензиями должны плотно закрываться пробкой, в противном случае при взбалтывании возможно просачивание лекарства наружу. Хранить суспензии следует в прохладном, защищенном от света месте.

Лабораторная работа №1

Ознакомление со свойствами смесей и дисперсных систем

Цель: получить дисперсные системы и исследовать их свойства

Оборудование: пробирки, штатив*

Реактивы: дистиллированная вода, раствор желатина, кусочки мела, раствор серы

Методические указания:

1. Приготовление суспензии карбоната кальция в воде.

Налить в 2 пробирки по 5мл дистиллированной воды.

В пробирку №1 добавить 1мл 0,5%-ного раствора желатина.

Затем в обе пробирки внести небольшое количество мела и сильно взболтать.

Поставить обе пробирки в штатив и наблюдать расслаивание суспензии.

Ответьте на вопросы:

Одинаково ли время расслаивания в обеих пробирках? Какую роль играет желатин? Что является в данной суспензии дисперсной фазой и дисперсионной средой?

2. Исследование свойств дисперсных систем

К 2-3мл дистиллированной воды добавьте по каплям 0,5-1мл насыщенного раствора серы. Получается опалесцирующий коллоидный раствор серы. Какую окраску имеет гидрозоль?

3. Напишите отчет:

В ходе работы отобразите проведенные опыты и их результат в виде таблицы:

Цель

Схема опыта

Результат

Приготовить суспензию карбоната кальция в воде

Исследовать свойства дисперсных систем

Сделайте и запишите вывод о проделанной работе.

Практическая работа №2

Приготовление раствора заданной концентрации

Цель: приготовить растворы солей определенной концентрации.

Оборудование: стакан, пипетка, весы, стеклянная лопаточка, мерный цилиндр

Реактивы: сахар, поваренная соль, пищевая сода, холодная кипяченая вода

Методические указания:

Приготовьте раствор вещества с указанной массовой долей вещества (данные указаны в таблице для десяти вариантов).

Произведите расчеты: определите, какую массу вещества и воды потребуется взять для приготовления раствора, указанного для вашего варианта.

варианта

наименование

массовая доля вещества

масса раствора

поваренная соль

пищевая сода

поваренная соль

пищевая сода

поваренная соль

пищевая сода

1. Отвесьте соль и поместите ее в стакан.

2. Отмерьте измерительным цилиндром необходимый объем воды и вылейте в колбу с навеской соли.

Внимание! При отмеривании жидкости глаз наблюдателя должен находиться в одной плоскости с уровнем жидкости. Уровень жидкости прозрачных растворов устанавливают по нижнему мениску.

3. Напишите отчет о работе:
-укажите номер практической работы , ее название, цель, используемое оборудование и реактивы;

Оформите расчеты в виде задачи;

Схемой отобразите приготовление раствора;

Сделайте и запишите вывод.

Лабораторная работа №2

Свойства неорганических кислот

Цель: изучить свойства неорганических кислот на примере соляной кислоты

Оборудование: пробирки, шпатель, пипетка, пробиркодержатель, спиртовка*

Реактивы: раствор соляной кислоты, лакмус, фенолфталеин, метилоранж; гранулы цинка и меди, оксид меди, раствор нитрата серебра.

Методические указания:

1. Испытание растворов кислот индикаторами:

В три пробирки налейте раствор соляной кислоты и поставьте их в штатив.

В каждую из пробирок добавьте несколько капель каждого индикатора: 1- метилоранж, 2- лакмус, 3- фенолфталеин. Зафиксируйте результат.

Индикатор

нейтральная

щелочная

Фенолфталеин

бесцветный

бесцветный

метилоранж

оранжевый

2. Взаимодействие кислот с металлами:

Возьмите две пробирки и поместите в 1 – гранулу цинка, во 2 – гранулу меди.

3. Взаимодействие с оксидами металлов:

Поместите в пробирку порошок оксида меди (II), прилейте раствора соляной кислоты. Нагрейте пробирку и зафиксируйте результат и объясните.

4. Взаимодействие с солями:

В пробирку налейте раствор нитрата серебра и добавьте раствор соляной кислоты. Результат зафиксируйте и объясните.

5. Напишите отчет о работе:

Укажите номер лабораторной работы, ее название, цель, используемое оборудование и реактивы;

Заполните таблицу

Наименование опыта

Схема проведения опыта

Наблюдения

Объяснение наблюдений

Химическое уравнение реакции

*(при наличии технической возможности) компьютер, OMS модуль

Лабораторная работа №3

«Факторы, влияющие на скорость химической реакции»

Цель: выявить зависимость скорости химической реакции от различных факторов.

Оборудование: пробирки, стаканы, шпатель, электроплитки, колбы, мерный цилиндр, штатив, газоотводные трубки, весы, воронка, фильтровальная бумага, стеклянная палочка*

Реактивы: гранулы цинка, магния железа, кусочки мрамора, соляная и уксусная кислота; цинковая пыль; пероксид водорода , оксид марганца (II).

Методические указания:

1. Зависимость скорости химической реакции от природы веществ.

Налейте в три пробирки раствор соляной кислоты. В первую пробирку положите гранулу магния, во вторую – гранулу цинка, в третью – гранулу железа.

Возьмите 2 пробирки: в 1 – налейте соляной кислоты, во 2 – уксусной кислоты. В каждую пробирку положите по одинаковому кусочку мрамора. Зафиксируйте наблюдения, определите какая реакция идет с большей скоростью и почему.

2. Зависимость скорости химической реакции температуры.

В два химических стакана налейте одинаковое количество соляной кислоты и накройте их стеклянной пластинкой. Поставьте оба стакана на электроплитку: для первого стакана установите температуру - 20˚С, для второго - 40˚С. На каждую стеклянную пластинку положите по грануле цинка. Приведите приборы в действие, одновременным сбрасыванием гранул цинка с пластинок. Зафиксируйте наблюдений и объясните.

3. Зависимость скорости химической реакции от площади соприкосновения реагентов.

Соберите две одинаковых установки:

В колбы налейте по 3 мл соляной кислоты одинаковой концентрации, установите их горизонтально на штативе, шпателем в первую колбу (в ее горлышко) поместите порошок цинка, во вторую – гранулу цинка. Закройте колбы газоотводными т рубками. Одновременно приведите приборы в действие повернув их в вертикальную плоскость на 90 градусов против часовой стрелки.

4. Зависимость скорости химической реакции от катализатора.

В два химических стакана налейте одинаковое количество 3% пероксида водорода. Взвесьте один шпатель катализатора – оксида марганца (II). В первый стакан добавьте взвешенный катализатор. Что наблюдаете, оцените скорость разложения пероксида водорода с катализатором и без него.

5. Напишите отчет:

Проведенные опыты, их результаты и объяснения зафиксируйте в виде таблицы

Наименование опыта

Схема проведения опыта

Наблюдения

Объяснение наблюдений

Химическое уравнение реакции

Сформулируйте и запишите вывод о влияние каждого фактора на скорость химической реакции

*(при наличии технической возможности) компьютер, OMS модуль

Практическая работа №3

Решение экспериментальных задач по теме: «Металлы и неметаллы»

Цель: научиться распознавать предложенные вам вещества, используя знания об их химических свойствах.

Оборудование: штатив с пробирками

Реактивы: растворы нитрата натрия, сульфата натрия, хлорида натрия, фосфата натрия, нитрата бария, нитрата кальция, нитрата серебра и нитрата меди

Методические указания:

1. Распознавание неметаллов:

В четырех пробирках находятся растворы: 1 - нитрата натрия, 2 - сульфата натрия, 3 – хлорид натрия, 4 – фосфат натрия, определите в какой из пробирок находится каждое из указанных веществ (для определения аниона следует подобрать такой катион, с которым анион даст осадок).

1 - нитрата натрия

2 - сульфата натрия

3 – хлорид натрия

4 – фосфат натрия

Вещество (идентификатор)

Наблюдения

Химическая реакция

2. Распознавание металлов:

В четырех пробирках находятся растворы: 1 – нитрата бария, 2 – нитрата кальция, 3 - нитрата серебра, 4 – нитрат меди, определите в какой из пробирок находится каждое из указанных веществ (для определения катиона металла следует подобрать такой анион, с которым катион даст осадок).

Результаты проведенных опытов зафиксируйте в отчетной таблице:

1 - нитрата бария

2 – нитрат кальция

3 – нитрат серебра

4 – нитрат меди

Вещество (идентификатор)

Наблюдения

Химическая реакция

Укажите номер практической работы, ее название, цель, используемое оборудование и реактивы;

Заполните отчетные таблицы

Напишите вывод о способах идентификации металлов и неметаллов.

Лабораторная работа №4

«Изготовление моделей молекул органических веществ»

Цель: построить шаростержневые и масштабные модели молекул первых гомологов предельных углеводородов и их галогенопроизводных.

Оборудование: набор шаростержневых моделей.

Методические указания.

Для построения моделей используйте детали готовых наборов или пластилин с палочками. Шарики, имитирующие атомы углерода, готовят обычно из пластилина темной окраски, шарики, имитирующие атомы водорода, - из светлой окраски, атомы хлора – из зеленого или синего цвета. Для соединения шариков используют палочки.

Ход работы:

1. Соберите шаростержневую модель молекулы метана. На «углеродном» атоме наметьте четыре равноудаленные друг от друга точки и вставьте в них палочки, к которым присоединены «водородные» шарики. Поставьте эту модель (у нее должны быть три точки опоры). Теперь соберите масштабную модель молекулы метана. Шарики «водорода» как бы сплющены и вдавлены в углеродный атом.

Сравните шаростержневую и масштабную модели между собой. Какая модель более реально передает строение молекулы метана? Дайте пояснения.

2. Соберите шаростержневую и масштабную модели молекулы этана. Изобразите эти модели на бумаги в тетради.

3. Соберите шаростержневые модели бутана и изобутана. Покажите на модели молекулы бутана, какие пространственные формы может принимать молекула, если происходит вращение атомов вокруг сигма связи. Изобразите на бумаге несколько пространственных форм молекулы бутана.

4. Соберите шаростержневые модели изомеров C5H12 . изобразите на бумаге.

5. Соберите шаростержневую модель молекулы дихлорметана CH2Cl2

Могут ли быть изомеры у этого вещества? Попытайтесь менять местами атомы водорода и хлора. К какому выводу вы приходите?

6. Напишите отчет:

Укажите номер лабораторной работы, ее название, цель, используемое оборудование;

Зафиксируйте выполненные задания в виде рисунка и ответов на вопросы к каждому заданию

Сформулируйте и запишите вывод.

Практическая работа №4

Решение экспериментальных задач по теме: «Углеводороды»

Цель: научиться распознавать предложенные вам углеводороды, используя знания об их химических свойствах.

Методические указания:

Проанализируйте, как можно распознать пропан, этилен, ацетилен, бутадиен и бензол, исходя из знаний об их химических и физических свойствах

Результаты анализа зафиксируйте в отчетной таблице:

ацетилен

бутадиен

физические свойства

химические свойства

(укажите в таблице только наиболее отличительные свойства каждого из классов углеводородов)

3. Напишите отчет и сформулируйте вывод:

Укажите номер практической работы, ее название и цель

Заполните отчетную таблицу

Напишите вывод о способах идентификации углеводородов.

Лабораторная работа №5

«Свойства спиртов и карбоновых кислот»

Цель: на примере этанола, глицерина и уксусной кислоты изучить свойства предельных одноатомных спиртов, многоатомных спиртов и карбоновых кислот.

Оборудование: пробирки,металлические щипцы, фильтровальная бумага, фарфоровая чашка, газоотводная трубка, спички, шпатель, штатив, штатив для пробирок*

Реактивы: этанол, металлический натрий; сульфат меди(II), гидроксид натрия, глицерин; уксусная кислота, дистиллированная вода, лакмус, гранулы цинка, оксид кальция, гидроксид меди, мрамор, гидроксид кальция.

1. Свойства предельных одноатомных спиртов.

В две пробирки налейте этилового спирта.

В 1 добавьте дистиллированной воды и несколько капель лакмуса. Зафиксируйте наблюдения и объясните.

Во вторую пробирку металлическими щипцами поместите кусочек натрия, предварительно промокнув его в фильтровальной бумаге. Зафиксируйте наблюдения и объясните.

Выделяющийся газ соберите в пустую пробирку. Не переворачивая пробирку, поднесите к ней зажженную спичку. Зафиксируйте наблюдения и объясните.

В фарфоровую чашку налейте небольшое количество этилового спирта. С помощью лучинки подожгите спирт в чашке. Зафиксируйте наблюдения и объясните.

2. Качественная реакция на многоатомные спирты.

В пробирку налейте раствор сульфата меди (II) и раствор гидроксида натрия. Зафиксируйте наблюдения и объясните.

Затем прилейте небольшое количество глицерина. Зафиксируйте наблюдения и объясните.

3. Свойства предельных карбоновых кислот.

В пять пробирок налейте уксусной кислоты.

В 1 прилейте небольшое количество дистиллированной воды и несколько капель лакмуса. Во 2 поместите гранулу цинка. Выделяющийся газ соберите в пустую пробирку, и проверьте его на горючесть.

В 3 поместите один шпатель оксида кальция.

В 4 поместите один шпатель гидроксида меди.

В 5 поместите кусочек мрамора. Выделяющийся газ пропустите через раствор гидроксида кальция.

Зафиксируйте наблюдения в каждой из пяти пробирок, напишите уравнения химических реакций и объясните наблюдаемые изменения.

4. Напишите отчет по указанному ниже плану:

Укажите номер лабораторной работы, ее название, цель, используемое оборудование и реактивы;

Проведенные опыты, их результаты и объяснения зафиксируйте в виде таблицы (на двойном развороте страницы)

Наименование опыта

Схема проведения опыта (описание действий)

Наблюдения

Объяснение наблюдений

Химические уравнения реакций

предельные одноатомные спирты

многоатомные спирты

карбоновые кислоты

Сформулируйте и запишите вывод о свойствах спиртов и карбоновых кислот

*(при наличии технической возможности) компьютер, OMS модуль

Лабораторная работа №6

«Свойства жиров и углеводов»

Цель: изучить свойства углеводов и доказать непредельный характер жидких жиров.

Оборудование: пробирки, мерная пипетка, спиртовка, стеклянная палочка, пробиркодержатель*

Реактивы: аммиачный раствор оксида серебра, раствор глюкозы, раствор сахарозы, раствор гидроксида натрия, раствор сульфата меди (II), растительное масло, бромная вода.

1. Свойства углеводов:

А) Реакция «серебряного зеркала»

В пробирку налейте аммиачный раствор оксида серебра (I). Добавьте пипеткой немного раствора глюкозы. Зафиксируйте наблюдения, объясните их исходя из строения молекулы глюкозы.

Б) Взаимодействие глюкозы и сахарозы с гидроксидом меди (II).

В пробирке №1 налито 0,5 мл раствора глюкозы, добавьте 2 мл раствора гидроксида натрия.

К полученной смеси добавьте 1 мл раствора сульфата меди (II).

К полученному раствору аккуратно добавьте 1 мл воды и нагрейте на пламени спиртовки до кипения. Прекратите нагревание, как только начнется изменение цвета.

Прибавьте к раствору сульфата меди (II) раствор сахарозы и смесь взболтайте. Как изменилась окраска раствора? О чем это свидетельствует?

Зафиксируйте наблюдения и ответьте на вопросы:

1. Почему образовавшийся вначале осадок гидроксида меди(II) растворяется с образованием прозрачного синего раствора?

2. Наличие каких функциональных групп в глюкозе обусловлена эта реакция?

3. Почему при нагревании происходит изменение цвета реакционной смеси с синего на оранжево-желтый?

4. Что представляет собой желто-красный осадок?

5. Наличие какой функциональной группы в глюкозе является причиной данной реакции?

6. Что доказывает реакции с раствором сахарозы?

2. Свойства жиров:

В пробирку прилить 2-3 капли растительного масла и добавить 1-2 мл бромной воды. Все перемешать стеклянной палочкой.

Зафиксируйте наблюдения и объясните.

3. Напишите отчет:

Укажите номер лабораторной работы, ее название, цель, используемое оборудование и реактивы;

Составьте схему каждого проведенного опыта, подпишите свои наблюдения на каждом этапе и уравнения химических реакций; ответьте на вопросы.

Сформулируйте и запишите вывод

*(при наличии технической возможности) компьютер, OMS модуль

Лабораторная работа №7

«Свойства белков»

Цель: изучить свойства белков

Оборудование: пробирки, пипетка, пробиркодержатель, спиртовка*

Реактивы: раствор куриного белка, раствор гидроксида натрия, раствор сульфата меди (II), концентрированная азотная кислота, раствор аммиака , раствор нитрата свинца, раствор ацетата свинца.

1. Цветные «реакции белков»

Налейте в пробирку раствор куриного белка. Добавьте 5-6 капель гидроксида натрия и взболтайте содержимое пробирки. Прибавьте 5-6 капель раствора сульфата меди (II).

Зафиксируйте наблюдения.

В другую пробирку налейте раствор куриного белка и добавьте 5-6 капель концентрированной азотной кислоты. Затем добавьте раствор аммиака и слегка нагрейте смесь. Зафиксируйте наблюдения.

2. Денатурация белка

Налейте в 4 пробирки раствор белка куриного яйца.

Раствор в первой пробирке нагрейте до кипения.

Во вторую добавьте по каплям раствор ацетата свинца.

В третью пробирку добавьте раствор нитрата свинца.

В четвертую прилейте в 2 раза больший объем органического раствори% этанола, хлороформа, ацетона или эфира) и перемешайте. Образование осадка можно усилить добавлением нескольких капель насыщенного раствора хлорида натрия.

Зафиксируйте наблюдения и объясните.

3. Напишите отчет:

Укажите номер лабораторной работы, ее название, цель, используемое оборудование и реактивы;

Составьте схему каждого проведенного опыта, подпишите свои наблюдения на каждом этапе и объяснения происходящих явлений.

Сформулируйте и запишите вывод

*(при наличии технической возможности) компьютер, OMS модуль

Практическая работа №5

«Решение экспериментальных задач на идентификацию органических соединений»

Цель: обобщить знания о свойствах органических веществ, научиться распознавать органические вещества, на основе знаний о качественных реакциях для каждого класса веществ

Оборудование: пробирки, спиртовка, пробиркодержатель, пипетка, стеклянная палочка*

Реактивы: раствор белка, раствор глюкозы, пентен – 1, глицерин, фенол, хлорид железа (III), раствор гидроксида меди, аммиачный раствор оксида серебра, раствор брома в воде, нитрат свинца

1. Идентификация органических соединений.

Проведите эксперименты, на основе анализа которых определите в какой из пробирок находится каждое из указанных веществ: 1- раствор белка, 2- раствор глюкозы, 3 - пентен – 1, 4 - глицерин, 5 - фенол.

2. Зафиксируйте полученные результаты в виде отчетной таблицы.

раствор белка

раствор глюкозы

пентен - 1

глицерин

хлорид железа (III)

гидроксид меди

аммиачный раствор оксида серебра

раствор брома в воде

нитрат свинца

В каждой ячейке нарисуйте полученный результат, отметьте реакции – индетифицирующие каждое из веществ. Сформулируйте и запишите вывод о способах идентификации органических веществ.

*(при наличии технической возможности) компьютер, OMS модуль

Суспензии лекарственных веществ готовят двумя методами: дисперсионным и конденсационным.

В основе дисперсионного метода лежит принцип получения определенной степени дисперсности путем измельчения порошкообразного лекарственного вещества.

В основе конденсационного способа - соединение молекул в более крупные частицы - агрегаты, характерные для суспензий.

При приготовлении суспензий дисперсионным методом получаются более крупные частицы (грубые суспензии), а при приготовлении суспензий конденсационным методом - более мелкие частицы (тонкие суспензии).

Технология суспензий должна включать такие технологические приемы, которые обеспечили бы получение суспензий с тонко диспергированными частицами. Суспензии с концентрацией лекарственных веществ 3 % и более готовят по массе.

Приготовление суспензий дисперсионным методом. В зависимости от того, какие вещества входят в состав суспензии (гидрофильные или гидрофобные), способ диспергирования будет различным.

К гидрофильным веществам относятся магния оксид, цинка оксид, крахмал, белая глина, висмута нитрат основной и др. К гидрофобным - камфора, ментол, тимол, сера, фенилсалицилат и другие аналогичные вещества.

Приготовление суспензий с гидрофильными веществами. При приготовлении суспензий из гидрофильных веществ твердое лекарственное вещество сначала растирают в ступке в сухом виде, а затем (по правилу Дерягина) с половинным количеством жидкости (от массы сухого вещества). Полученную смесь в виде кашицы (пульпы) разбавляют водой и сливают во флакон для отпуска.

Rp.: Zinci oxydi 10,0

Aquae purificatae 100 ml

Misce. Da. Signa. Для примочек

Суспензия для наружного применения, в состав которой входит гидрофильное вещество - цинка оксид. 10,0 г цинка оксида растирают в ступке сначала в сухом виде, а затем добавляют 4-6 мл воды и тщательно растирают, чтобы обеспечить максимальное диспергирование. Затем по частям прибавляют остальное количество воды и переносят во флакон для отпуска, стараясь путем смывания со стенок ступки количественно перенести диспергированный цинка оксид.

Оформляют этикетками «Наружное» и «Перед употреблением взбалтывать».

Дата № рецепта

Zinci oxydi 10,0

Aquae purificatae 100 ml __________

m общ = 110,0

Приготовил: (подпись)

Проверил: (подпись)

Прием взмучивания. Для получения более тонких и устойчивых суспензий применяют прием взмучивания, который является разновидностью метода диспергирования. Он используется для приготовления суспензий из гидрофильных веществ, отличающихся большой плотностью.

Rp.: Bismuthi subnitratis 2,0

Aquae Menthae 200 ml

В этом случае 2,0 г висмута нитрата основного тщательно растирают в ступке, затем добавляют 1 мл мятной воды (по правилу Деря-гина), растирают, добавляют 5- или 10-кратное количество мятной воды (около 10 мл), перемешивают и оставляют в покое на 2-3 минуты, чтобы более крупные частицы осели, а тонкую смесь сливают во флакон для отпуска. Остаток снова растирают, добавляют 5-10-кратное количество воды, перемешивают, оставляют в покое, а затем сливают во флакон для отпуска. Эту операцию повторяют до тех пор, пока все вещество не будет переведено в тонкодиспергирован-ное состояние. После взмучивания с водой заметная седиментация наблюдается через 2-3 часа. Исходная дисперсность микстуры легко восстанавливается при взбалтывании перед употреблением. В данной микстуре один из стабилизирующих факторов - поверхностный потенциал - возникает в результате электролитической диссоциации поверхностного слоя взвешенных частиц висмута нитрата основного.

Устойчивость микстур-суспензий с гидрофильными веществами значительно повышается, если в пропись будут введены вещества, увеличивающие вязкость дисперсионной среды, не будучи при этом ПАВ. В качестве таких вязких жидкостей целесообразно вводить в микстуры сахарный и другие сиропы (если они не прописаны в рецепте, можно посоветовать врачу). Тогда твердое вещество тщательно растирают в сухом виде, а затем с небольшим количеством сиропа (половинное количество по отношению к веществу), добавляют остальное количество сиропа и разбавляют водой. Сиропы повышают вязкость микстуры, вследствие чего скорость оседания взвешенных частиц лекарственного вещества уменьшается, и оно более точно дозируется.

При приготовлении суспензий из гидрофильных набухающих веществ их сначала растирают в сухом виде (если прописаны другие порошки в рецепте, то смешивают с этими веществами), а затем смешивают с водой, не растирая с половинным количеством воды.

Приготовление суспензий с гидрофобными веществами. Получить устойчивую суспензию из гидрофобных веществ простым растиранием с жидкостью не удается. В таких случаях гидрофобные вещества смешивают с гидрофильным коллоидом для образования на поверхности твердых частиц адсорбционных оболочек, придающих суспензии необходимую устойчивость (см. с. 308).

Для веществ с нерезко выраженными гидрофобными свойствами (терпингидрат, фенилсалицилат, сульфаниламидные препараты и др.) в качестве стабилизаторов используют абрикосовую камедь, желатозу, 5 % -ный раствор метилцеллюлозы или твин-80 в количествах, указанных в табл. 19.

Для веществ с резко выраженными гидрофобными свойствами (ментол, камфора и др.) количество стабилизаторов увеличивается в 2 раза (табл. 19). Гидрофилизирующие свойства указанных защитных веществ проявляются в присутствии воды. Для образования

Таблица 19 Количество стабилизатора на 1,0 г гидрофобного вещества

первичной пульпы требуется количество воды, равное полусумме препарата и защитного вещества.

Rp.: Therpini hydrati 2,0

Natrii hydrocarbonatis 1,0

Aquae purificatae 100 ml

Misce. Da. Signa. По 1 столовой ложке 3 раза в день

Микстура-суспензия с терпингидратом - веществом с нерезко выраженными гидрофобными свойствами. Поэтому суспензии с терпингидратом отличаются склонностью к флоккуляции. Это приводит к быстрому осаждению.

В подставку отмеривают бюреткой 80 мл воды очищенной и 20 мл 5 %-ного раствора натрия гидрокарбоната. В ступке растирают 2,0 г терпингидрата с 10 каплями спирта (труднопорошкуемое вещество), затем добавляют 1,0 г желатозы и 1,5 мл раствора натрия гидрокарбоната. Все тщательно растирают до получения пульпы (однородной смеси). Затем добавляют (небольшими порциями) раствор натрия гидрокарбоната, сливая полученную суспензию во флакон для отпуска.

Дата № рецепта

Aquae purificatae 80 ml

Solutionis Natrii hydrocarbonatis 5 % 20 ml

Therpini hydrati 2,0

Gelatosae _______________1,0

V общ = 100 ml

Приготовил: (подпись)

Проверил: (подпись)

Rp.: Mentholi 0,5

Natrii hydrocarbonatis

Natrii tetraboratis aa 1,5

Aquae purificatae 100 ml

Misce. Da. Signa. Полоскание

Суспензия для наружного применения с гидрофобным пахучим и летучим веществом ментолом, с резко выраженными гидрофобными свойствами.

В подставку отмеривают 100 мл воды и растворяют натрия гидрокарбонат и натрия тетраборат (или берут 30 мл натрия гидрокарбоната в виде 5 %-ного раствора). В ступку помещают 0,5 г ментола, растирают с 5 каплями спирта (как труднопорошкуемое вещество), добавляют 1,0 г 5 %-ного раствора метилцеллюлозы и растирают до получения однородной кашицы. Затем добавляют =15 капель водного раствора солей (по правилу Дерягина), растирают и небольшими порциями прибавляют раствор солей. После перемешивания смывают содержимое ступки во флакон для отпуска.

При приготовлении суспензий с гидрофобными веществами особого подхода требует приготовление суспензий серы, так как она относится к числу особых веществ с резко выраженными гидрофобными свойствами. Сера адсорбируется на поверхности воздушных пузырьков и ее частицы всплывают на поверхность в виде пенистого слоя. Применение для стабилизации суспензий серы общепринятых веществ не всегда целесообразно, так как они уменьшают ее фармакологическую активность. В качестве стабилизатора суспензий серы для наружного применения используют калийное или зеленое мыло из расчета на 1,0 г серы 0,1-0,2 г мыла. Мыло не применяют, если в суспензию входят соли тяжелых или щелочноземельных металлов, так как при этом образуются нерастворимые осадки. Следует также учитывать, что медицинское мыло несовместимо с кислотами.

Rp.: Sulfuris praecipitati 2,0

Aquae purificatae 100 ml

Misce. Da. Signa. Втирать в кожу головы

Серу растирают с частью глицерина 0,8-1,2 г. Глицерин обладает высокими гидрофильными свойствами, смачивает поверхность частиц серы и способствует их измельчению. К полученной пульпе добавляют остальной глицерин и очищенную воду, смывая смесь во флакон для отпуска. В последнюю очередь добавляют 0,2 г калийного мыла и тщательно взбалтывают флакон.

Rp.: Streptocidi 3,0

Sulfuris praecipitati

Acidi salicylici aa 2,0

Sol. acidi borici 3 % aa 50 ml

Misce. Da. Signa. Для протирания кожи

Во флакон для отпуска отвешивают 2,0 г кислоты салициловой, 1,5 г кислоты борной, 3,5 г камфоры, добавляют 50 мл этилового спирта 90 %. Флакон укупоривают и взбалтывают до растворения порошков. В подставку отмеривают 50 мл воды очищенной. В ступке измельчают 3,0 г стрептоцида с 15 каплями спирта 95 % (труднопорошкуемое вещество), добавляют 2,0 г серы, 3,0 г глицерина и растирают до однородной кашицы. Добавляют 50 мл (частями) воды очищенной, смывая суспензию во флакон для отпуска.

При приготовлении суспензий объемом 1-3 л можно использовать средства механизации - смеситель СЭС-1 (см. главу 10).

Приготовление суспензий конденсационным методом. В аптечной практике широкое применение при приготовлении суспензий находит конденсационный метод. При этом различают следующие случаи образования суспензий:

За счет химического взаимодействия;

За счет замены растворителя.

Конденсационный метод получения суспензий основан на получении высокодисперсных частиц веществ дисперсной фазы, которые находятся в молекулярном или ионном состоянии. Процесс образования этих соединений зависит от целого ряда условий: от температуры; от концентрации растворенных веществ; от порядка смешивания.

В аптечных условиях такие микстуры-суспензии получаются чаще всего в результате реакции обменного разложения, реже - за счет реакции гидролиза, окислительно-восстановительных и других реакций.

Для получения тонких дисперсий необходимо, чтобы исходные вещества были в состоянии разбавленных растворов или коллоидно-дисперсных систем.

Rp.: Calcii chloridi 10,0

Natrii hydrocarbonatis 4,0

Aquae purificatae 200 ml

Misce. Da. Signa. По 1 столовой ложке 3 раза в день

Нерастворимое вещество образуется при смешивании растворов кальция хлорида и натрия гидрокарбоната. В результате обменного разложения образуется свежеосажденный кальция карбонат:

СаС1 2 + 2NaHC0 3 ------ CaC0 3 J + Н 2 0 + 2NaCl

Для того, чтобы получить кальция карбонат в тонко диспергированном состоянии, необходимо приготовить сначала растворы кальция хлорида и натрия гидрокарбоната, а затем их слить. В результате получается тонкий осадок кальция карбоната. Лучше воспользоваться концентрированными растворами: 50%-ным кальция хлорида и 5 % -ным натрия гидрокарбоната. Тогда во флакон для отпуска отмеривают 100 мл воды очищенной, добавляют 20 мл 50 % -ного раствора кальция хлорида и 80 мл 5 % -ного раствора натрия гидрокарбоната.

МИНИСТЕРСТВО ОБРАЗОВ МОСКОВСКОЙ ОБЛАСТИ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

МОСКОВСКОЙ ОБЛАСТИ

«КРАСНОГОРСКИЙ КОЛЛЕДЖ» ИСТРИНСКИЙ ФИЛИАЛ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ

ПО ДИСЦИПЛИНЕ «ХИМИЯ»

для специальностей среднего профессионального образования:

естественнонаучного профиля:

260807.01 Повар, кондитер.

Составитель: Миронова М. Н., преподаватель химии

2013

итель дире

Введение ……………..…………………………………………………… 4

Раздел 1. Общая и неорганическая химия

Лабораторная работа № 1

..……………………….…………………… ..6

Лабораторная работа № 2

Сравнение свойств простых веществ, оксидов и гидроксидов элементов III периода ………………………………………… ………………………8

Лабораторная работа№ 3

Ознакомление с образцами пластмасс, волокон, каучуков, минералов и горных пород. Проверка пластмасс на электрическую проводимость, горючесть, отношение к растворам кислот, щелочей и окислителей. Сравнение свойств термореактивных и термопластичных пластмасс. Получение нитей из капроновой или лавсановой смолы. Обнаружение хлора в поливинилхлориде …………….. ……………………… 10

Лабораторная работа №4

Приготовление суспензии карбоната кальция в воде. Получение эмульсии моторного масла. Получение золя крахмала………. 12

Лабораторная работа № 5

Реакции, идущие с образованием осадка, газа или воды……………… .. 14

Лабораторная работа№ 6

Приготовление растворов различных видов концентрации………….

Раздел 2. Органическая химия

Лабораторная работа № 7

Изготовление моделей молекул алканов и галогеналканов ………..

Лабораторная работа № 8

Обнаружение воды, сажи, углекислого газа в продуктах горения свечи. .

Лабораторная работа № 9

Изучение растворимости спиртов в воде…………………..

Лабораторная работа № 10

Растворимость жиров в воде и органических растворителях. Сравнение моющих свойств хозяйственного мыла и СМС в жесткой воде…………………………………………………………………..15

Правила техники безопасности ………………………………… 42

Оказание первой медицинской помощи ………………………… 43

Список литературы ………………………………………………… 44

Введение

В данных методических указаниях описаны методики выполнения лабораторных работ по общей и органической химии, дано краткое теоретическое введение к каждой теме, которое при самостоятельной подготовке поможет студентам выполнить эти работы. В приложении к указаниям приведены справочные таблицы, правила техники безопасности и мероприятия по оказанию первой помощи. Методические указания выполнены в соответствии с рабочей программой составленой на основе государственного образовательного стандарта среднего (полного) общего образования по химии (базовый уровень). В ней предусмотрено 13 часов на проведение практических и лабораторных занятий.

Пособие поможет студентам совершенствовать практические умения и закрепить теоретические знания по дисциплине «Химия».

Пособие состоит из двух частей: первая посвящена лабораторным работам по общей и неорганической химии; вторая – по органической химии.

Описаны методики выполнения лабораторных работ, приведены контрольные вопросы, фиксирующие внимание студентов на наиболее важные этапы изучаемого материала. Контрольные вопросы составлены на основе личностно-ориентированного подхода в обучении.

В процессе выполнения лабораторных работ студенты должны наблюдать за ходом эксперимента, отмечать все его особенности (изменение цвета, тепловые эффекты, выпадение осадка, образование газообразных веществ). Результаты наблюдений записывают в тетради для лабораторных работ, поддерживаясь определенной последовательности:

Дата выполнения, название лабораторной работы;

Цель работы;

Краткие теоретические сведения, касающиеся данной работы;

Зарисовка схемы установки (выполняется карандашом);

Результаты опытов должны быть внесены в таблицу;

Выводы.

В приложении к пособию приведены справочные таблицы, правила техники безопасности и мероприятия по оказанию первой помощи.

Для оформления отчета о работе удобно использовать табличную форму.

«Ход опыта» записывается кратко, вместо словесного описания последовательности действий используется рисунок. Обязательно указываются условия осуществления химических реакций.

В графе «Наблюдения» рисунок или схема поясняются следующими обозначениями:

Образование осадка: ↓ Указывается цвет осадка и его характер (мучнистый, творожистый, студенистый); - выделение газообразного вещества: Указывается цвет газа, запах, плотность.

В графе «Уравнения реакций» учащиеся могут выражать только сущность реакций ионного обмена, т.е. записывать только сокращенные ионные уравнения реакций. Для окислительно-восстановительных реакций записываются молекулярное уравнение реакции, выражается ее сущность методом электронного баланса или электронно-ионным методом. Указываются названия процессов и функции веществ.

Особого внимания требует заполнение графы «Вывод». Вывод должен соответствовать условию задачи, быть полным и обоснованным.

Лабораторная работа 1

Тема: Изготовление моделей молекул некоторых органических и неорганических веществ

Цель: Развитие навыков пространственного изображения молекул кислорода, воды, углекислого газа,метана, этана, этена, этина, бензола.

Задача: Закрепление знаний по теме Способы существования химических элементов «».

Оборудование: шаростержневые модели, транспортир. Учебное пособие Габриелян О.С. «Химия»

Теоретические основы

Все 3 о

В молекулах алкенов углеродные атомы находятся в состоянии гибридизации sp 2 о

В молекулах алкинов о

В молекуле бензола C 6 H 6 о . Состояние гибридизации sp 2 . В молекуле образуется

Например: Метан (СH 4 3 , значит угол связи 109,28 о о .

Выполнение работы

4 , C 2 H 6 , C 2 H 4 , C 2 H 2 , C 6 H 6 .

Контрольные вопросы

7. Дайте понятие σ и π связи ?

Лабораторная работа 2

Тема: Сравнение свойств простых веществ, оксидов и гидроксидов элементов III периода.

Цель : Изучить свойства оксидов и гидроксидов элементов III периода.

Задачи: установление закономерности в изменении свойств оксидов и гидроксидов элементов III периода, сформировать понятие об амфотерности.

Оборудование: таблицы «Периодическая система химических элементов Д.И Менделеева», «Растворимость кислот и оснований в воде», «Относительная электроотрицательность элементов. Демонстрационный штатив с пробирками, капельница.

Химреактивы: Гидроксиды элементов III периода, индикаторы, соляная кислота, раствор хлорида алюминия.

Теоретические основы

Проецируем на экран вопросы, на которые учащиеся должны ответить:

Что такое ионная связь? Приведите примеры веществ с ионной связью.

Что такое ковалентная связь? Назовите два вида ковалентной связи. Приведите примеры.

Как вы понимаете термин «Относительная электроотрицательность элементов»? Электроотрицательность какого элемента условно принята за единицу?

Как изменяется электроотрицательность элементов в периодах с увеличением порядковых номеров элементов, в А – подгруппах?

Свяжите понятия «Электроотрицательность» и «Химическая связь».

Как изменяются размеры атомов в периодах с увеличением порядковых номеров элементов?

После повторения предлагаю учащимся составить формулы оксидов элементов III периода и определить вид химической связи в каждом случае:

Отдельным учащимся заранее предложена работа на компьютерах по составлению электронных формул оксидов с ионной и ковалентной связью.

Na2+ 2- Mg2+ 2-

ионная связь ионная связь

ковалентная полярная связь ковалентная полярная связь

После проекции этих формул на экран предлагаю учащимся определить характер данных оксидов: (оксиды натрия и магния – основные по характеру, оксиды фосфора (V) и хлора (VII) – кислотные).

Формулируем вывод по данной части работы: основные оксиды – ионные соединения, кислотные оксиды – ковалентные.

Используя опорный конспект (приложение 1), предлагаю учащимся охарактеризовать свойства основных и кислотных оксидов, выполнив упражнение:

1) MgO + HCl → 2) SO3 + NaOH→

3) Na2O + H2O→ 4) P2O5+H2O→

Акцентирую внимание учащихся на то, что основные оксиды взаимодействуют с кислотами, кислотные - со щелочами с образованием соли и воды. При взаимодействии основных оксидов элементов I-A и II – А групп образуются гидроксиды - щелочи. При взаимодействии кислотных оксидов с водой образуются гидроксиды – кислоты.

Что же такое гидроксид? (Это продукт соединения оксида с водой)

Однако не все гидроксиды можно получить реакцией оксида с водой. Например,

SiO2+ H2O ≠ реакция не идет

Al2O3+ H2O ≠ реакция не идет

Гидроксид кремния (кремниевую кислоту) и гидроксид алюминия получают другими способами. Об этом мы поговорим несколько позже.

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl2O7

По таблице «Растворимость кислот, оснований и солей в воде» определяем растворимость гидроксидов в воде.

С помощью каких веществ можно доказать принадлежность гидроксида к основаниям или кислотам?

Учащиеся вспоминают, что для этого есть индикаторы.

Предлагаю испытать раствором лакмуса каждый из предложенных гидроксидов:

NaOH Mg(OH)2 H3PO4 H2SO4

По ходу проведения опытов учащиеся комментируют их и делают вывод, что в растворах гидроксидов металлов фиолетовый лакмус изменяет окраску в синий цвет, а в растворах кислот – в красный. Составляем уравнение электролитической диссоциации щелочи и кислоты.

NaOH ↔ Na++OH- (образуется гидроксид –ион, изменяющий окраску лакмуса в синий цвет)

H2SO4+H2O↔H3O++HSO4- (образуется ион оксония, т.е. гидратированный протон Н+(Н2О), изменяющий окраску лакмуса в красный цвет).

Подумайте, почему я не предложила испытать индикатором гидроксиды кремния и алюминия? (Они не растворимы в воде).

Предлагаю продолжить работу со схемой, отметив характер гидроксидов их растворимость в воде.

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl2O7

NaOH Mg(OH)2 Al(OH)3 H2SiO3 H3PO4 H2SO4 HClO4

Щелочь Малораств.

В процессе беседы устанавливаем закономерность изменения свойств гидроксидов:

Какое основание сильнее NaOH или Mg(OH)2

Сравните силу кислот как электролитов. Назовите самую слабую из них и самую сильную.

Отметьте на схеме, как изменяются основные и кислотные свойства гидроксидов с увеличением порядковых элементов III периода

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl2O7

NaOH Mg(OH)2 Al(OH)3 H2SiO3 H3PO4 H2SO4 HClO4

Щелочь Малораств.

основание Нерастворимые вещества растворимые кислоты

Основные свойства ослабевают -> кислотные свойства усиливаются ->

III этап. Постановка учебной проблемы.

Почему основные свойства гидроксидов элементов III периода ослабевают, а кислотные – усиливаются?

Попытаемся найти ответ на этот вопрос, используя знания об относительной электроотрицательности элементов, видах химической связи и сравнивая размеры атомов (ионов).

Проецируем на экран электронные формулы гидроксидов элементов III периода (приложение 2).

Путем фронтальной беседы по вопросам, приведенным ниже, устанавливаем, почему гидроксид натрия обладает большим основным характером, чем гидроксид магния.

Из каких частиц состоят эти вещества? (Из катионов металла и гидроксид-анионов)

Какая связь образуется между ионами? (ионная).

Составьте уравнение реакции диссоциации гидроксида натрия.

Почему химическая связь разрывается между натрием и кислородом?

Кислород – сильноэлектроотрицательный элемент, он оттягивает электронную плотность связи с натрием на себя, атом натрия превращается в ион. Кроме того, ион натрия имеет большой размер следовательно, длина связи натрия с кислородом большая, поэтому связь слабая. Этим объясняется хорошая растворимость гидроксида натрия и распад электролита на ионы с освобождение гидроксид-аниона.

Сравните размеры ионов натрия и магния, а также величины из зарядов.

Учащиеся дают ответ, что размер иона натрия больше, а величина заряда иона натрия меньше, чем у иона магния.

Подумайте, в каком случае будет прочнее связь: между катионом натрия и гидроксид-анионом, или между катионом магния и гидроксид-анионом? Почему?

Учащиеся находят правильный ответ: между катионом магния и гидроксид-анионом связь более прочная, т.к. заряд катиона магния больше, а размер меньше. Поэтому способность катиона магния удерживать гидроксид-анион больше, т.е. процесс распада его как электролита затруднен по сравнению с гидроксидом натрия. Гидроксид магния более слабое и мене растворимое основание, чем гидроксид натрия.

Что же тогда можно сказать о свойстве гидроксида алюминия? (По причине увеличения заряда катиона алюминия Al3+ и уменьшения его размера отрыв гидроксид-аниона еще более затруднен. Гидроксид алюминия нерастворимое и малодиссоциирующее в воде вещество).

Получение гидроксида алюминия и исследование его свойств.

Предлагаю учащимся получить гидроксид алюминия реакцией ионного обмена. Подбираем вещества, проводим опыт, составляем уравнение реакций:

Al3++3OH- =Al (OH)3↓ (это нерастворимое в воде основание)

Прошу исследовать свойства гидроксида алюминия:

1) В одну пробирку со свежеосажденным гидроксидом алюминия добавляем раствор соляной кислоты – наблюдаем растворение осадка. Составляем уравнения реакций:

Al(OH)3+3HCl= AlCl3+3H2O

Al(OH)3+3H+=Al3++3H2O

Делаем вывод, что гидроксид алюминия проявил себя, как основание.

2) В другую пробирку с гидроксидом алюминия добавляем раствор щелочи – наблюдаем растворение осадка. В этом случае гидроксид алюминия проявил свойства кислоты. Подумайте, как это можно объяснить? Сопоставьте размеры ионов магния и алюминия, величины их зарядов, а также относительные электроотрицательности элементов.

Учащиеся отмечают, что размер катиона алюминия меньше размера катиона магния, а величина заряда и электроотрицательность – больше, чем у магния.

К чему это приводит? (К уменьшению заряда на атоме кислорода гидроксогруппы, и, следовательно, к облегчению отщепления катиона водорода. Вот почему гидроксид алюминия проявляет свойства кислоты).

Учитель. Существует кислотная форма гидроксида алюминия HAlO2 – металюминиевая кислота. Это очень слабая кислота, но она взаимодействует со щелочью с образованием соли и воды:

Таким образом, гидроксид алюминия проявляет как свойства основания, так и свойства кислоты, т. е. является амфолитом или амфотерным соединением (вносим эту информацию в схему).

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl2O7

NaOH Mg(OH)2 Al(OH)3 H2SiO3 H3PO4 H2SO4 HClO4

Щелочь Малораств.

основание Нерастворимые вещества растворимые кислоты

амфотерный

гидроксид

Основные свойства ослабевают -> кислотные свойства усиливаются ->

Учитель. Теперь ответим на вопрос, почему кислотные свойства гидроксидов элементов III периода усиливаются.

Провожу беседу по вопросам:

Как вы считаете, в молекулах кислот связи ковалентные или ионные? (ковалентные полярные).

Почему они полярные? (Соединяются элементы с различной электроотрицательностью).

Сравните значение относительных электроотрицательностей элементов Si, P, S, Cl. Как они изменяются? (увеличиваются). Обратите внимание на значение относительной электроотрицательности элемента кислорода (оно больше, чем у Si, P, S, Cl)

Связь считается боле полярной, если разность значений электротрицательностей соединяющихся элементов больше.

Определите, в какой из кислот степень полярности ковалентной связи атома неметалла с атомом кислорода больше: в кремниевой или в фосфорной?

Учащиеся путем простого подсчета приходят к выводу: что связь атомов кремния и кислорода более полярная.

Учитель. Электронная плотность связи кремния с кислородом сильно смещена к атому кислорода, поэтому он приобретает большой отрицательный заряд. По этой причине атом водорода сильно притягивается к атому кислорода, что делает связь О-Н более прочной. Это препятствует процессу диссоциации. Кремниевая кислота практически не диссоциирует на ионы и в воде нерастворима.

Как изменяется полярность связи Р-О в молекуле фосфорной кислоты?

Учащиеся отвечают, что она уменьшается, т. е. электронная плотность на атоме кислорода становится меньше, прочность связи атомов кислорода и водорода ослабевает.

Как это влияет на свойства фосфорной кислоты?

Учащиеся отвечают, что фосфорная кислота электролит средней силы и в воде растворяется.

Н3РО4+Н2О ↔ Н3О++Н2РО4-

Теперь вы сможете ответить на вопрос, почему серная и хлорная кислоты являются сильными электролитами. Покажите смещение электронной плотности связей на электронных формулах и объясните, почему серная кислота сильнее фосфорной.

Теперь мы ответили на вопрос, почему кислотные свойства гидроксидов элементов III периода усиливаются.

Такая же закономерность в изменении свойств характерна и для оксидов

Na2O MgO Al2O3 SiO2 P2O5 SO3 Cl2O7

Основные оксиды амфотерный

гидроксид кислотные оксиды

Обсужденные закономерности наблюдаются во всех периодах периодической системы химических элементов:

При переходе от элемента к элементу слева направо по периоду свойства их оксидов и гидроксидов закономерно меняются от основных через амфотерные к кислотным.

Лабораторная работа 3

Тема: Ознакомление с коллекциями образцов пластмасс и волокон.

Цель: Ознакомление на основе коллекционного материала с образцами пластмасс и волокон.

Задача: Закрепить знания по теме «Полимеры».

Обеспечивающие средства: Коллекции « Пластмассы», «Волокна».

Теоретические основы

Пластмассами называют материалы, изготавливаемые на основе полимеров, способные приобретать при нагревании заданную форму и сохранять ее после охлаждения.

Пластмассы бывают:

Термопластичные полимеры при нагревании размягчаются и в этом состоянии легко изменяют форму. При охлаждении они снова затвердевают и сохраняют приданную форму. При следующем нагревании они снова размягчаются, придают новую форму.

Термореактивные полимеры при нагревании сначала становятся пластичными, но затем утрачивают пластичность, становятся неплавкими и нерастворимыми, так как в них происходит химическое взаимодействие между линейными макромолекулами, образует пространственная структура полимера.

Изготовление волокон и тканей – вторая обширная область народнохозяйственного применения синтетических высокомолекулярных веществ.

Волокна делятся на природные и химические.

Волокна

Природные Химические

Растительного Животного

Искусственные Синтетические

Происхождения

2. Ознакомление с коллекциями образцов пластмасс и волокон.

Рассмотрите коллекции «Пластмассы» и «Волокна» Запишите внешние признаки пластмасс и волокон в таблицу.

Таблица

Физические свойства пластмасс и волокон.

Название

Цвет

Твердость

Эластичность

Хрупкость

Пластмассы

1.Полиэтилен

Волокна

1.Шерсть

Контрольные вопросы

1. Какие вещества называются полимерами?

2. Назовите известные вам полимерные соединения и их область применения.

3. Как классифицируются химические волокна?

4. Назовите известные вам волокна и их область применения.

Сформулируйте вывод по работе.

Тема : Приготовление суспензии карбоната кальция. Получение эмульсии моторного масла. Ознакомление со свойствами дисперсных систем.

Цель: Овладение умениями приготовления дисперсионных систем, навыками определения их свойств и работы с микроскопом.

Задача: Закрепить знания по теме « Строение вещества».

Реактивы и оборудование: Карбонат кальция (мел), моторное масло, вода. Химические стаканы, стеклянные палочки, микроскопы.

Теоретические основы

Дисперсные (раздробленные) системы являются гетерогенными, в отличие от истинных растворов (гомогенных). Они состоят из сплошной непрерывной фазы – дисперсионной среды и находящихся в этой среде раздробленных частиц того или иного размера и формы – дисперсной фазы .

Обязательным условием существования дисперсных систем является взаимная нерастворимость диспергированного вещества и дисперсионной среды.

Дисперсные системы классифицируют:

1. по степени дисперсности;

2. по агрегатному состоянию дисперсной фазы и дисперсионной среды;

3. по интенсивности взаимодействия между ними;

4. по отсутствию или образованию структур в дисперсных системах.

В зависимости от рамеров частиц дисперсной фазы дисперсные системы бывают в виде взвесей и коллоидов.

Взвеси (размер дисперсной фазы более 100нм) ─ эмульсии, суспензии, аэрозоли.

Коллоидные растворы (размер дисперсной фазы от 1 до 100нм) – гели, золи.

Агрегатное состояние дисперсных систем бывает разным и обозначается двумя буквами.

Например: аэрозоль обозначается Г-Ж.

Г – газообразная дисперсионная среда, Ж – жидкая дисперсная фаза.

Выполнение работы

1. Приготовление суспензии мела.

В химический стакан поместите небольшое количество порошка мела и прилейте немного воды. Все тщательно перемешайте . Запишите наблюдения.

Поместите каплю, суспензии на стеклянную пластину и рассмотрите под микроскопом.

Запишите наблюдения.

2. Приготовление эмульсии моторного масла .

В химический стакан поместите небольшое количество моторного масла и прилейте немного воды. Все тщательно перемешайте . Запишите наблюдения.

Поместите каплю, эмульсии на стеклянную пластину и рассмотрите под микроскопом.

Запишите наблюдения.

Сформулируйте вывод о свойствах суспензии и схематически запишите агрегатное состояние дисперсной системы.

Контрольные вопросы

1. Что такое смеси? Какими бывают смеси?

2. Выпишите в один ряд природные смеси, а в другой чистые вещества:

мел, карбонат натрия, песок, известь, оксид кремния, гидроксид натрия, мрамор, гипс, железная руда.

3. Какие смеси называются дисперсными?

4.Что показывает степень дисперсности?

5. Что такое монодисперсная и полидисперсная система?

6.Какие дисперсные системы называются свободнодисперсными и связнодисперсными?

7.Какие агрегатные состояния бывают у дисперсных систем, как называют и схематически записывают такие дисперсные системы?

Ответ на 7 вопрос оформите в виде таблицы:

Название дисперсной системы

Дисперсионная среда

Дисперсная фаза

Обозначение агрегатного состояния

Примеры дисперсных систем

Сформулируйте вывод по работе.

Лабораторная работа 5

Тема: Реакции, идущие с образованием газа, осадка и воды.

Цель: Овладение умениями проведения различных типов химических реакций, с соблюдением правил техники безопасности.

Задача: Закрепление знаний по теме «Химические реакции».

Реактивы и оборудование: Штатив с пробирками, держатель, растворы NaOH , H 2 SO 4 ,CuSO 4 , Na 2 CO 3 , NH 4 Cl, Na 2 SO 4 , ZnSO 4 , BaCl 2 , Na и вода.

Металлы Mg, Zn, Fe; растворы кислот 5% HCl,10% HCl, 20% HCl, H 2 SO 4 ; оксид CuO (II). Штатив с пробирками, держатель, горелка, градусник.

Теоретические основы

Необратимые реакции протекают до конца, если выполняется три условия: выпадает осадок, образуется газообразное вещество и образуется малодиссоциирующее вещество (вода).

Образование осадка.

NaCl + AgNO 3 = AgCl↓ + NaNO 3 молекулярное уравнение

Na + + Cl - + Ag + + NO 3 - = AgCl↓ + Na + + NO 3 - полное ионное уравнение

Ag + + Cl - = AgCl↓ сокращенное ионное уравнение

Образование газообразного вещества.

(NH 4 ) 2 S + 2HCl = 2NH 4 Cl + H 2 S

2NH 4 + + S 2- + 2H + + 2Cl - = 2NH 4 + + 2Cl - + H 2 S

2H + + S 2- = H 2 S

Образование воды.

H 2 SO 4 + 2KOH = K 2 SO 4 + 2H 2 O

2H + + SO 4 2- + 2K + + 2OH - = 2K + + SO 4 2- + 2H 2 O

2H + + 2OH - = 2H 2 O

Выполнение работы.

1.Реакции, идущие с образованием газа

1.1. В пробирку поместите 2 мл раствора соли NH 4 Cl и прилейте такое же количество щелочи NaOH. Пробирку нагрейте до появления запаха аммиака. Запишите наблюдения и химическую реакцию.

1.2. В пробирку поместите 2 мл раствора соли Na 2 CO 3 и прилейте 1 мл раствора

серной кислоты. Запишите наблюдения и химическую реакцию.

1.3. В пробирку поместите 2 мл воды и опустите небольшой кусочек натрия. Запишите наблюдения и химическую реакцию.

2. Реакции, идущие с образованием осадка

2.1. В пробирку поместите 2 мл раствора соли CuSO 4 и прилейте 4мл раствора NaOH.

Запишите наблюдения и химическую реакцию.

2.2. В пробирку поместите 2 мл раствора соли Na 2 SO 4 и прилейте 2 мл раствора BaCl 2 до образования осадка. Запишите наблюдения и химическую реакцию.

3. Реакции, идущие с образованием воды

3.1. В пробирку поместите 2мл раствора H 2 SO 4 и 1 каплю индикатора метилового оранжевого, затем прилейте щелочи NaOH до изменения окраски раствора. Запишите наблюдения и химическую реакцию.

3.2. В пробирку поместите 2мл раствора ZnSO 4 и по капелькам до образования осадка добавьте раствор щелочи NaOH. К полученному осадку прилейте H 2 SO 4 до его растворения. Запишите наблюдения и химическую реакцию.

2. Зависимость скорости взаимодействия цинка с соляной кислотой от ее концентрации.

В три пробирки налить растворы: в первую 3мл серной кислоты, во вторую 2мл серной кислоты и 1мл воды, в третью 1мл кислоты и 2мл воды. В каждую пробирку опустить гранулу цинка.

Запишите наблюдения. Сформулируйте зависимость скорости химической реакции от концентрации реагирующих веществ.

Контрольные вопросы

1 уровень

1. При каких условиях возможны необратимые реакции?

2. Возможна ли реакция: HCl + KOH = H 2 O + KCl

2 уровень

1. Запишите типы химических реакций по имеющимся классификациям.

2. Допишите реакцию: ZnCl 2 + NaOH = ? +? . Почему возможна эта необратимая реакция?

3 уровень

1. Запишите типы химических реакций по имеющимся классификациям, проделанных в лабораторной работе.

2. Запишите необратимую реакцию, которая протекает с выделением осадка .

Сформулируйте вывод по работе.

Лабораторная работа 6

Тема: Приготовление раствора заданной концентрации.

Цель: Овладение навыками приготовления растворов определенной концентрации, с соблюдением правил техники безопасности.

Задача: Закрепить знания по теме « Вода. Растворы. Электролитическая диссоциация».

Реактивы и оборудование: Хлорид натрия (NaCl), 60% конценрированная серная кислота, дистиллированная вода, весы, бюксы, мерная колба (100мл).

Теоретические основы

Раствор – гомогенная система, состоящая из растворенного вещества и растворителя.

При решении задач пользуются формулами:

W Р.В. = m Р.В. / m Р-РА.

M р-ра = m Р.В. + m Н2О

m Р-РА – масса раствора, г.

m Р.В. – масса растворенного вещества, г.

m Н2О – масса воды, г.

W Р.В. - массовая доля растворенного вещества.

10% раствор вещества содержит 10г растворенного вещества и 90г воды в 100г раствора.

Например: Определите массовую долю растворенного вещества, если 10 г его содержится в 100 г раствора. Какая масса воды содержится в растворе.

Дано: m Р.В. = 10 г ; m р-ра = 100 г

Найти: W Р.В.; m Н2О

Решение:

1. W Р.В. = ; W Р.В. = = 0,1

2. mн 2 о = m р-ра – mр.в.; mн 2 о = 100 – 10 = 90 г

Ответ: 0,1; 90 г

Выполнение работы

1.Приготовление 2% раствора соли.

Взвесьте в бюксе 2г хлорида натрия и пересыпьте через воронку в колбу на 100мл. Затем в колбу добавьте воды до метки. Полученный раствор имеет 2% концентрацию NaCl в 100г раствора или 0,02 массовую долю NaCl в 100г раствора .

2. Приготовление 100 мл 10% раствора серной кислоты.

Раствор готовят из 60% концентрированного раствора серной кислоты плотностью 1,5 г/мл. Для этого мензуркой отмеряют 11 мл 60% концетрированной серной кислоты и мерным цилиндром 100-11=99 мл воды. Воду выливают в колбу, а затем добавляют из мензурки кислоту. Полученный раствор содержит 0,1 массовую долю H 2 SO 4 .

Контрольные вопросы

1. Что такое растворы?

2.Из чего складывается масса раствора?

3. Как определяется массовая доля растворенного вещества в растворе?

4. Как приготовить10% раствор щелочи NaOH? Какая масса NaOH и воды содержится в таком растворе?

5. Решите задачу

1 уровень

1вариант:

Определите массовую долю растворенного вещества, если 20 г его содержится в 150 г раствора?

2 вариант:

Чему равна масса раствора, если 10г вещества растворили в100г воды?

2 уровень

1 вариант:

Определите массовую долю (%) KOH в растворе, если 40г KOH растворили в воде массой 160г.

2 вариант:

Чему равна масса растворенного вещества, если в200 г раствора массовая доля вещества составляет 0,2.

3 уровень

1 вариант:

К 200 граммам раствора, содержащего 0.3 массовые доли растворенного NaCl, добавили 100 граммов воды. Вычислите массовую долю NaCl в полученном растворе.

2 вариант:

Определите массу воды, которая содержится в растворе массой 300 г с массовой долей растворенного вещества равной 0,5?

Сформулируйте вывод по работе.

Лабораторная работа 7

Тема: Изготовление моделей молекул органических веществ.

Цель: Развитие навыков пространственного изображения молекул метана, этана, этена, этина, бензола.

Задача:

Оборудование: Пластилин, металлические стержни, бумага, клей, заготовки бумажных моделей, транспортир.Учебное пособие Габриелян О.С. «Химия»

Теоретические основы

В предельных углеводородах (алканы) 3 , и образуют одинарные σ – связи. Угол связи составляет 109,28 о . Форма молекул правильный тетраэдр.

В молекулах алкенов углеродные атомы находятся в состоянии гибридизации sp 2 , и образуют двойные связи σ и π – связи. Угол связи σ составляет 120 о , а π – связь распологается перпендикулярно связи σ. Форма молекул правильный треугольник.

В молекулах алкинов углеродные атомы находятся в состоянии гибридизации sp , и образуют тройные связи одну σ и две π – связи. Угол связи σ составляет 180 о , а две π – связи распологаются перпендикулярно друг друга. Форма молекул линейная (плоская).

В молекуле бензола C 6 H 6 шесть атомов углерода связаны σ – связью. Угол связи составляет 120 о . Состояние гибридизации sp 2 . В молекуле образуется

6 π – связь, которая принадлежит шести атомам углерода.

Для пространственного изображения молекул органических веществ важно знать, к какому классу веществ относится соединение, угол связи, форму молекул.

Например: Метан (СH 4 ) относится к классу алканов. Атомы находятся в состоянии гибридизации sp 3 , значит угол связи 109,28 о , форма молекулы тетраэдр, между атомами одинарная σ – связь. Для построения молекулы шаростержневым способом нужно заготовить 4 шара из пластилина. Один шар (атом углерода) большего размера и черного цвета, а три атома (водорода) одинакового размера красного цвета. Соединить шары металическими стержнями под углом 109,28 о .

Полусферическая модель атома изготавливается также только шары соединяются методом вдавливания в друг друга.

Выполнение работы

1. Изготовление моделей молекул органических веществ СH 4 , C 2 H 6 , C 2 H 4 , C 2 H 2 , C 6 H 6 .

1.1.Изготовление шаростержневых моделей молекул.

Шаростержневые модели изготавливаются из пластилина и металлических стержней. При изготовлении молекул необходимо знать угол связи и ее кратность.

Атом химического элемента представляется в виде шара. Атом углерода в виде шара изготавливается большего размера, чем атомы водорода и из другого цвета пластилина. Химическая связь изображается металлическими стержнями. Угол химической связи измеряется траспортиром.

1.2.Изготовление полусферических моделей

Полусферические модели изготавливаются из пластилина. Сначала заготавливаются шары для атомов углерода и водорода, затем под определенным углом атомы в виде шаров соединяются друг с другом методом вдавливания. Получаются полусферы атомов.

1.3. Заполните таблицу. Зарисуйте молекулы органических веществ.

Контрольные вопросы

1. Какие бывают органические соединения по строению углеводородного скелета?

2. Какие бывают органические соединения по наличию функциональных групп?

3. Какие вещества называются гомологами?

4. Какие бывают пространственные формы молекул органических веществ?

5. Какой процесс называется гибридизацией?

7. Дайте понятие σ и π связи ?

Сформулируйте вывод по работе.

Лабораторная работа 8.

Тема: Обнаружение воды, сажи и углекислого газа в продуктах горения свечи. Качественное определение углерода, водорода и хлора в органических веществах

Цель: научиться определять углерод, водород, хлор в органических соединениях

Задача: Закрепление знаний по теме « Основные понятия органической химии и теория строения органических соединений».

Оборудование: парафин, оксид меди (II), сульфат меди (II), известковая вода, медная проволока , лабораторный штатив (или проборкодержатель), пробирки, пробка с газоотводной трубкой, спиртовка, спички, вата.

Соберите прибор, как показано на рисунке.

Смесь 1 - 2 г оксида меди (П) и 0,2 г парафина хорошо перемешайте и поместите на дно пробирки. Сверху насыпьте еще немного оксида меди (П). В верхнюю часть пробирки введите в виде пробки небольшой кусочек ваты и насыпьте на нее тонкий слой белого порошка безводного сульфата меди (П). Закройте пробирку пробкой с газоотводной трубкой. При этом конец трубки должен почти упираться в комочек ваты с сульфатом меди (П). Нижний конец газоотводной трубки должен быть погружен в пробирку с свежеприготовленным раствором известковой воды (раствор гидроксида кальция) Нагрейте пробирку в течении 2-3 мин. Если пробка плотно закрывает пробирку, то через несколько секунд из газоотводной трубки начнут выходить пузырьки газа. Как только известковая вода помутнеет, пробирку с ней следует удалить (что и продолжать нагревание, пока пары воды не достигнут белого порошка сульфата меди(П) и не вызовут его посинения.

После изменения окраски сульфата меди (П) следует прекратить нагревание.

Наблюдения:

– парафин окисляется в присутствии оксида меди (II). При этом углерод превращается в углекислый газ, а водород – в воду:

С n H 2n+2 + (3n+1) CuO → n CO 2 + (n+1) H 2 O + (3n+1) Cu

– выделяющийся углекислый газ взаимодействует с гидроксидом кальция, что вызывает помутнение известковой воды вследствие образования нерастворимого карбоната кальция:

СО 2 + Cа(OН) 2 → СаCO 3↓ + H 2 O

– сульфат меди (II) приобретает голубую окраску при взаимодействии с водой, в результате чего образуется кристаллогидрат CuSO 4 · 5Н 2 О.

Вывод: по продуктам окисления парафина СО 2 и H 2 O установили, что в его состав входят углерод и водород.

Контрольные вопросы:

1. Почему помутнел раствор известковой воды?

Напишите уравнение реакции, считая условно формулу парафина С 16 Н 34 .

2. Почему белый порошок сульфата меди (П) стал голубым? Напишите уравнение реакции, учитывая, что безводному сульфату меди (П) присоединяется 5 молекул воды.

3.Что произошло с чёрным порошком оксида меди (П).

Сделайте выводы.

Опыт №2. Качественное определение хлора в молекулах галогенопроизводных углеводородов

Для проведения опыта требуется медная проволока длиной около 10 см, загнутая на конце петлей и вставленная другим концом в держатель.

Прокалите петлю проволоки до исчезновения посторонней окраски пламени. Остывшую петлю, покрывшуюся черным налетом оксида меди (П), опустите в пробирку с хлороформом, затем смоченную веществом петлю вновь внесите в пламя горелки. Немедленно появляется характерная зеленовато-голубая окраска пламени, так как образующиеся при сгорании летучие галогениды меди окрашивают пламя горелки.

4. Оформите работу:

Лабораторная работа 9.

Тема:

Цели: познакомиться со свойствами кислородсодержащих органических соединений, которые включают полярную функциональную группу, определяющую их физические и химические свойства; изучить особые свойства многоатомных спиртов; определить роль функциональной группы в формировании физических свойств и химической активности спиртов.

Задачи: Закрепить знания по теме «Спирты».

Оборудование: штатив с пробирками, дистиллированная вода, этанол, глицерин, сульфат меди (II), раствор гидроксида натрия, серной кислоты.

Экспериментальная задача I. Уровень I

Изучение растворимости спиртов в воде.

  1. В три пробирки наливаем по 1 мл этанола и глицерина.
  2. Рассчитываем относительные молекулярные массы спиртов.
  3. Располагаем пробирки в штативе в порядке увеличения относительной молекулярной массы спиртов.
  4. Добавляем в каждую пробирку по 2 мл дистиллированной воды.
  5. Встряхиваем пробирки.
  6. Наблюдаем за растворимостью спиртов, используя для характеристики слова «хорошо», «ограниченно», «плохо».
  7. Результаты сверяем с табличными.
Содержимое пробирок оставляем для выполнения Экспериментальной задачи II.

Тема: Изучение свойств спиртов

Исполнитель

Экспериментальная задача I

Первый -при скорости фильтрования 0,54-10 м-с, второй - при скорости фильтрования 1,04-10-3 м-с-.  

Пример 1У-8. После проведения опытов на лабораторном фильтре определенной температуре и постоянной разности давлений найдено, что отношение массы влажного осадка к массе твердых частиц осадка т=1,82, а массовое удельное сопротивление осадка Гм=1,ОЫО" м-кг. Вода не содержит заметного количества , концентрация твердых частиц в суспензии с = 0,047 кг-кг. Вычислить значения Хи, Хо и Го, если рж=ЮОО кг-м- а рт = 2710 кг-м- . Решение. 1. Из уравнения (IV, 55) следует  

Через суспензию карбоната кальция в воде пропускают ток диоксида углерода раствор становится прозрачным. Какими способами можно вновь осадить исходное вещество  

Такой результат достигается более простым путем - действием на бумагу высокодисперсной суспензии карбоната кальция в его насыщенном растворе. 

Пример 13. После проведения опытов на лабораторном фильтре с водной суспензией карбоната кальция при определенной температуре и постоянной разности давлений найдено, что отношение веса влажного осадка к весу твердых частиц осадка т = 1,82, а весовое удельное сопротивление осадка гш = 1,01 10 м-н К Вода не содержит заметного количества растворенных нелетучих веществ , конпентрапия твердых частнц в суспензии Са = 0,047 н н-. Вычислить значения дгв. и го, если у = Ю ООО н-м, а ут = 27 100 Н М. 

Имеются примеры успешного использования коагулирующего действия ультразвука (УЗ) при обработке водных суспензий карбоната кальция, кварца и угля, красителей, волокон целлюлозы, золя двуокиси марганца . Оптимальные частоты лежат в диапазоне от нескольких килогерц до 1 мгц. 

Что произойдет от пропускания 0. в раствор Са(ОН)г Что произойдет при пропускании этого же газа в водную суспензию карбоната кальция  

Преципитат (брушит) осаждают гидроокисью кальция (известковое молоко) или суспензией карбоната кальция (мел, известняк) при 40-50° С  

Измерение pH. Анализируемый газ барботируют через раствор , pH которого известен, например через раствор бикарбоната натрия или через суспензию карбоната кальция. Затем определяют рн, пользуясь стеклянным электродом . Величина pH является функцией объема поглощенного СО2. Так можно определить 0,03-6% СО2 с большой точностью. 

Если хлорофилл, растворенный в петролейном эфире , фильтруют через адсорбент, помещенный в колонку (я использую главным образом суспензию карбоната кальция, которой плотно заполняю стеклянную трубку), пигменты распределяются по колонке сверху вниз в соответствии с их адсорбционной способностью , образуя различным образом окрашенные зоны. Сильно адсорбирующиеся 

Гидролиз. 1,2-Дихлорбутен-2 взаимодействует с водной суспензией карбоната кальция при 70 °С, при этом получается эквимольная смесь 2-хлор-бутен -2-ола-1 и З-хлорбутен-З-ола-2  

Значительно легче, чем галоидопроизводные углеводородов , гидролизуются галоидопроизводные кислот. а-ГалоидокЦлоты при нагрева- НИИ их с растворами углекислого калия и углекислого натрия или с суспензиями карбонатов кальция и бария дают с хорошими выходами а-оксикислоты. Этим способом получают, например, гликолевую кислоту из хлоруксусной кислоты и оксиянтарную кислоту из бромянтарнои кислоты. 

Бокситы. Авторы изучили селективную флокуляцию измельченных каолинит-бемитовых бокситов, содержащих 50,3 % А120,з и 19,3 % ЗЮг, при высокой концентрации солей кальция в пульпе. Флокулянтом служил ПАА, диспергатором - сода, гексаметафосфат и щелочь. Показано, что выделение каолинитового продукта возможно лишь при содержании кальция в жидкой фазе менее 30 мг/дм. Так как содержание кальция в жидкой фазе бокситовых суспензий в природных водах значительно выше (50-300 мг/дм), то в пульпу вводили раствор соды для связывания ионов кальция в нерастворимый карбонат. Добавленный гексаметафосфат, адсорбируясь в виде полифосфатного аниона на поверхности образующегося СаСОз, препятствует укрупнению частиц карбоната. Одновременно ГМФ влияет на взаимодействие продуктов реакции с ПАА и усиливает его флокулирующее действие на суспензию карбоната кальция. Авторы это объясняют тем, что образующиеся в жидкой фазе на поверхности минералов труднорастворимые продукты являются центрами закрепления флокулянта, что приводит к снижению селективности при больших концентрациях кальция в жидкой фазе. 

Стабильные суспензии карбоната кальция в сульфонатах кальция получают взаимодействием натрия с водным раствором хлористого кальция и карбоната натрия с последующим обезвоживанием и фильтрованием . Имеется сообщение о процессе производства коллоидно-дис-персного карбоната кальция смешением раствора обычного сульфоната кальция в масле с известью и водой и последующим пропусканием через полученную смесь газообразной двуокиси углерода . Образующиеся нептизированные сульфонатом частицы содержат 70-90% карбоната кальция и 10-30% гидрата окиси кальция и имеют почти сферическую форму диаметр частицы - предпочтительно менее 60 А. Они чрезвычайно трудно отделяются отстаиванием. По данным рентгенодифракционных исследований, эти частицы не обладают кристаллической структурой . Недавно сообщалось с получении дисперсий карбоната кальция , содержащих около 5 моль карбоната на 1 м.оль диспергирующего сульфоната. Такие дисперсии получают нейтрализацией сульфоновой кислоты , избытком извести в спиртах с последующим пропусканием двуокиси углерода. Включение щелочных компонентов в сульфонатные присадки облегчается применением фенола и алкилфенолов. После взаимодействия среднего сульфоната, фенолов, воды и гидрата окиси кальция или бария воду удаляют нагреванием. Полученный продукт , представляющий собой сложную смесь фенолята, сульфоната и диспергированного основания, можно обработать двуокисью углерода для выделения части фенола . Если взять большой избыток алкилфенола и основания по отношению к сульфонату и воздействовать на смесь двуокисью углерода, т получаются высокоосновные сульфонаты, содержащие 8 моль щелочного-бариевого соединения на 1 моль сульфоната. Для полного удаления фенола применяют обработку двуокисью углерода перед обезвоживанием в этом случае получаемый продукт содержит 1-3 моль основного бария (вероятно, в виде карбоната) на 1 моль сульфоната бария . 

В тех случаях, когда альдегид чувствителен к действию щелочей , гидролиз соответствующего бензальгалогенида осуществляют кислотой или водной суспензией карбоната кальция. Предполагают, что аналогичный гидролиз дихлорметильной группы имеет место в реа.кции Реймера- Тимана (см. стр. 242). 

    Убальдини и Синирамед предложили другие способы определения карбоксильных групп в гуминовых кислотах . Согласно одному из этих способов , гуминовую кислоту смешивают с суспензией карбоната кальция в водном ацетате кальция и выделяющуюся при этом двуокись углерода взвешивают. Данные,