Формула объёма в химии. Как найти объем вещества

Различны, например медь и железо, то объем их будет разным, поскольку их плотности неодинаковы.

В химии существует модель идеального газа 1 моль с постоянным молярным объемом V = 22,4 моль/л. Этот газ имеет такой объем при постоянном давлении и . Молярный объем рассматривают в основном с позиции химии. с физической точки зрения объем может изменяться. Тем не менее существует взаимосвязь молярного объема и объема некоторой порции газа:Vм = Vв/nв, где V м - молярный объем; Vв - объем порции газа; n в - количество вещества.Количество вещества равно:nв = mв/Mв, где mв - масса вещества, Mв - молярная масса вещества.Соответственно, объем порции газа равен:Vв = Vм*mв/Mв.

Источники:

  • как находить объем
  • Алгоритм 2 Вычисление объема вещества по известной массе

Масса тела - это одна из важнейших его физических характеристик, которая показывает его гравитационные свойства. Зная объем вещества, а также его плотность, можно без труда вычислить и массу тела, в основе которого и лежит это вещество.

Вам понадобится

  • Объем вещества V, его плотность p.

Инструкция

Пускай нам дано неоднородное с массой V и массой m. Тогда его можно будет рассчитать по формуле:
p = m/V.
Из этой следует, что для того, чтобы рассчитать массу , можно воспользоваться ее следствием:
m = p*V. Рассмотрим :Пусть нам дан платиновый брусок. Его 6 кубическим метрам. Найдем его массу .
Задача решается в 2 действия:
1) Согласно таблице плотности различных , плотность платины 21500 кг/куб. .
2) Тогда, зная плотность и объем этого вещества, рассчитаем его массу :
6*21500 = 129000 кг, или 129 тонн.

Видео по теме

Плотность есть отношение массы к занимаемому ей объему – для твердых тел, и отношением молярной массы к молярному объему – для газов. В самом общем виде объем (или молярный объем) будет отношением массы (или молярной массы) к ее плотности. Плотность известна. Что делать? Сперва определить массу, затем вычислить объем, затем внести необходимые поправки.

Инструкция

Объем газа равен отношению произведения , умноженного на его – к уже известной плотности. Иными , даже зная , необходимо знать молярную массу газа и количество , то есть – у вас есть моль газа. В принципе, зная, сколько моль газа у вас есть, можно вычислить его объем, даже не зная плотности – согласно закону Авогадро, один моль любого газа занимает объем 22,4 л. Если же обязательно вычислять объем через плотность, то вам понадобится узнать массу газа в неизвестном пока объеме.

Объем твердого тела можно определить, даже не зная плотности, просто измерив его, а в случае сложной и очень неправильной формы объем определяется, например, по объему вытесненной твердым телом жидкости. Однако, если необходимо вычислять объем именно через плотность, то объем твердого тела есть отношение массы тела к его плотности, а обычно определяется простым взвешиванием. Если же взвесить тело по каким-то причинам (например, оно слишком большое или ) невозможно, то придется прибегать к довольно сложным косвенным расчетам. К примеру, для движущегося тела масса есть отношение удвоенной к квадрату его скорости, или отношение силы, приложенной к телу, к его ускорению. Для очень большого покоящегося тела придется прибегать к расчетам по отношению к массе Земли, с использованием постоянной и момента вращения. Или же – через вычисление удельной теплоемкости вещества; в любом случае знания только плотности для вычисления объема будет недостаточно.

Вычислив массу твердого тела, можно вычислить объем – простым делением массы на плотность.

Обратите внимание

1. Указанные выше методы более или менее применимы только в случае однородности вещества, из которого состоит твердое тело
2. Приведенные методы более или менее применимы в сравнительно узком промежутке температур – от минус 25 до плюс 25 градусов Цельсия. При изменении агрегатного состояния вещества плотность может меняться скачкообразно; в этом случае формулы и методы вычислений будут совсем другими.

Масса вещества - это та мера, с помощью которой воздействует тело на свою опору. Она измеряется в килограммах (кг), граммах (г), тоннах (т). Найти массу вещества , если известен его объем, очень легко.

Вам понадобится

  • Знать объем данного вещества, а также его плотность.

Инструкция

Теперь, разобравшись с недостающими данными, можно за нахождение массы вещества . Это можно выполнить при помощи формулы:m = p*VПример: Необходимо найти массу бензина, объем которого составляет 50 м³. Как видно из задачи. объем исходного вещества известен, требуется найти плотность. Согласно таблице плотностей различных веществ, плотность бензина составляет 730 кг/м³. Теперь найти массу данного бензина можно так:m = 730*50 = 36500 кг или 36,5 тОтвет: бензина составляет 36,5 т

Обратите внимание

Помимо массы тела, существует еще одна родственная ей величина - вес тела. Их ни в коем случае нельзя путать, так как масса тела - это показатель степени воздействия на опору, а вес тела - сила воздействия на земную поверхность. К тому же две эти величины имеют разные единицы измерения: вес тела измеряется в Ньютонах (как и любая другая сила в физике), а масса, как было отмечено ранее, измеряется в килограммах (согласно системе СИ) или граммах (согласно системе СГС).

Полезный совет

В быту массу вещества измеряют при помощи простейшего и древнейшего инструмента - весов, который изготовлен, опираясь на физический закон противовесов. Согласно нему, весы будут находится в состоянии равновесия только в том случае, если на обоих концах данного инструмента будут тела с равными массами. Поэтому для пользования весами была введена система гирь - своеобразных эталонов, с которыми сравниваются массы остальных тел.

У вас есть двухсот ая бочка. Вы планируете ее полностью заправить дизельным топливом, которое используете для отопления своей мини-котельной. А сколько она будет весить, наполненная соляром? Сейчас вычислим.

Есть уйма формул для нахождения объема. В первую очередь нужно определить в каком агрегатном состоянии находится вещество, для которого мы ищем объем. Для объема газа подходят одни формулы, а для объема раствора абсолютно другие.

Инструкция

1. Одна из формул объема раствора: V = m/p, где V – объем раствора(мл), m – масса(г), p – плотность(г/мл). Если требуется добавочно обнаружить массу, то это дозволено сделать, зная формулу и число необходимого вещества. С поддержкой формулы вещества мы обнаружим его молярную массу, сложив ядерные массы всех элементов, входящих в его состав. Скажем, M(AgNO3) = 108+14+16*3 = 170 г/моль. Дальше находим массу по формуле: m = n*M, где m – масса(г), n – число вещества(моль), M – молярная масса вещества(г/моль). Подразумевается, что число вещества дано в задаче.

2. Дальнейшая формула для нахождения объема раствора выводится из формулы молярной концентрации раствора: с = n/V, где c – молярная насыщенность раствора(моль/л), n – число вещества(моль), V – объем раствора(л). Выводим: V = n/c. Число вещества дозволено добавочно обнаружить по формуле: n = m/M, где m – масса, M – молярная масса.

3. Дальше приведены формулы для нахождения объема газа. V = n*Vm, где V – объем газа(л), n – число вещества(моль), Vm – молярный объем газа(л/моль). При типичных условиях, т.е. давлении равным 101 325 Па и температуре 273 К молярный объем газа является величиной непрерывной и равен 22,4 л/моль.

4. Для газовой системы существует формула: : q(x) = V(x)/V, где q(x)(фи) – объемная доля компонента, V(x) – объем компонента (л), V – объем системы (л). Из этой формулы дозволено вывести 2 другие: V(x) = q*V, а также V = V(x)/q.

5. Если в условии задачи присутствует уравнение реакции, решать задачу следует с подмогой него. Из уравнения дозволено обнаружить число всякого вещества, оно равно показателю. Скажем, CuO + 2HCl = CuCl2 + H2O. Отсель видим, что при взаимодействии 1 моля оксида меди и 2 моль соляной кислоты получилось 1 моль хлорида меди и 1 моль воды. Зная по условию задачи число вещества каждого одного компонента реакции, дозволено без труда обнаружить числа всех веществ. Пускай, число вещества оксида меди равно 0,3 моль, значит n(HCl) = 0,6 моль, n(CuCl2) = 0,3 моль, n(H2O) = 0,3 моль.

Объем – это количественная колляция, указывающая, какое именно пространство занимает то либо иное вещество (тело). В системе СИ объем измеряется в кубических метрах. Как же дозволено обнаружить объем какого-либо вещества?

Инструкция

1. Проще каждого – если вам вестима точная масса этого вещества (М) и его плотность (?). Тогда объем находится в одно действие, по формуле:V = M/?.

2. Можете воспользоваться способом, открытым еще в глубокой древности эпохальным ученым Архимедом. Наверно вам знаменита история, как сиракузский царь Гиерон, заподозрив своего ювелира в мошенничестве, приказал Архимеду определить, из чистого ли золота сделана его корона либо же в сплав подмешаны недорогие примеси. Казалось бы, все примитивно: вестима точная масса короны, знаменита плотность чистого золота. Но перед ученым встала задача: как определить объем короны, если она дюже трудна по форме? Архимед блестяще решил ее, взвесив корону вначале в воздухе, а потом в воде.

3. Разница в весе – так называемая «выталкивающая сила», равная весу воды в объеме короны. Ну а зная плотность воды, определить объем нетрудно. Действуя по аналогии, дозволено определить объем всякого твердого вещества, разумеется, если оно не растворяется в воде и тем больше не вступает с ней в реакцию.

4. Если вы имеете дело с газом, находящимся при условиях, близких к типичным, то определить его объем дюже примитивно. Нужно лишь запомнить, что один моль всякого газа при таких условиях занимает объем, равный 22,4 литра. Дальше дозволено изготавливать вычисления, исходя из данных вам условий.

5. Скажем, нужно определить, какой объем занимает 200 грамм чистого азота? Раньше каждого припомните формулу молекулы азота (N2) и ядерный вес азота (14). Следственно, молярный вес азота: 28 грамм/моль. То есть в 22,4 литра содержалось бы 28 грамм этого газа. А сколько будет его в 200 граммах? Вычислите: 200х28/22,4 = 250 грамм.

6. Ну, а как обнаружить объем газа, если он находится не при типичных условиях? Здесь вам придет на подмога уравнение Менделеева-Клапейрона. Хоть оно выведено для модели «безупречного газа», вы абсолютно можете им воспользоваться.

7. Зная такие нужные вам параметры, как давление газа, его массу и температуру, вы вычислите объем по формуле:V = MRT / mP, где R – универсальная газовая непрерывная, равная 8,31, m – молярная масса газа.

Полезный совет
Переведите все величины в одну систему, напротив получится бессмыслица.

Обратите внимание!
Не забывайте про единицы измерения!

Методика решения задач по химии

При решении задач необходимо руководствоваться несколькими простыми правилами:

  1. Внимательно прочитать условие задачи;
  2. Записать, что дано;
  3. Перевести, если это необходимо, единицы физических величин в единицы системы СИ (некоторые внесистемные единицы допускаются, например литры);
  4. Записать, если это необходимо, уравнение реакции и расставить коэффициенты;
  5. Решать задачу, используя понятие о количестве вещества, а не метод составления пропорций;
  6. Записать ответ.

В целях успешной подготовки по химии следует внимательно рассмотреть решения задач, приводимых в тексте, а также самостоятельно решить достаточное число их. Именно в процессе решения задач будут закреплены основные теоретические положения курса химии. Решать задачи необходимо на протяжении всего времени изучения химии и подготовки к экзамену.

Вы можете использовать задачи на этой странице, а можете скачать хороший сборник задач и упражнений с решением типовых и усложненных задач (М. И. Лебедева, И. А. Анкудимова): скачать .

Моль, молярная масса

Молярная масса – это отношение массы вещества к количеству вещества, т.е.

М(х) = m(x)/ν(x), (1)

где М(х) – молярная масса вещества Х, m(x) – масса вещества Х, ν(x) – количество вещества Х. Единица СИ молярной массы – кг/моль, однако обычно используется единица г/моль. Единица массы – г, кг. Единица СИ количества вещества – моль.

Любая задача по химии решается через количество вещества. Необходимо помнить основную формулу:

ν(x) = m(x)/ М(х) = V(x)/V m = N/N A , (2)

где V(x) – объем вещества Х(л), V m – молярный объем газа (л/моль), N – число частиц, N A – постоянная Авогадро.

1. Определите массу иодида натрия NaI количеством вещества 0,6 моль.

Дано : ν(NaI)= 0,6 моль.

Найти : m(NaI) =?

Решение . Молярная масса иодида натрия составляет:

M(NaI) = M(Na) + M(I) = 23 + 127 = 150 г/моль

Определяем массу NaI:

m(NaI) = ν(NaI) M(NaI) = 0,6 150 = 90 г.

2. Определите количество вещества атомного бора, содержащегося в тетраборате натрия Na 2 B 4 O 7 массой 40,4 г.

Дано : m(Na 2 B 4 O 7)=40,4 г.

Найти : ν(B)=?

Решение . Молярная масса тетрабората натрия составляет 202 г/моль. Определяем количество вещества Na 2 B 4 O 7:

ν(Na 2 B 4 O 7)= m(Na 2 B 4 O 7)/ М(Na 2 B 4 O 7) = 40,4/202=0,2 моль.

Вспомним, что 1 моль молекулы тетрабората натрия содержит 2 моль атомов натрия, 4 моль атомов бора и 7 моль атомов кислорода (см. формулу тетрабората натрия). Тогда количество вещества атомного бора равно: ν(B)= 4 ν (Na 2 B 4 O 7)=4 0,2 = 0,8 моль.

Расчеты по химическим формулам. Массовая доля.

Массовая доля вещества – отношение массы данного вещества в системе к массе всей системы, т.е. ω(Х) =m(Х)/m, где ω(X)– массовая доля вещества Х, m(X) – масса вещества Х, m – масса всей системы. Массовая доля – безразмерная величина. Её выражают в долях от единицы или в процентах. Например, массовая доля атомного кислорода составляет 0,42, или 42%, т.е. ω(О)=0,42. Массовая доля атомного хлора в хлориде натрия составляет 0,607, или 60,7%, т.е. ω(Cl)=0,607.

3. Определите массовую долю кристаллизационной воды в дигидрате хлорида бария BaCl 2 2H 2 O.

Решение : Молярная масса BaCl 2 2H 2 O составляет:

М(BaCl 2 2H 2 O) = 137+ 2 35,5 + 2 18 =244 г/моль

Из формулы BaCl 2 2H 2 O следует, что 1 моль дигидрата хлорида бария содержит 2 моль Н 2 О. Отсюда можно определить массу воды, содержащейся в BaCl 2 2H 2 O:

m(H 2 O) = 2 18 = 36 г.

Находим массовую долю кристаллизационной воды в дигидрате хлорида бария BaCl 2 2H 2 O.

ω(H 2 O) = m(H 2 O)/ m(BaCl 2 2H 2 O) = 36/244 = 0,1475 = 14,75%.

4. Из образца горной породы массой 25 г, содержащей минерал аргентит Ag 2 S, выделено серебро массой 5,4 г. Определите массовую долю аргентита в образце.

Дано : m(Ag)=5,4 г; m = 25 г.

Найти : ω(Ag 2 S) =?

Решение : определяем количество вещества серебра, находящегося в аргентите: ν(Ag) =m(Ag)/M(Ag) = 5,4/108 = 0,05 моль.

Из формулы Ag 2 S следует, что количество вещества аргентита в два раза меньше количества вещества серебра. Определяем количество вещества аргентита:

ν(Ag 2 S)= 0,5 ν (Ag) = 0,5 0,05 = 0,025 моль

Рассчитываем массу аргентита:

m(Ag 2 S) = ν(Ag 2 S) М(Ag 2 S) = 0,025 248 = 6,2 г.

Теперь определяем массовую долю аргентита в образце горной породы, массой 25 г.

ω(Ag 2 S) = m(Ag 2 S)/ m = 6,2/25 = 0,248 = 24,8%.

Вывод формул соединений

5. Определите простейшую формулу соединения калия с марганцем и кислородом, если массовые доли элементов в этом веществе составляют соответственно 24,7, 34,8 и 40,5%.

Дано : ω(K) =24,7%; ω(Mn) =34,8%; ω(O) =40,5%.

Найти : формулу соединения.

Решение : для расчетов выбираем массу соединения, равную 100 г, т.е. m=100 г. Массы калия, марганца и кислорода составят:

m (К) = m ω(К); m (К) = 100 0,247= 24,7 г;

m (Mn) = m ω(Mn); m (Mn) =100 0,348=34,8 г;

m (O) = m ω(O); m (O) = 100 0,405 = 40,5 г.

Определяем количества веществ атомных калия, марганца и кислорода:

ν(К)= m(К)/ М(К) = 24,7/39= 0,63 моль

ν(Mn)= m(Mn)/ М(Mn) = 34,8/ 55 = 0,63 моль

ν(O)= m(O)/ М(O) = 40,5/16 = 2,5 моль

Находим отношение количеств веществ:

ν(К) : ν(Mn) : ν(O) = 0,63: 0,63: 2,5.

Разделив правую часть равенства на меньшее число (0,63) получим:

ν(К) : ν(Mn) : ν(O) = 1: 1: 4.

Следовательно, простейшая формула соединения KMnO 4 .

6. При сгорании 1,3 г вещества образовалось 4,4 г оксида углерода (IV) и 0,9 г воды. Найти молекулярную формулу вещества, если его плотность по водороду равна 39.

Дано : m(в-ва) =1,3 г; m(СО 2)=4,4 г; m(Н 2 О)=0,9 г; Д Н2 =39.

Найти : формулу вещества.

Решение : Предположим, что искомое вещество содержит углерод, водород и кислород, т.к. при его сгорании образовались СО 2 и Н 2 О. Тогда необходимо найти количества веществ СО 2 и Н 2 О, чтобы определить количества веществ атомарных углерода, водорода и кислорода.

ν(СО 2) = m(СО 2)/ М(СО 2) = 4,4/44 = 0,1 моль;

ν(Н 2 О) = m(Н 2 О)/ М(Н 2 О) = 0,9/18 = 0,05 моль.

Определяем количества веществ атомарных углерода и водорода:

ν(С)= ν(СО 2); ν(С)=0,1 моль;

ν(Н)= 2 ν(Н 2 О); ν(Н)= 2 0,05 = 0,1 моль.

Следовательно, массы углерода и водорода будут равны:

m(С) = ν(С) М(С) = 0,1 12 = 1,2 г;

m(Н) = ν(Н) М(Н) = 0,1 1 =0,1 г.

Определяем качественный состав вещества:

m(в-ва) = m(С) + m(Н) = 1,2 + 0,1 = 1,3 г.

Следовательно, вещество состоит только из углерода и водорода (см. условие задачи). Определим теперь его молекулярную массу, исходя из данной в условии задачи плотности вещества по водороду.

М(в-ва) = 2 Д Н2 = 2 39 = 78 г/моль.

ν(С) : ν(Н) = 0,1: 0,1

Разделив правую часть равенства на число 0,1, получим:

ν(С) : ν(Н) = 1: 1

Примем число атомов углерода (или водорода) за «х», тогда, умножив «х» на атомные массы углерода и водорода и приравняв эту сумму молекулярной массе вещества, решим уравнение:

12х + х = 78. Отсюда х= 6. Следовательно, формула вещества С 6 Н 6 – бензол.

Молярный объем газов. Законы идеальных газов. Объемная доля .

Молярный объем газа равен отношению объема газа к количеству вещества этого газа, т.е.

V m = V(X)/ ν(x),

где V m – молярный объем газа - постоянная величина для любого газа при данных условиях; V(X) – объем газа Х; ν(x) – количество вещества газа Х. Молярный объем газов при нормальных условиях (нормальном давлении р н = 101 325 Па ≈ 101,3 кПа и температуре Тн= 273,15 К ≈ 273 К) составляет V m = 22,4 л/моль.

В расчетах, связанных с газами, часто приходится переходить от данных условий к нормальным или наоборот. При этом удобно пользоваться формулой, следующей из объединенного газового закона Бойля-Мариотта и Гей-Люссака:

──── = ─── (3)

Где p – давление; V – объем; Т- температура в шкале Кельвина; индекс «н» указывает на нормальные условия.

Состав газовых смесей часто выражают при помощи объемной доли – отношения объема данного компонента к общему объему системы, т.е.

где φ(Х) – объемная доля компонента Х; V(X) – объем компонента Х; V - объем системы. Объемная доля – безразмерная величина, её выражают в долях от единицы или в процентах.

7. Какой объем займет при температуре 20 о С и давлении 250 кПа аммиак массой 51 г?

Дано : m(NH 3)=51 г; p=250 кПа; t=20 o C.

Найти : V(NH 3) =?

Решение : определяем количество вещества аммиака:

ν(NH 3) = m(NH 3)/ М(NH 3) = 51/17 = 3 моль.

Объем аммиака при нормальных условиях составляет:

V(NH 3) = V m ν(NH 3) = 22,4 3 = 67,2 л.

Используя формулу (3), приводим объем аммиака к данным условиям [температура Т= (273 +20)К = 293 К]:

p н TV н (NH 3) 101,3 293 67,2

V(NH 3) =──────── = ───────── = 29,2 л.

8. Определите объем , который займет при нормальных условиях газовая смесь, содержащая водород, массой 1,4 г и азот, массой 5,6 г.

Дано : m(N 2)=5,6 г; m(H 2)=1,4 ; н.у.

Найти : V(смеси)=?

Решение : находим количества вещества водорода и азота:

ν(N 2) = m(N 2)/ М(N 2) = 5,6/28 = 0,2 моль

ν(H 2) = m(H 2)/ М(H 2) = 1,4/ 2 = 0,7 моль

Так как при нормальных условиях эти газы не взаимодействуют между собой, то объем газовой смеси будет равен сумме объемов газов, т.е.

V(смеси)=V(N 2) + V(H 2)=V m ν(N 2) + V m ν(H 2) = 22,4 0,2 + 22,4 0,7 = 20,16 л.

Расчеты по химическим уравнениям

Расчеты по химическим уравнениям (стехиометрические расчеты) основаны на законе сохранения массы веществ. Однако в реальных химических процессах из-за неполного протекания реакции и различных потерь веществ масса образующихся продуктов часто бывает меньше той, которая должна образоваться в соответствии с законом сохранения массы веществ. Выход продукта реакции (или массовая доля выхода) – это выраженное в процентах отношение массы реально полученного продукта к его массе, которая должна образоваться в соответствии с теоретическим расчетом, т.е.

η = /m(X) (4)

Где η– выход продукта, %; m p (X) - масса продукта Х, полученного в реальном процессе; m(X) – рассчитанная масса вещества Х.

В тех задачах, где выход продукта не указан, предполагается, что он – количественный (теоретический), т.е. η=100%.

9. Какую массу фосфора надо сжечь для получения оксида фосфора (V) массой 7,1 г?

Дано : m(P 2 O 5)=7,1 г.

Найти : m(Р) =?

Решение : записываем уравнение реакции горения фосфора и расставляем стехиометрические коэффициенты.

4P+ 5O 2 = 2P 2 O 5

Определяем количество вещества P 2 O 5 , получившегося в реакции.

ν(P 2 O 5) = m(P 2 O 5)/ М(P 2 O 5) = 7,1/142 = 0,05 моль.

Из уравнения реакции следует, что ν(P 2 O 5)= 2 ν(P), следовательно, количество вещества фосфора, необходимого в реакции равно:

ν(P 2 O 5)= 2 ν(P) = 2 0,05= 0,1 моль.

Отсюда находим массу фосфора:

m(Р) = ν(Р) М(Р) = 0,1 31 = 3,1 г.

10. В избытке соляной кислоты растворили магний массой 6 г и цинк массой 6,5 г. Какой объем водорода, измеренный при нормальных условиях, выделится при этом?

Дано : m(Mg)=6 г; m(Zn)=6,5 г; н.у.

Найти : V(H 2) =?

Решение : записываем уравнения реакции взаимодействия магния и цинка с соляной кислотой и расставляем стехиометрические коэффициенты.

Zn + 2 HCl = ZnCl 2 + H 2

Mg + 2 HCl = MgCl 2 + H 2

Определяем количества веществ магния и цинка, вступивших в реакцию с соляной кислотой.

ν(Mg) = m(Mg)/ М(Mg) = 6/24 = 0,25 моль

ν(Zn) = m(Zn)/ М(Zn) = 6,5/65 = 0,1 моль.

Из уравнений реакции следует, что количество вещества металла и водорода равны, т.е. ν(Mg) = ν(Н 2); ν(Zn) = ν(Н 2), определяем количество водорода, получившегося в результате двух реакций:

ν(Н 2) = ν(Mg) + ν(Zn) = 0,25 + 0,1= 0,35 моль.

Рассчитываем объем водорода, выделившегося в результате реакции:

V(H 2) = V m ν(H 2) = 22,4 0,35 = 7,84 л.

11. При пропускании сероводорода объемом 2,8 л (нормальные условия) через избыток раствора сульфата меди (II) образовался осадок массой 11,4 г. Определите выход продукта реакции.

Дано : V(H 2 S)=2,8 л; m(осадка)= 11,4 г; н.у.

Найти : η =?

Решение : записываем уравнение реакции взаимодействия сероводорода и сульфата меди (II).

H 2 S + CuSO 4 = CuS ↓+ H 2 SO 4

Определяем количество вещества сероводорода, участвующего в реакции.

ν(H 2 S) = V(H 2 S) / V m = 2,8/22,4 = 0,125 моль.

Из уравнения реакции следует, что ν(H 2 S) = ν(СuS) = 0,125 моль. Значит можно найти теоретическую массу СuS.

m(СuS) = ν(СuS) М(СuS) = 0,125 96 = 12 г.

Теперь определяем выход продукта, пользуясь формулой (4):

η = /m(X)= 11,4 100/ 12 = 95%.

12. Какая масса хлорида аммония образуется при взаимодействии хлороводорода массой 7,3 г с аммиаком массой 5,1 г? Какой газ останется в избытке? Определите массу избытка.

Дано : m(HCl)=7,3 г; m(NH 3)=5,1 г.

Найти : m(NH 4 Cl) =? m(избытка) =?

Решение : записываем уравнение реакции.

HCl + NH 3 = NH 4 Cl

Эта задача на «избыток» и «недостаток». Рассчитываем количества вещества хлороводорода и аммиака и определяем, какой газ находится в избытке.

ν(HCl) = m(HCl)/ М(HCl) = 7,3/36,5 = 0,2 моль;

ν(NH 3) = m(NH 3)/ М(NH 3) = 5,1/ 17 = 0,3 моль.

Аммиак находится в избытке, поэтому расчет ведем по недостатку, т.е. по хлороводороду. Из уравнения реакции следует, что ν(HCl) = ν(NH 4 Cl) = 0,2 моль. Определяем массу хлорида аммония.

m(NH 4 Cl) = ν(NH 4 Cl) М(NH 4 Cl) = 0,2 53,5 = 10,7 г.

Мы определили, что аммиак находится в избытке (по количеству вещества избыток составляет 0,1 моль). Рассчитаем массу избытка аммиака.

m(NH 3) = ν(NH 3) М(NH 3) = 0,1 17 = 1,7 г.

13. Технический карбид кальция массой 20 г обработали избытком воды, получив ацетилен, при пропускании которого через избыток бромной воды образовался 1,1,2,2 –тетрабромэтан массой 86,5 г. Определите массовую долю СаС 2 в техническом карбиде.

Дано : m = 20 г; m(C 2 H 2 Br 4)=86,5 г.

Найти : ω(СаC 2) =?

Решение : записываем уравнения взаимодействия карбида кальция с водой и ацетилена с бромной водой и расставляем стехиометрические коэффициенты.

CaC 2 +2 H 2 O = Ca(OH) 2 + C 2 H 2

C 2 H 2 +2 Br 2 = C 2 H 2 Br 4

Находим количество вещества тетрабромэтана.

ν(C 2 H 2 Br 4) = m(C 2 H 2 Br 4)/ М(C 2 H 2 Br 4) = 86,5/ 346 = 0,25 моль.

Из уравнений реакций следует, что ν(C 2 H 2 Br 4) =ν(C 2 H 2) = ν(СаC 2) =0,25 моль. Отсюда мы можем найти массу чистого карбида кальция (без примесей).

m(СаC 2) = ν(СаC 2) М(СаC 2) = 0,25 64 = 16 г.

Определяем массовую долю СаC 2 в техническом карбиде.

ω(СаC 2) =m(СаC 2)/m = 16/20 = 0,8 = 80%.

Растворы. Массовая доля компонента раствора

14. В бензоле объемом 170 мл растворили серу массой 1,8 г. Плотность бензола равна 0,88 г/мл. Определите массовую долю серы в растворе.

Дано : V(C 6 H 6) =170 мл; m(S) = 1,8 г; ρ(С 6 C 6)=0,88 г/мл.

Найти : ω(S) =?

Решение : для нахождения массовой доли серы в растворе необходимо рассчитать массу раствора. Определяем массу бензола.

m(С 6 C 6) = ρ(С 6 C 6) V(C 6 H 6) = 0,88 170 = 149,6 г.

Находим общую массу раствора.

m(р-ра) = m(С 6 C 6) + m(S) =149,6 + 1,8 = 151,4 г.

Рассчитаем массовую долю серы.

ω(S) =m(S)/m=1,8 /151,4 = 0,0119 = 1,19 %.

15. В воде массой 40 г растворили железный купорос FeSO 4 7H 2 O массой 3,5 г. Определите массовую долю сульфата железа (II) в полученном растворе.

Дано : m(H 2 O)=40 г; m(FeSO 4 7H 2 O)=3,5 г.

Найти : ω(FeSO 4) =?

Решение : найдем массу FeSO 4 содержащегося в FeSO 4 7H 2 O. Для этого рассчитаем количество вещества FeSO 4 7H 2 O.

ν(FeSO 4 7H 2 O)=m(FeSO 4 7H 2 O)/М(FeSO 4 7H 2 O)=3,5/278=0,0125моль

Из формулы железного купороса следует, что ν(FeSO 4)= ν(FeSO 4 7H 2 O)=0,0125 моль. Рассчитаем массу FeSO 4:

m(FeSO 4) = ν(FeSO 4) М(FeSO 4) = 0,0125 152 = 1,91 г.

Учитывая, что масса раствора складывается из массы железного купороса (3,5 г) и массы воды (40 г), рассчитаем массовую долю сульфата железа в растворе.

ω(FeSO 4) =m(FeSO 4)/m=1,91 /43,5 = 0,044 =4,4 %.

Задачи для самостоятельного решения

  1. На 50 г йодистого метила в гексане подействовали металлическим натрием, при этом выделилось 1,12 л газа, измеренного при нормальных условиях. Определите массовую долю йодистого метила в растворе. Ответ : 28,4%.
  2. Некоторый спирт подвергли окислению, при этом образовалась одноосновная карбоновая кислота. При сжигании 13,2 г этой кислоты получили углекислый газ, для полной нейтрализации которого потребовалось 192 мл раствора КОН с массовой долей 28%. Плотность раствора КОН равна 1,25 г/мл. Определите формулу спирта. Ответ : бутанол.
  3. Газ, полученный при взаимодействии 9,52 г меди с 50 мл 81 % раствора азотной кислоты, плотностью 1,45 г/мл, пропустили через 150 мл 20 % раствора NaOH плотностью 1,22 г/мл. Определите массовые доли растворенных веществ. Ответ : 12,5% NaOH; 6,48% NaNO 3 ; 5,26% NaNO 2 .
  4. Определите объем выделившихся газов при взрыве 10 г нитроглицерина. Ответ : 7,15 л.
  5. Образец органического вещества массой 4,3 г сожгли в кислороде. Продуктами реакции являются оксид углерода (IV) объемом 6,72 л (нормальные условия) и вода массой 6,3 г. Плотность паров исходного вещества по водороду равна 43. Определите формулу вещества. Ответ : С 6 Н 14 .
2.10.1. Расчет относительных и абсолютных масс атомов и молекул

Относительные массы атомов и молекул определяются с использованием приведенных в таблице Д.И. Менделеева величин атомных масс. При этом, при проведении расчетов для учебных целей значения атомных масс элементов обычно округляются до целых чисел (за исключением хлора, атомная масса которого принимается равной 35,5).

Пример 1. Относительная атомная масса кальция А r (Са)=40; относительная атомная масса платины А r (Pt)=195.

Относительная масса молекулы рассчитывается как сумма относительных атомных масс составляющих данную молекулу атомов с учетом количества их вещества.

Пример 2. Относительная молярная масса серной кислоты:

М r (H 2 SO 4) = 2A r (H) + A r (S) + 4A r (O) = 2· 1 + 32 + 4· 16 = 98.

Величины абсолютных масс атомов и молекул находятся делением массы 1 моль вещества на число Авогадро.

Пример 3. Определите массу одного атома кальция.

Решение. Атомная масса кальция составляет А r (Са)=40 г/моль. Масса одного атома кальция окажется равной:

m(Ca)= А r (Ca) : N A =40: 6,02· 10 23 = 6,64· 10 -23 г.

Пример 4. Определите массу одной молекулы серной кислоты.

Решение. Молярная масса серной кислоты равна М r (H 2 SO 4) = 98. Масса одной молекулы m(H 2 SO 4) равна:

m(H 2 SO 4) = М r (H 2 SO 4) : N A = 98:6,02· 10 23 = 16,28· 10 -23 г.

2.10.2. Расчет количества вещества и вычисление числа атомных и молекулярных частиц по известным значениям массы и объема

Количество вещества определяется путем деления его массы, выраженной в граммах, на его атомную (молярную) массу. Количество вещества, находящегося в газообразном состоянии при н.у., находится делением его объема на объем 1 моль газа (22,4 л).

Пример 5. Определите количество вещества натрия n(Na), находящегося в 57,5 г металлического натрия.

Решение. Относительная атомная масса натрия равна А r (Na)=23. Количество вещества находим делением массы металлического натрия на его атомную массу:

n(Na)=57,5:23=2,5 моль.

Пример 6 . Определите количество вещества азота, если его объем при н.у. составляет 5,6 л.

Решение. Количество вещества азота n(N 2) находим делением его объема на объем 1 моль газа (22,4 л):

n(N 2)=5,6:22,4=0,25 моль.

Число атомов и молекул в веществе определяется умножением количества вещества атомов и молекул на число Авогадро.

Пример 7. Определите число молекул, содержащихся в 1 кг воды.

Решение. Количество вещества воды находим делением ее массы (1000 г) на молярную массу (18 г/моль):

n(Н 2 О) = 1000:18=55,5 моль.

Число молекул в 1000 г воды составит:

N(Н 2 О) = 55,5· 6,02· 10 23 = 3,34· 10 24 .

Пример 8. Определите число атомов, содержащихся в 1 л (н.у.) кислорода.

Решение. Количество вещества кислорода, объем которого при нормальных условиях составляет 1 л равно:

n(О 2) = 1: 22,4 = 4,46· 10 -2 моль.

Число молекул кислорода в 1 л (н.у.) составит:

N(О 2) = 4,46· 10 -2 · 6,02· 10 23 = 2,69· 10 22 .

Следует отметить, что 26,9· 10 22 молекул будет содержаться в 1 л любого газа при н.у. Поскольку молекула кислорода двухатомна, число атомов кислорода в 1 л будет в 2 раза больше, т.е. 5,38· 10 22 .

2.10.3. Расчет средней молярной массы газовой смеси и объемной доли
содержащихся в ней газов

Средняя молярная масса газовой смеси рассчитывается на основе молярных масс составляющих эту смесь газов и их объемных долей.

Пример 9. Полагая, что содержание (в объемных процентах) азота, кислорода и аргона в воздухе соответственно составляет 78, 21 и 1, рассчитайте среднюю молярную массу воздуха.

Решение.

М возд = 0,78· М r (N 2)+0,21· М r (O 2)+0,01· М r (Ar)= 0,78· 28+0,21· 32+0,01· 40 = 21,84+6,72+0,40=28,96

Или приблизительно 29 г/моль.

Пример 10. Газовая смесь содержит 12 л NH 3 , 5 л N 2 и 3 л Н 2 , измеренных при н.у. Рассчитать объемные доли газов в этой смеси и ее среднюю молярную массу.

Решение. Общий объем смеси газов равен V=12+5+3=20 л. Объемные доли j газов окажутся равными:

φ(NH 3)= 12:20=0,6; φ(N 2)=5:20=0,25; φ(H 2)=3:20=0,15.

Средняя молярная масса рассчитывается на основе объемных долей составляющих эту смесь газов и их молекулярных масс:

М=0,6· М(NH 3)+0,25· M(N 2)+0,15· M(H 2) = 0,6· 17+0,25· 28+0,15· 2 = 17,5.

2.10.4. Расчет массовой доли химического элемента в химическом соединении

Массовая доля ω химического элемента определяется как отношение массы атома данного элемента Х, содержащегося в данной массе вещества к массе этого вещества m. Массовая доля – безразмерная величина. Ее выражают в долях от единицы:

ω(X) = m(X)/m (0 <ω< 1);

или в процентах

ω(X),%= 100 m(X)/m (0% <ω<100%),

где ω(X) – массовая доля химического элемента X; m(X) – масса химического элемента X; m – масса вещества.

Пример 11. Рассчитайте массовую долю марганца в оксиде марганца (VII).

Решение. Молярные массы веществ равны: М(Mn) = 55 г/моль, М(О) = 16 г/моль, M(Mn 2 O 7)=2М(Mn)+7М(О)= 222 г/моль. Следовательно, масса Mn 2 O 7 количеством вещества 1 моль составляет:

m(Mn 2 O 7) = M(Mn 2 O 7)· n(Mn 2 O 7) = 222· 1= 222 г.

Из формулы Mn 2 O 7 следует, что количество вещества атомов марганца в два раза больше количества вещества оксида марганца (VII). Значит,

n(Mn) = 2n(Mn 2 O 7) = 2 моль,

m(Mn)= n(Mn)· M(Mn) = 2· 55 = 110 г.

Таким образом, массовая доля марганца в оксиде марганца(VII) равна:

ω(X)=m(Mn) : m(Mn 2 O 7) = 110:222 = 0,495 или 49,5%.

2.10.5. Установление формулы химического соединения по его элементному составу

Простейшая химическая формула вещества определяется на основании известных величин массовых долей входящих в состав этого вещества элементов.

Допустим имеется образец вещества Na x P y O z массой m o г. Рассмотрим как определяется его химическая формула, если известны количества вещества атомов элементов, их массы или массовые доли в известной массе вещества. Формула вещества определяется отношением:

x: y: z = N(Na) : N(P) : N(O).

Это отношение не изменится, если каждый его член разделить на число Авогадро:

x: y: z = N(Na)/N A: N(P)/N A: N(O)/N A = ν(Na) : ν(P) : ν(O) .

Таким образом, для нахождения формулы вещества необходимо знать соотношение между количествами веществ атомов в одной и той же массе вещества:

x: y: z = m(Na)/M r (Na) : m(P)/M r (P) : m(O)/M r (O).

Если разделить каждый член последнего уравнения на массу образца m o , то получим выражение, позволяющее определить состав вещества:

x: y: z = ω(Na)/M r (Na) : ω(P)/M r (P) : ω(O)/M r (O).

Пример 12. Вещество содержит 85,71 масс. % углерода и 14,29 масс. % водорода. Молярная его масса равна 28 г/моль. Определите простейшую и истинную химические формулы этого вещества.

Решение. Соотношение между количеством атомов в молекуле С х Н у определяется делением массовых долей каждого элемента на его атомную массу:

х: у = 85,71/12: 14,29/1 = 7,14:14,29 = 1: 2.

Таким образом простейшая формула вещества - СН 2 . Простейшая формула вещества не всегда совпадает с его истинной формулой. В данном случае формула СН 2 не соответствует валентности атома водорода. Для нахождения истинной химической формулы необходимо знать молярную массу данного вещества. В данном примере молярная масса вещества равна 28 г/моль. Разделив 28 на 14 (сумму атомных масс, отвечающих формульной единице СН 2), получаем истинное соотношение между числом атомов в молекуле:

Получаем истинную формулу вещества: С 2 Н 4 - этилен.

Вместо молярной массы для газообразных веществ и паров в условии задачи может быть указана плотность по какому-либо газу или по воздуху.

В рассматриваемом случае плотность газа по воздуху составляет 0,9655. На основании этой величины может быть найдена молярная масса газа:

М = М возд · D возд = 29· 0,9655 = 28.

В этом выражении М – молярная масса газа С х Н у, М возд – средняя молярная масса воздуха, D возд - плотность газа С х Н у по воздуху. Полученная величина молярной массы используется для определения истинной формулы вещества.

В условии задачи может не указываться массовая доля одного из элементов. Она находится вычитанием из единицы (100%) массовых долей всех остальных элементов.

Пример 13. Органическое соединение содержит 38,71 масс. % углерода, 51,61 масс. % кислорода и 9,68 масс. % водорода. Определить истинную формулу этого вещества, если плотность его паров по кислороду составляет 1,9375.

Решение. Рассчитываем соотношение между количеством атомов в молекуле С х Н y О z:

х: у: z = 38,71/12: 9,68/1: 51,61/16 = 3,226: 9,68: 3,226= 1:3:1.

Молярная масса М вещества равна:

М = М(O 2)· D(O 2) = 32· 1,9375 = 62.

Простейшая формула вещества СН 3 О. Сумма атомных масс для этой формульной единицы составит 12+3+16=31. Делим 62 на 31 и получаем истинное соотношение между количеством атомов в молекуле:

х: у: z = 2: 6: 2.

Таким образом, истинная формула вещества С 2 Н 6 О 2 . Эта формула отвечает составу двухатомного спирта – этиленгликоля: СН 2 (ОН)-СН 2 (ОН).

2.10.6. Определение молярной массы вещества

Молярная масса вещества может быть определена на основе величины плотности его паров по газу с известной величиной молярной массы.

Пример 14 . Плотность паров некоторого органического соединения по кислороду равна 1,8125. Определите молярную массу этого соединения.

Решение. Молярная масса неизвестного вещества М x равна произведению относительной плотности этого вещества D на молярную массу вещества M, по которому определено значение относительной плотности:

М x = D· M = 1,8125· 32 = 58,0.

Веществами с найденным значением молярной массы могут быть ацетон, пропионовый альдегид и аллиловый спирт.

Молярная масса газа может быть рассчитана с использованием величины молярного его объема при н.у.

Пример 15. Масса 5,6 л газа при н.у. составляет 5,046 г. Рассчитайте молярную массу этого газа.

Решение. Молярный объем газа при н.у равен 22,4 л. Следовательно, молярная масса искомого газа равна

М = 5,046· 22,4/5,6 = 20,18.

Искомый газ – неон Ne.

Уравнение Клапейрона–Менделеева используется для расчета молярной массы газа, объем которого задан при условиях, отличающихся от нормальных.

Пример 16. При температуре 40 о С и давлении 200 кПа масса 3,0 л газа составляет 6,0 г. Определите молярную массу этого газа.

Решение. Подставляя известные величины в уравнение Клапейрона–Менделеева получаем:

М = mRT/PV = 6,0· 8,31· 313/(200· 3,0)= 26,0.

Рассматриваемый газ – ацетилен С 2 Н 2 .

Пример 17. При сгорании 5,6 л (н.у.) углеводорода получено 44,0 г углекислого газа и 22,5 г воды. Относительная плотность углеводорода по кислороду равна 1,8125. Определите истинную химическую формулу углеводорода.

Решение. Уравнение реакции сгорания углеводорода можно представить следующим образом:

С х Н y + 0,5(2x+0,5y)О 2 = х СО 2 + 0,5у Н 2 О.

Количество углеводорода составляет 5,6:22,4=0,25 моль. В результате реакции образуется 1 моль углекислого газа и 1,25 моль воды, которая содержит 2,5 моль атомов водорода. При сжигании углеводорода количеством вещества 1 моль получается 4 моль углекислого газа и 5 моль воды. Таким образом, 1 моль углеводорода содержит 4 моль атомов углерода и 10 моль атомов водорода, т.е. химическая формула углеводорода С 4 Н 10 . Молярная масса этого углеводорода равна М=4· 12+10=58. Его относительная плотность по кислороду D=58:32=1,8125 соответствует величине, приведенной в условии задачи, что подтверждает правильность найденной химической формулы.

Решение о необходимости ведения такой тетради пришло не сразу, а постепенно, с накоплением опыта работы.

Вначале это было место в конце рабочей тетради – несколько страниц для записи наиболее важных определений. Затем туда же были вынесены наиболее важные таблицы. Потом пришло осознание того, что большинству учеников для того, чтобы научиться решать задачи, необходимы строгие алгоритмические предписания, которые они, прежде всего, должны понять и запомнить.

Вот тогда и пришло решение о ведении, кроме рабочей тетради, еще одной обязательной тетради по химии – химического словаря. В отличие от рабочих тетрадей, которых может быть даже две в течение одного учебного года, словарь - это единая тетрадь на весь курс обучения химии. Лучше всего, если эта тетрадь будет иметь 48 листов и прочную обложку.

Материал в этой тетради мы располагаем следующим образом: в начале – наиболее важные определения, которые ребята выписывают из учебника или записывают под диктовку учителя. Например, на первом уроке в 8-м классе это определение предмета “химия”, понятие “химические реакции”. В течение учебного года в 8-м классе их накапливается более тридцати. По этим определениям на некоторых уроках я провожу опросы. Например, устный вопрос по цепочке, когда один ученик задает вопрос другому, если тот ответил правильно, значит, уже он задает вопрос следующему; или, когда одному ученику задают вопросы другие ученики, если он не справляется с ответом, значит, отвечают сами. По органической химии это в основном определения классов органических веществ и главных понятий, например, “гомологи”, “изомеры” и др.

В конце нашей справочной тетради представлен материал в виде таблиц и схем. На последней странице располагается самая первая таблица “Химические элементы. Химические знаки”. Затем таблицы “Валентность”, “Кислоты”, “Индикаторы”, “Электрохимический ряд напряжений металлов”, “Ряд электроотрицательности”.

Особенно хочу остановиться на содержании таблицы “Соответствие кислот кислотным оксидам”:

Соответствие кислот кислотным оксидам
Кислотный оксид Кислота
Название Формула Название Формула Кислотный остаток, валентность
оксид углерода (II) CO 2 угольная H 2 CO 3 CO 3 (II)
оксид серы (IV) SO 2 сернистая H 2 SO 3 SO 3 (II)
оксид серы (VI) SO 3 серная H 2 SO 4 SO 4 (II)
оксид кремния (IV) SiO 2 кремниевая H 2 SiO 3 SiO 3 (II)
оксид азота (V) N 2 O 5 азотная HNO 3 NO 3 (I)
оксид фосфора (V) P 2 O 5 фосфорная H 3 PO 4 PO 4 (III)

Без понимания и запоминания этой таблицы затрудняется составление учениками 8-х классов уравнений реакций кислотных оксидов со щелочами.

При изучении теории электролитической диссоциации в конце тетради записываем схемы и правила.

Правила составления ионных уравнений:

1. В виде ионов записывают формулы сильных электролитов, растворимых в воде.

2. В молекулярном виде записывают формулы простых веществ, оксидов, слабых электролитов и всех нерастворимых веществ.

3. Формулы малорастворимых веществ в левой части уравнения записывают в ионном виде, в правой – в молекулярном.

При изучении органической химии записываем в словарь обобщающие таблицы по углеводородам, классам кислород - и азотсодержащих веществ, схемы по генетической связи.

Физические величины
Обозначение Название Единицы Формулы
количество вещества моль = N / N A ; = m / М;

V / V m (для газов)

N A постоянная Авогадро молекулы, атомы и другие частицы N A = 6,02 10 23
N число частиц молекулы,

атомы и другие частицы

N = N A
M молярная масса г/моль, кг/кмоль M = m / ; / М/ = М r
m масса г, кг m = M ; m = V
V m молярный объём газа л / моль, м 3 /кмоль Vm = 22,4 л / моль=22,4 м 3 /кмоль
V объём л, м 3 V = V m (для газов) ;
плотность г / мл; = m / V;

M / V m (для газов)

За 25 – летний период преподавания химии в школе мне пришлось работать по разным программам и учебникам. При этом всегда удивляло то, что практически ни один учебник не учит решать задачи. В начале изучения химии для систематизации и закрепления знаний в словаре мы с учениками составляем таблицу “Физические величины” с новыми величинами:

При обучении учащихся способам решения расчётных задач очень большое значение придаю алгоритмам. Я считаю, что строгие предписания последовательности действий позволяют слабому ученику разобраться в решении задач определённого типа. Для сильных учеников - это возможность выхода на творческий уровень своего дальнейшего химического образования и самообразования, так как для начала нужно уверенно овладеть сравнительно небольшим числом стандартных приёмов. На базе этого разовьётся умение правильно их применять на разных стадиях решения более сложных задач. Поэтому алгоритмы решения расчётных задач составлены мною для всех типов задач школьного курса и для факультативных занятий.

Приведу примеры некоторых из них.

Алгоритм решения задач по химическим уравнениям.

1. Записать кратко условие задачи и составить химическое уравнение.

2. Над формулами в химическом уравнении надписать данные задачи, под формулами пописать число моль (определяют по коэффициенту).

3. Найти количество вещества, масса или объём которого даны в условии задачи, по формулам:

M / M; = V / V m (для газов V m = 22,4 л / моль).

Полученное число надписать над формулой в уравнении.

4. Найти количество вещества, масса или объём которого неизвестны. Для этого провести рассуждение по уравнению: сравнить число моль по условию с числом моль по уравнению. При необходимости составить пропорцию.

5. Найти массу или объём по формулам: m = M ; V = V m .

Данный алгоритм – это основа, которую должен освоить ученик, чтобы в дальнейшем он смог решать задачи по уравнениям с различными усложнениями.

Задачи на избыток и недостаток.

Если в условии задачи известны количества, массы или объёмы сразу двух реагирующих веществ, то это задача на избыток и недостаток.

При её решении:

1. Нужно найти количества двух реагирующих веществ по формулам:

M /M; = V/V m .

2. Полученные числа моль надписать над уравнением. Сравнив их с числом моль по уравнению, сделать вывод о том, какое вещество дано в недостатке.

3. По недостатку производить дальнейшие расчёты.

Задачи на долю выхода продукта реакции, практически полученного от теоретически возможного.

По уравнениям реакций проводят теоретические расчёты и находят теоретические данные для продукта реакции: теор. , m теор. или V теор. . При проведении реакций в лаборатории или в промышленности происходят потери, поэтому полученные практические данные практ. ,

m практ. или V практ. всегда меньше теоретически рассчитанных данных. Долю выхода обозначают буквой (эта) и рассчитывают по формулам:

(эта) = практ. / теор. = m практ. / m теор. = V практ. / V теор.

Выражают её в долях от единицы или в процентах. Можно выделить три типа задач:

Если в условии задачи известны данные для исходного вещества и доля выхода продукта реакции, при этом нужно найти практ. , m практ. или V практ. продукта реакции.

Порядок решения:

1. Произвести расчёт по уравнению, исходя из данных для исходного вещества, найти теор. , m теор. или V теор. продукта реакции;

2. Найти массу или объём продукта реакции, практически полученного, по формулам:

m практ. = m теор. ; V практ. = V теор . ; практ. = теор. .

Если в условии задачи известны данные для исходного вещества и практ. , m практ. или V практ. полученного продукта, при этом нужно найти долю выхода продукта реакции.

Порядок решения:

1. Произвести расчёт по уравнению, исходя из данных для исходного вещества, найти

Теор. , m теор. или V теор. продукта реакции.

2. Найти долю выхода продукта реакции по формулам:

Практ. / теор. = m практ. / m теор. = V практ. /V теор.

Если в условии задачи известны практ. , m практ. или V практ. полученного продукта реакции и доля выхода его, при этом нужно найти данные для исходного вещества.

Порядок решения:

1. Найти теор., m теор. или V теор. продукта реакции по формулам:

Теор. = практ. / ; m теор. = m практ. / ; V теор. = V практ. / .

2. Произвести расчёт по уравнению, исходя из теор. , m теор. или V теор. продукта реакции и найти данные для исходного вещества.

Конечно, эти три типа задач мы рассматриваем постепенно, отрабатываем умения решения каждого из них на примере целого ряда задач.

Задачи на смеси и примеси.

Чистое вещество – это то, которого в смеси больше, остальное – примеси. Обозначения: масса смеси – m см., масса чистого вещества – m ч.в., масса примесей – m прим. , массовая доля чистого вещества - ч.в.

Массовую долю чистого вещества находят по формуле: ч.в. = m ч.в. / m см. , выражают её в долях от единицы или в процентах. Выделим 2 типа задач.

Если в условии задачи дана массовая доля чистого вещества ил массовая доля примесей, значит, при этом дана масса смеси. Слово “технический” тоже означает наличие смеси.

Порядок решения:

1. Найти массу чистого вещества по формуле: m ч.в. = ч.в. m см.

Если дана массовая доля примесей, то предварительно нужно найти массовую долю чистого вещества: ч.в. = 1 - прим.

2. Исходя из массы чистого вещества, производить дальнейшие расчёты по уравнению.

Если в условии задачи дана масса исходной смеси и n , m или V продукта реакции, при этом нужно найти массовую долю чистого вещества в исходной смеси или массовую долю примесей в ней.

Порядок решения:

1. Произвести расчёт по уравнению, исходя из данных для продукта реакции, и найти n ч.в. и m ч.в.

2. Найти массовую долю чистого вещества в смеси по формуле: ч.в. = m ч.в. / m см. и массовую долю примесей: прим. = 1 - ч.в

Закон объёмных отношений газов.

Объёмы газов относятся так же, как их количества веществ:

V 1 / V 2 = 1 / 2

Этот закон применяют при решении задач по уравнениям, в которых дан объём газа и нужно найти объём другого газа.

Объёмная доля газа в смеси.

Vг / Vсм, где (фи) – объёмная доля газа.

Vг – объём газа, Vcм – объём смеси газов.

Если в условии задачи даны объёмная доля газа и объём смеси, то, прежде всего, нужно найти объём газа: Vг = Vсм.

Объём смеси газов находят по формуле: Vсм = Vг / .

Объём воздуха, затраченный на сжигание вещества, находят через объём кислорода, найденный по уравнению:

Vвозд. = V(О 2) / 0,21

Вывод формул органических веществ по общим формулам.

Органические вещества образуют гомологические ряды, которые имеют общие формулы. Это позволяет:

1. Выражать относительную молекулярную массу через число n.

M r (C n H 2n + 2) = 12 n + 1 (2n + 2) = 14n + 2.

2. Приравнивать M r , выраженную через n, к истинной M r и находить n.

3. Составлять уравнения реакций в общем виде и производить по ним вычисления.

Вывод формул веществ по продуктам сгорания.

1. Проанализировать состав продуктов сгорания и сделать вывод о качественном составе сгоревшего вещества: Н 2 О -> Н, СО 2 -> С, SO 2 -> S, P 2 O 5 -> P, Na 2 CO 3 -> Na, C.

Наличие кислорода в веществе требует проверки. Обозначить индексы в формуле через x, y, z. Например, СxНyОz (?).

2. Найти количество веществ продуктов сгорания по формулам:

n = m / M и n = V / Vm.

3. Найти количества элементов, содержавшихся в сгоревшем веществе. Например:

n (С) = n (СО 2), n (Н) = 2 ћ n (Н 2 О), n (Na) = 2 ћ n (Na 2 CO 3), n (C) = n (Na 2 CO 3) и т.д.

4. Если сгорело вещество неизвестного состава, то обязательно нужно проверить, содержался ли в нём кислород. Например, СxНyОz (?), m (O) = m в–ва – (m (C) + m(H)).

b) если известна относительная плотность: М 1 = D 2 М 2 , M = D H2 2, M = D O2 32,

M = D возд. 29, М = D N2 28 и т.д.

1 способ: найти простейшую формулу вещества (см. предыдущий алгоритм) и простейшую молярную массу. Затем сравнить истинную молярную массу с простейшей и увеличить индексы в формуле в нужное число раз.

2 способ: найти индексы по формуле n = (э) Mr / Ar(э).

Если неизвестна массовая доля одного из элементов, то её нужно найти. Для этого из 100 % или из единицы вычесть массовую долю другого элемента.

Постепенно в курсе изучения химии в химическом словаре происходит накопление алгоритмов решения задач разных типов. И ученик всегда знает, где ему найти нужную формулу или нужные сведения для решения задачи.

Многим учащимся нравится ведение такой тетради, они сами дополняют её различными справочными материалами.

Что касается факультативных занятий, то мы с учениками тоже заводим отдельную тетрадь для записи алгоритмов решения задач, выходящих за рамки школьной программы. В этой же тетради для каждого типа задач записываем 1-2 примера, остальные задачи они решают уже в другой тетради. И, если вдуматься, то среди тысяч разных задач, встречающихся на экзамене по химии во всех ВУЗах, можно выделить задачи 25 – 30 различных типов. Конечно, среди них – множество вариаций.

В разработке алгоритмов решения задач на факультативных занятиях мне во многом помогло пособие А.А. Кушнарёва. (Учимся решать задачи по химии, - М., Школа – пресс, 1996).

Умение решать задачи по химии это основной критерий творческого усвоения предмета. Именно через решение задач различных уровней сложности может быть эффективно усвоен курс химии.

Если ученик имеет чёткое представление о всех возможных типах задач, прорешал большое количество задач каждого типа, то ему по силам справиться со сдачей экзамена по химии в виде ЕГЭ и при поступлении в вузы.