Фракции комплемента. Функции системы комплемента

Система комплемента — это сложный комплекс сывороточных глобулинов. Это каскадная система протеолитических ферментов предназначена для гуморальной защиты организма от действия чужеродных агентов и участвует в реализации иммунного ответа организма. Белки системы комплемента обеспечивают быстрый и эффективный ответ на на первично слабый сигнал и доведение его до функциональных последствий. Компоненты системы комплемента принято обозначать латинскими буквами.

Существуют два механизма активации системы комплемента:

    классический;

    альтернативный.

Эти механизмы соединяются на уровне 5-го компонента и затем протекают одинаково.

Классический путь.

Пусковым механизмом является образование комплекса "антиген-антитело" (АГ-АТ) на поверхности клетки-мишени. При этом в молекуле иммуноглобулина (он обозначается: Ig или АТ) происходят конформационные изменения. В результате этих изменений Ig приобретает способность связывать С 1 q-компонент комплемента. К ним присоединяются C 1 r и C 1 s, и уже весь этот комплекс подвергается конформационной перестройке и превращается в С 1 -эстеразу, которая действует на С 4 , отщепляется С 4 а, а С 4 b входит в состав комплекса. Затем к комплексу присоединяется С 2 , формируя новый субстрат для действия С 1 s, отщепляется С 2 b, а С 2 a входит в состав комплекса.

Образовавшийся комплекс называется "С 3 -конвертаза", и под его действием отщепляется пептид С 3 a, а С 3 b входит в состав комплекса, который теперь называется "С 5 -конвертаза". С5-конвертаза действует на С5, отщепляет от него С 5 а, а С 5 b входит в состав комплекса.

После этого с С 5 b последовательно связываются С 6 , С 7 и С 8 . В результате образуется комплекс, способный присоединять 2 молекулы С 9 .

Если этот процесс протекает на поверхности клетки-мишени, то компоненты комплекса С 5 b-C 9 образуют мембраноатакующий комплекс, который формирует на поверхности клетки-мишени трансмембранные каналы, полностью проницаемые для электролитов и воды. Клетка-мишень погибает.

Побочные (неосновные) продукты процесса С 3 а и С 5 а обладают свойствами анафилотоксинов.

Регуляция классического пути.

Большинство компонентов активны только в составе комплекса. Их активные формы способны существовать очень короткое время. Если в течение этого времени они не встретятся со следующим компонентом, то активные формы теряют связь с комплексом и становятся неактивными. Если концентрация какого-то компонента ниже пороговой (критической), то работа системы комплемента не приведет к физиологическим последствиям.

В регуляции работы системы комплемента также принимают участие эндогенные ингибиторы протеиназ. Самым эффективным из них является С 1 -ингибитор.

Альтернативный путь.

Отличие альтернативного пути от классического заключается в том, что для его запуска не нужно образования иммунных комплексов.

Пусковым механизмом альтернативного пути является образование С 3 b из С 3 под действием какого-либо пускового фактора: например, полисахаридов бактериальной клеточной стенки.

С3b образует комплекс с фактором "В" (С 3 bB), который подвергается действию протеазы D (всегда активна в плазме крови!). В результате отщепляется "Ва" и образуется комплекс С3bBb, который обладает протеолитической активностью в отношении С 5 — отщепляет от него С 5 а.

После этого реакции протекают так же, как и в классическом пути.

Субстратом для С 3 b является и С 3 , в результате чего образуется еще большее количество С 3 b — наблюдается положительная обратная связь. Поэтому достаточно даже небольших количеств С 3 bBb, чтобы получать все больше и больше его активной формы (усиление первично слабого сигнала).

Альтернативный путь в норме работает всегда и очень активно, что обеспечивает быстрый неспецифический ответ на внедрение чужеродных клеток.

В регуляции работы системы комплемента принимают участие специфические ингибиторы, которые регулируют скорость работы ферментов ключевых реакций.

Комплемент – сложный белковый комплекс сыворотки крови. Система комплементасостоит из 30 белков (компонентов, или фракций , системы комплемента). Активируется система комплемента за счет каскадного процесса: продукт предыдущей реакции исполняет роль катализатора последующей реакции. Причем при активации фракции компонента происходит, у первых пяти компонентов, ее расщепление. Продукты этого расщепления и обозначаются как активные фракции системы комплемента .

1. Больший из фрагментов (обозначаемый буквой b), образовавшихся при расщеплении неактивной фракции, остается на поверхности клетки – активация комплемента всегда происходит на поверхности микробной клетки, но не собственных эукариотических клеток. Этот фрагмент приобретает свойства фермента и способность воздействовать на последующий компонент, активируя его.

2. Меньший фрагмент (обозначается буквой a) является растворимым и «уходит» в жидкую фазу, т.е. в сыворотку крови.

В. Фракции системы комплемента обозначаются по-разному.

1. Девять – открытых первыми – белков системы комплемента обозначаются буквой С (от английского слова complement) с соответствующей цифрой.

2. Остальные фракции системы комплемента обозначаются другими латинскими буквами или их сочетаниями.

Пути активации комплемента

Существуют три пути активации комплемента: классический, лектиновый и альтернативный.

А. Классический путь активации комплемента является основным . Участие в этом пути активации комплемента – главная функция антител.

1. Активацию комплемента по классическому пути запускает иммунный комплекс : комплекс антигена с иммуноглобулином (класса G или М). Место антитела может «занять» С-реактивный белок – такой комплекс также активирует комплемент по классическому пути.

2. Классический путь активации комплемента осуществляется следующим образом.

а. Сначала активируется фракция С1 : она собирается из трех субфракций (C1q, C1r, C1s) и превращается в фермент С1-эстеразу (С1qrs).

б. С1-эстераза расщепляет фракцию С4 .

в. Активная фракция С4b ковалентно связывается с поверхностью микробных клеток - здесь присоединяет к себе фракцию С2 .

г. Фракция С2 в комплексе с фракцией С4b расщепляется С1-эстеразой с образованием активной фракции С2b .

д. Активные фракции С4b и С2b в один комплекс – С4bС2b – обладающий ферментативной активностью. Это так называемая С3-конвертаза классического пути .

е. С3-конвертаза расщепляет фракцию С3 , нарабатываю большие количества активной фракции С3b.

ж. Активная фракция С3b присоединяется к комплексу С4bС2b и превращает его в С5-конвертазу (С4bС2bС3b ).

з. С5-конвертаза расщепляет фракцию С5 .

и. Появившаяся в результате этого активная фракция С5b присоединяет фракцию С6 .

к. Комплекс С5bС6 присоединяет фракцию С7 .

л. Комплекс С5bС6С7 встраивается в фосфолипидный бислой мембраны микробной клетки .

м. К этому комплексу присоединяется белок С8 и белок С9 . Данный полимер формирует в мембране микробной клетки пору диаметром около 10 нм, что приводит к лизису микроба (так как на его поверхности образуется множество таких пор – «деятельность» одной единицы С3-конвертазы приводит к появлению около 1000 пор). Комплекс С5bС6С7С8С9, образующийся в результате активации комплемента, называется мемранатакующим комплексом (МАК).

Б. Лектиновый путь активации комплемента запускается комплексом нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (с остатками маннозы).

В
.Альтернативный путь активации комплемента начинается с ковалентного связывания активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.

1. Дальнейшие события развиваются следующим образом.

а. С3b связывает фактор В , образуя комплекс С3bВ.

б. В связанном с С3b виде фактор В выступает в качестве субстрата для фактора D (сывороточной сериновой протеазы), которая расщепляет его с образованием активного комплекса С3bВb . Этот комплекс обладает ферментативной активностью, структурно и функционально гомологичен С3-конвертазе классического пути (С4bС2b) и называется С3-конвертазой альтернативного пути .

в. Сама по себе С3-конвертаза альтернативного пути нестабильна. Чтобы альтернативный путь активации комплемента успешно продолжался этот фермент стабилизируется фактором Р (пропердином).

2. Основное функциональное отличие альтернативного пути активации комплемента, по сравнению с классическим, заключается в быстроте ответа на патоген: так как не требуется время для накопления специфических антител и образования иммунных комплексов.

Г. Важно понимать, что и классический и альтернативный пути активации комплемента действуют параллельно , еще и амплифицируя (т.е. усиливая) друг друга. Другими словами комплемент активируется не «или по классическому или по альтернативному», а «и по классическому и по альтернативному» путям активации. Это, еще и с добавлением лектинового пути активации, – единый процесс, разные составляющие которого могут просто проявляться в разной степени.

Функции системы комплемента

Система комплемента играет очень важную роль в защите макроорганизма от патогенов.

А. Система комплемента участвует в инактивации микроорганизмов , в т.ч. опосредует действие на микробы антител.

Б. Активные фракции системы комплемента активируют фагоцитоз (опсонины - С3b и C 5 b ) .

В. Активные фракции системы комплемента принимают участие в формировании воспалительной реакции .

Активные фракции комплемента С3а и С5а называются анафилотоксинами , так как участвуют, помимо прочего, в аллергической реакции, называемой анафилаксия. Наиболее сильным анафилотоксином является С5а. Анафилотоксины действуют на разные клетки и ткани макроорганизма.

1. Действие их на тучные клетки вызывает дегрануляцию последних.

2. Анафилотоксины действуют также на гладкие мышцы , вызывая их сокращение.

3. Действуют они и на стенку сосуда : вызывают активацию эндотелия и повышение его проницаемости, что создает условия для экстравазации (выхода) из сосудистого русла жидкости и клеток крови в ходе развития воспалительной реакции.

Корме того, анафилотоксины являются иммуномодуляторами , т.е. они выступают в роли регуляторов иммунного ответа.

1. С3а выступает в роли иммуносупрессора (т.е. подавляет иммунный ответ).

2. С5а является иммуностимулятором (т.е. усиливает иммунный ответ).

ВОПРОС 10 «Иммунитет – понятие. Классификация форм иммунитета. Органы иммунной системы. Иммуногенез»

Под иммунитетом понимают защитные механизмы , которые реализуются с участием лимфоцитов и направлены на распознавание и элиминацию из внутренней среды организма группы молекул или даже частей молекул, рассматриваемые как «чужеродная метка». Для обозначения такой метки, которую иммунитет расценивает как «свое» или «чужое», используется термин антиген . Распознавая эти «метки» – антигены, иммунитет удаляет из внутренней среды организма:

    собственные, ставшие по разным причинам ненужными, клетки,

    микроорганизмы,

    пищевые, ингаляционные и аппликационные внешние вещества,

    трансплантаты.

Выделяют две основные формы иммунитета - видовой (врожденный) и приобретенный. Существует классификация приобретенного иммунитета в зависимости от его происхождения, согласно которой он подразделяется на естественный (не путать с естественным иммунитетом, обусловленным факторами неспецифической резистентности) и искусственный.

А. Естественный приобретенный иммунитет формируется естественным путем (откуда и название).

1. Активный естественный приобретенный иммунитет формируется в результате перенесенной инфекции и поэтому называется постинфекционным .

2. Пассивный естественный приобретенный иммунитет формируется за счет материнских антител, поступающих в организм плода через плаценту, а после рождения – в организм ребенка с материнским молоком. Вследствие этого этот вид иммунитета называется материнским .

Б. Искусственный приобретенный иммунитет формируется у пациента врачом.

1. Активный искусственный приобретенный иммунитет формируется в результате вакцинации и поэтому называется поствакцинальным .

2. Пассивный искусственный приобретенный иммунитет формируется в результате введения лечебно-профилактических сывороток и поэтому называется постсывороточным .

Приобретенный иммунитет может быть также стерильный (без наличия возбудителя) и нестерильный (существующий в присутствии возбудителя в организме), гуморальный и клеточный, системный и местный, по направленности - антибактериальный, антивирусный, антитоксический, противоопухолевый, антитрансплантационный.

Иммунная система - совокупность органов, тканей и клеток, обеспечивающих клеточно-генетическое постоянство организма. Принципы антигенной (генетической) чистоты основываются на распознавании “своего - чужого” и в значительной степени обусловлены системой генов и гликопротеидов (продуктов их экспрессии)- главным комплексом гистосовместимости (MHC ), у человека часто называемой системой HLA (human leukocyte antigens).

Органы иммунной системы.

Выделяют центральные (костный мозг - кроветворный орган, вилочковая железа или тимус, лимфоидная ткань кишечника) и периферические (селезенка, лимфатические узлы, скопления лимфоидной ткани в собственном слое слизистых оболочек кишечного типа) органы иммунитета.

    Иммунная система включает:

    ЛИМФОИДНУЮ СИСТЕМУ (лимфоидные органы и лимфоциты)

    МОНОЦИТАРНО-МАКРОФАГАЛЬНУЮ СИСТЕМУ (моноциты, тканевые макрофаги , дендритные клетки , микрофаги или полиморноядерные гранулоциты – это базофилы, эозинофилы, нейтрофилы).

    Иммунная система включает уровни:

    Органный уровень

    Клеточный уровень (макрофаги и микрофаги, Т и В лимфоциты, моноциты, тромбоциты и другие клетки)

    Гуморальный или молекулярный уровень (иммуноглобулины или антитела, цитокины, интерфероны т.д.).

ЦИТОКИНЫ – биологические активные молекулы, которые обеспечивают взаимодействие клеток иммунной системы друг с другом и с другими системами

    ОРГАНЫ иммунной системы

А. ЦЕНТРАЛЬНЫЕ ОРГАНЫ:

    Тимус

    Костный мозг

ФУНКЦИЯ: Образование, антиген-независимая дифференциация и пролиферация иммунокомпетентных клеток .

В. ПЕРИФЕРИЧЕСКИЕ ОРГАНЫ:

    Лимфатические узлы

    Селезенка

    Лимфоидная ткань слизистых оболочек (Пейеровые бляшки кишечника, аппендикс, миндалины, диффузные скопления лимфоцитов в лёгких и кишечнике и др.).

ФУНКЦИЯ: Антиген-зависимая дифференциация и пролиферация иммунокомпетентных клеток.

Клетки-предшественники иммунокомпетентных клеток продуцируются костным мозгом. Некоторые потомки стволовых клеток становятся лимфоцитами. Лимфоциты подразделяют на два класса - Т и В. Предшественники Т- лимфоцитов мигрируют в тимус, где созревают в клетки, способные участвовать в иммунном ответе. У человека В - лимфоциты созревают в костном мозге. У птиц незрелые В- клетки мигрируют в сумку (бурсу) Фабрициуса, где достигают зрелости. Зрелые В- и Т- лимфоциты заселяют периферические лимфоузлы. Таким образом, центральные органы иммунной системы осуществляют образование и созревание иммунокомпетентных клеток, периферические органы обеспечивают адекватный иммунный ответ на антигенную стимуляцию- “обработку” антигена, его распознавание и клональную пролиферацию лимфоцитов - антиген-зависимую дифференцировку.

КОМПЛЕМЕНТ (лат. complementum дополнение) - полимолекулярная система сывороточных белков, один из важнейших факторов естественного иммунитета. Функционирует в крови человека, холоднокровных и теплокровных животных. Содержится в лимфе и тканевых жидкостях. Включаясь в состав иммунных комплексов, К. осуществляет лизис сенсибилизированных антителами клеточных антигенов, обусловливает реакцию иммунного прилипания (см.), участвует в опсонизации бактерий, вирусов и корпускулярных антигенов, ускоряя их фагоцитоз, участвует в развитии воспаления.

К. был впервые описан под названием «алексин» в конце 19 в. как неспецифический термолабильный фактор, определяющий бактерицидные свойства свежей сыворотки крови (Г. Бухнер, 1889). Термин «комплемент» введен П. Эрлихом (1900), который считал, что бактерицидный фактор дополняет цитолитическое действие антител.

Известно не менее 18 белков, составляющих систему К. В их число входят 9 компонентов К., 8 из которых являются индивидуальными белками, а один представляет собой комплекс: 4 белка системы пропердина, 1 ингибитор фермента и 2 фермента инактиватора.

Согласно номенклатуре, принятой ВОЗ, система К. обозначена символом С, ее индивидуальные компоненты - цифрами (С1, С2...С9), фрагменты компонентов К.- строчными буквами (напр., СЗа). Наличие энзиматической активности во фрагменте отмечают чертой над его символом, а наличие центра связывания с мембраной клеток - звездочкой около его символа [Остин (К. F. Austen) с соавт., 1968].

Компоненты К. циркулируют в крови в виде предшественников, не соединяясь со свободными антителами или антигенами. Описаны два биол, механизма активации (связывания) системы К.- классический и так наз. альтернативный, или пропердиновый [Мюллер-Эберхард (H. J. Muller-Eberhard), 1975; Фогт (W. Vogt), 1974].

Классический механизм активации К. осуществляется с участием IgG-и IgM-антител, входящих в состав иммунных комплексов, или неспецифически агрегированных иммуноглобулинов этих классов. При соединении с антигенами или в результате неспецифической агрегации в молекулах указанных иммуноглобулинов формируются центры, связывающие С1 - первый компонент системы К. (А. Я. Кульберг, 1975). Фиксированный на иммуноглобулине С1 инициирует цепь реакций, в которые последовательно вступают остальные компоненты системы К.

С1 представляет собой комплекс трех субкомпонентов (C1q, C1rr и C1s), образующийся в присутствии ионов кальция; C1q - коллагеноподобный белок с мол. весом (массой) 400 000, состоящий из шести нековалентно связанных идентичных субъединиц. Каждая субъединица содержит распознающий центр для связывания с молекулой иммуноглобулина. Присоединение C1q к иммуноглобулину сопровождается внутримолекулярной перестройкой C1q и активацией связанного с ним профермента Clr, действующего на C1s-проэстеразу. Образующаяся C1s-эстераза (C1s) воздействует на находящиеся в жидкой фазе второй (С2) и четвертый (С4) компоненты К.

Молекула С4 (мол. вес 208 000) построена из трех пептидных цепей - альфа, бета и гамма, соединенных дисульфидными связями. C1s отщепляет от альфа-цепи пептид С4а, мол. вес к-рого 8000, а в оставшемся C4b-фрагменте молекулы возникает центр связывания с мембраной клетки, сенсибилизированной антителами. При воздействии C1s на С2, мол. вес к-рого 117 000, образуются два фрагмента - С2b (мол. вес 37 000) и С2а (мол. вес 80 000). В последнем формируется центр связывания с С4b. Образовавшийся на клеточной мембране комплекс С42 способен расщеплять СЗ; поэтому он назван СЗ-конвертазой.

Молекула СЗ (мол. вес 180 000) построена из двух пептидных цепей - альфа и бета. В результате отщепления C3-конвертазой от альфа-цепи пептида СЗа с мол. весом 9000 в СЗb-фрагменте молекулы образуется центр связывания с мембраной клетки и на мембране формируется С423-комплекс с пептидазной активностью в отношении С5 (С5-конвертаза).

После протеолитического расщепления С5 начинается сборка мембраноатакующей единицы из так наз. концевых компонентов системы К. Молекула С5 построена аналогично СЗ из двух пептидных цепей а и р, мол. вес которых соответственно 110 000 и 70 000. С5-конвертаза отщепляет от альфа-цепи пептид С5а с мол. весом 16 500. Образующийся С5b-фрагмент обладает способностью сорбировать последовательно по одной молекуле С6 и С7. Комплекс С567 сорбирует одну молекулу С8 и шесть молекул С9. В момент образования комплекс С5-9 атакует мембрану клетки, вызывая ее разрушение. Цитолитическая активность комплекса определяется С8 и значительно усиливается С9.

Наряду с цитолитическими компонентами при активации системы К. образуются физиологически активные пептиды СЗа и С5а, названные анафилатоксинами; они вызывают выделение гистамина тучными клетками. сокращение гладкой мускулатуры и повышают проницаемость сосудов, а также служат хемотаксическими факторами для полиморфонуклеарных клеток. Направленную миграцию полиморфонуклеарных клеток в месте активации К. вызывает также тримолекулярный комплекс С567 [Уорд (P. Ward), 1975]. Еще одним биологически активным пептидом, возникающим при активации системы К., является СЗb. При связывании с клеточной мембраной он приобретает второй стабильный связывающий центр в отношении рецепторов, расположенных на поверхности ряда клеток (макрофагов, тромбоцитов, эритроцитов). Этот процесс, названный иммунным прилипанием, усиливает фагоцитоз нагруженных К. клеток и корпускулярных частиц [Радди (S. Ruddy), 1974].

К. принимает участие также в механизме неспецифической устойчивости к инфекциям. В этом случае система К. активируется без участия антител полисахаридами или липополисахаридами, входящими в состав клеточных стенок бактерий, дрожжей, растений, или агрегированным IgA. Связывание К. происходит по альтернативному пути, начиная с CЗ, минуя стадии активации С1, C4 и C2. Показано, что в формировании CЗ- и C5-конвертаз альтернативного пути принимают участие белок сыворотки пропердин, CЗ-активатор конвертазы и ряд его предшественников. При активации К. по альтернативному пути, как и по классическому, образуется цитолитический комплекс C5-9, а также физиологически активные пептиды CЗа и С5а. Вероятно, этот механизм лежит в основе неспецифической элиминации из организма вирусов и измененных эритроцитов [Пиллемер (L. Pillemer), 1954, 1955].

Все указанные функции продуктов реакции компонентов К. направлены на разрушение и скорейшее удаление из организма инф. или чужеродных агентов. Они определяют значение системы К. как защитного фактора организма.

Помимо защитной функции, система К. может способствовать повреждению собственных тканей организма при ряде заболеваний с аутоиммунным компонентом (гломерулонефриты, системная красная волчанка, артериит, миокардит, эндокардит). В этом случае активация системы К. осуществляется как антителами, направленными против тканей, так и растворимыми или фиксированными в тканях иммунными комплексами. Образующиеся комплексы С423 и С5-9 компонентов К. фиксируются при этом как на сенсибилизированных, так и на не сенсибилизированных антителами клетках, вызывая разрушение их мембран. Важная роль в аутоиммунном процессе принадлежит также СЗа- и С5а-пептидам и С567-комплексу [Купер (N. R. Cooper), 1974; Ханзиккер (L. G. Hunsicker), 1974; Мак-Класки (R. Мс Cluskey), 1975].

О содержании К. судят наиболее часто по его гемолитической активности в отношении эритроцитов барана, сенсибилизированных кроличьим гемолизином. Титр К. выражают в 100 или 50% гемолитических единицах (СН100или СН50), т. е. минимальным количеством К., к-рое при выбранных стандартных условиях опыта лизирует соответственно 100 или 50% оптимально сенсибилизированных эритроцитов. Содержание К. может быть оценено также по его цитолитическому действию в системе лимфоциты - антилимфоцитарная сыворотка [Терасаки (Р. I. Terasaki), 1964]. К., не обладающий литической активностью, напр. К. лошади, быка, мыши, может быть определен в реакции агглютинации нагруженных К. сенсибилизированных эритроцитов с белком бычьей сыворотки - конглютинином (см. Конглютинация).

Индивидуальные компоненты К. титруют в гемолитическом тесте, используя для этого специальные реагенты, которые представляют собой препараты свежей сыворотки морской свинки, лишенные только титруемого компонента, а остальные компоненты содержащие в избытке. В качестве субстратов для титрования могут быть использованы также соответствующие промежуточные продукты гемолиза. Широкое применение нашли иммунохим, методы титрования с использованием анти-сывороток к чистым компонентам К.

Содержание К. в сыворотках животных различных видов, по данным гемолитического титрования, сильно варьирует. Наиболее высокий его титр, достигающий 200 СН50 на 1 мл, определен у морских свинок. В1 мл сыворотки человека содержится в среднем 70, а кролика 20 СН50 [Одран (R. Audran), 1959, 1960]. Однако титры К. в гемолитическом тесте не всегда соответствуют его истинному содержанию. Так, К. некоторых видов не лизирует сенсибилизированные бараньи эритроциты, хотя связывается с ними. Гемолитическая активность К. разных видов неодинакова при испытании в различных гемолитических системах [Бойд (W. С. Boyd), 1969].

Биол, свойства К. различных видов в значительной степени определяются содержанием в них индивидуальных компонентов. Видовые различия особенно выражены по содержанию С2 и C4. Эти компоненты полностью отсутствуют или содержатся в очень низких титрах в сыворотках лошади, быка, мыши, К. которых не обладает литической активностью. Для сывороток всех видов характерно высокое содержание С1. Содержание компонентов К. в сыворотке человека определено в весовых единицах.

Индивидуальные колебания уровня и состава К. у здоровых людей в возрасте 8-35 лет незначительны и не зависят от группы крови и резус-фактора. Обычно у женщин содержится на 10% меньше К., чем у мужчин, а у новорожденных и беременных женщин его содержание снижено в среднем на 30% [Гюмбретье (J. Gumbreitier) с соавт., 1960, 1961]. Отмечена тенденция к повышению уровня К. в возрасте между 35 и 60 годами.

Содержание К. в сыворотках больных зависит от характера заболевания. При большинстве острых инфекций гнойной этиологии, а также при стафилококковой бактериемии в начальный период наблюдается повышение титров К. Предполагают, что оно связано с активацией клеток ретикулоэндотелиальной системы, в частности макрофагов, синтезирующих С2, С4, С5. В период элиминации антигенов с участием антител титры К. снижаются и достигают нормы при выздоровлении. При ряде заболеваний, поражающих клетки паренхимы печени, напр, циррозе, гепатите, хрон, холецистите, нарушается синтез СЗ-, С6-, С9- и C1-ингибитора, что приводит к снижению общего уровня К. Как правило, уровень К. снижается при аллергических состояниях, аутоиммунных заболеваниях и болезнях иммунных комплексов за счет связывания К. циркулирующими в крови и связанными в тканях иммунными комплексами. Описаны случаи дефицита по отдельным компонентам К., сопровождающегося различными патол, состояниями.

Система К. активна в организме и в свежевыделенных сыворотках. К. инактивируется в течение 2-4 дней при хранении сывороток в холодильнике (t° 5°), а в результате прогревания сывороток при t° 56° - в течение 20 мин. Описана инактивация К. под действием различных физ. факторов - солнечного света, ультрафиолетового излучения, встряхивания, при действии хим. агентов - слабых р-ров кислот, щелочей, органических растворителей, протеолитических ферментов (Л. С. Резникова, 1967). Активность К. длительное время сохраняется в лиофильно высушенных сыворотках, при добавлении к свежим сывороткам сернокислого натрия (5%) и борной к-ты (4%), в сыворотках, хранящихся при температуре -40° и ниже.

Способность К. включаться в состав иммунных комплексов используют для обнаружения антител и антигенов (см. Антиген - антитело реакция , Реакция связывания комплемента). Однако надо иметь в виду, что многие антисыворотки и некоторые антигены связывают К. неспецифически. Явление это, названное антикомплементарным действием, выражается в снижении гемолитической активности К. Оно может быть обусловлено примесью в титруемых препаратах агрегированных глобулинов, липополисахаридов или протеолитических ферментов, а также бактериальными загрязнениями препаратов (Бойд, 1969). Повышенная способность антител некоторых индивидуумов внутри одного вида к неспецифической фиксации К. называется девиабилитетом, а антитела, обладающие этим свойством,- девиабильными.

Исследование процесса активации К., выяснение биол, свойств продуктов активации компонентов К., уровня К. в норме и при различных заболеваниях позволяет понять его защитную функцию и его роль в повреждении тканей. Эти знания необходимы, в частности, для разработки научно обоснованных методов предупреждения и лечения болезней, обусловленных активацией системы К.

Определение титров К. при различных заболеваниях в динамике имеет практическое значение, т. к. является показателем иммунол, состояния организма, эффективности леч. мероприятий и имеет прогностическое значение.

Библиография: Бойд У. Основы иммунологии, пер. с англ., с. 346, М., 1969; Воспаление, иммунитет и гиперчувствительность, под ред. Г. 3. Мовэта, пер. с англ., с. 422, М., 1975, библиогр.; Кульберг А. Я. Иммуноглобулины как биологические регуляторы, с. 106, М., 1975, библиогр.; КэботЕ. иМейер М, Экспериментальная иммунохимия, пер. с англ., с. 140, М., 1968, библиогр.; P e з н и к о-в а Л. С. Комплемент и его значение в иммунологических реакциях, М., 1967, библиогр.; A u s t e n К. F. a. o. Nomenclature of complement, Bull. Wld Hlth Org., v. 39, p. 935, 1968; Col ten H. R. Biosynthesis of complement, Advanc. Immunol., v. 22, p. 67, 1976, bibliogr.; Comprehensive immunology, ed. by N. K. Day a. R. A. Good, v. 2, N. Y., 1977; Muller-Eberhard H. J. Complement, Ann Rev. Biochem., v. 44, p. 697, 1975, bibliogr.; Yogt W. Activation, activities and pharmacologically active products of complement, Pharmacol. Rev., v. 26, p. 125, 1974, bibliogr.

И. А. Тарханова.

Комплемент – это ферментная система, включающая около 20 белков, играющих существенную роль в неспецифической защите, течении воспаления и разрушении (лизисе) мембран бактерий и различных чужеродных клеток. В состав системы комплемента входят 9 компонентов, обозначаемых латинской буквой С (С1, С2, С3 и т. д.), причем первый из них состоит из 3 субкомпонентов – С1q, C1r и C1s. К системе комплемента относятся также регуляторные белки (В, D, P) и особые компоненты-ингибиторы, регулирующие активацию этой системы и циркулирующие в крови. К последним принадлежат С1-эстеразный ингибитор (С1-In), С3b-инактиватор, или фактор I, и фактор Н, вызывающие диссоциацию С3b на неактивные субъединицы. Большая часть компонентов комплемента синтезируется гепатоцитами и мононуклеарными фагоцитами (макрофагами и моноцитами). Все компоненты комплемента циркулируют в крови в неактивном состоянии.

В процессе активации системы комплемента отдельные её компоненты разбиваются на большие (b) и малые (а) фрагменты, оказывающие непосредственное влияние на течение специфических и неспецифических защитных реакций. Исключение из этого правила составляют лишь фрагменты С2а и С2b, которые поменялись своими местами (С2а – большой, С2b – малый фрагмент).

По образному выражению американского иммунолога Хью Барбера, реакция антиген-антитело – это лишь объявление войны, активация системы комплемента – это мобилизация солдат на битву. Стрелять же начинают тогда, когда появляются активные фрагменты комплемента и мембранатакующий комплекс (МАК).

Существуют классический и альтернативный пути активации системы комплемента . Остановимся вкратце на характеристике отдельных компонентов системы комплемента по мере их активации по тому и другому пути.

Классический путь активации.

С1 -компонент представляет собой Са 2+ -зависимое соединение 3-х субкомпонентов. Молекула С1q имеет 6 валентностей для связывания с иммуноглобулинами, после чего происходит переход проферментов С1r и C1s в активное состояние, благодаря чему активируются компоненты С2 и С4.

С2 расщепляется активным субкомпонентом С1s на 2 фрагмента – малый (С2b) и большой (С2а).

С4 расщепляется на малый (С4а) и большой (С4b) фрагменты, после чего оба фрагмента прикрепляются к комплексу Аг+Ат, или к мембране клетки, если Аг с ней связан. В результате этих реакций образуется С3-конвертаза (С4bС2а).

С3 является компонентом, благодаря которому осуществляются основные функции системы комплемента. Он расщепляется С3-конвертазой на малый (С3а) и большой (С3b) фрагменты. Частично С3b оседает на мембране и через него происходит соединение с фагоцитами. Другая часть С3b остается связанной с С2а и С4b, благодаря чему образуется С5-конвертаза (С4bС2аС3b). Существуют инактиваторы, разрушающие С3b на малые фрагменты С3c (cвободный) и С3е (связанный с мембраной).

С5 расщепляется С5-конвертазой на малый (С5а) и большой (С5b) фрагменты. Фрагменты С3а и С5а воздействуют на тучные клетки и вызывают их дегрануляцию. Кроме того, они стимулируют функцию гранулоцитов и гладких мышц, способствуя развитию воспалительных процессов. Фрагмент С5b инициирует сборку мембранатакующего комплекса (МАК).

Альтернативный путь активации.

Фактор В – белок с ММ 100000 Да, образующий комплекс с С3b, независимо от того, продуктом какого пути он является.

Фактор D является ферментом с ММ около 25000 Да, действующим на комплекс С3bB, в результате чего образуется конвертаза (С3bBb).

Фактор Р – белок, стабилизирующий комплекс С3bB, который расщепляет С3 на фрагменты С3а и С3b. Образующийся С3b взаимодействует с факторами В и D, в результате чего по механизму обратной связи резко увеличивается концентрация С3b. Эта реакция ограничивается факторами I и Н, инактивирующими С3.

Компоненты С5, С6, С7, С8, С9 являются общими для классического и альтернативного пути активации системы комплемента. При этом компонент С9 по структуре и свойствам напоминает перфорин ЦТЛ и NК-лимфоцитов.

Главными инициаторами классического пути активации системы комплемента являются иммунные комплексы (Аг+Ат), стафилококки (белок А), комплексы С-реактивного белка с лигандами, некоторые вирусы и пораженные вирусом клетки, цитоскелетные элементы клеток и другие. Классический путь начинается с активации С1-компонента, включающего каскадно его субкомпоненты (С1q, C1r, C1s), С4, С2, С3 и последующие вплоть до С9.

МАК представляет собой полый белковый цилиндр (высота 160 Å, внутренний же диаметр колеблется в зависимости от количества встроенных молекул С9), погружающийся за счет гидрофобных компонентов С9 в фосфолипидную часть мембраны чужеродных клеток. Следовательно, МАК выполняет функции перфорина. Благодаря образующимся отверстиям в мембране, содержимое клетки вытекает наружу, и она гибнет. Гибель же собственных клеток предотвращается из-за наличия в мембране видоспецифических ингибиторов комплементарной активации (С3b, C4b) и С8-связывающего белка.

Рецепторы к комплементу обнаружены на эритроцитах, фагоцитах, эндотелиоцитах, тучных клетках и В-лимфоцитах. Все они связывают продукты расщепления С3-компонента комплемента.

Система комплемента выполняет следующие функции:

  1. Опсоническую , т.е. стимулирует фагоцитоз. Эти эффекты осуществляются под воздействием С3b, C1q, Bb, C4b, C5b, C5b6, C5b67;

  2. Хемотаксическую – за счет С5а, С3е, С3а и др.;

  3. Активацию тучных клеток , в результате чего выделяется гистамин, расширяющий капилляры и вызывающий локальное покраснение при воспалении и аллергических реакциях; эта функция связана с фрагментами С5а, С3а, Ва, С4а;

  4. Лизис бактерий, чужеродных, а также старых клеток , с поверхности которых “слущиваются” защитные белки;

  5. Растворение иммунных комплексов, осуществляемое фрагментами С3b и C4b.

Участие системы комплемента в очищении сосудистого русла от попавших в кровь единичных бактериальных клеток связано с активацией по альтернативному пути. В результате иммунного ответа в сыворотке крови накапливаются к этим бактериям Ат. При взаимодействии этих Ат с Аг на поверхности бактерий создаются условия активации системы комплемента по классическому пути, в результате чего осуществляется бактериолизис (рис. 9).

У людей с дефицитом С1-С4 компонентов комплемента наблюдаются частые рецидивы воспалительных заболеваний и гноеродной инфекции. Дефицит фактора Р, стабилизирующего многомолекулярный ферментативный комплекс С5-конвертазы альтернативного пути, сопровождается повышением чувствительности к гонококкам и менингококкам.

Падение активности системы комплемента (гипокомплементемия ) может быть вызвано снижением продукции компонентов комплемента, либо повышенным их потреблением. Последнее может быть обусловлено появлением иммунных комплексов, которые связывают комплемент и вместе с ним захватываются фагоцитирующими клетками. Таким образом очищается сосудистое русло от избытка ИК. Гипокомплементемия – довольно частое явление, встречающееся при аутоиммунных процессах и других заболеваниях, что пагубно отражается на состоянии больного.

На других видах неспецифической резистентности мы остановимся при знакомстве с иммунитетом.

СЛАЙД 1

Лекция №4. Гуморальные факторы врожденного иммунитета

1. Система комплемента

2. Белки острой фазы воспаления

3. Биогенные амимны

4. Липидные медиаторы

5. Цитокины

6. Интерфероны

СЛАЙД 2

Гуморальная составляющая врожденного иммунитета представлена несколькими взаимосвязанными системами - системой комплемента, цитокиновой сетью, бактерицидными пептидами, а также гуморальными системами, связанными с воспалением.

Действие большинства этих систем подчиняется одному из двух принципов - каскада и сети. По каскадному принципу функционирует система комплемента, при активации которой происходит последовательное вовлечение факторов. При этом эффекты каскадных реакций проявляются не только в конце активационного пути, но и на промежуточных стадиях.

Принцип сети характерен для системы цитокинов и предполагает возможность одновременного функционирования различных компонентов системы. Основа функционирования такой системы - тесная взаимосвязь, взаимное влияние и значительная степень взаимозаменяемости компонентов сети.

СЛАЙД 3

Комплемент – сложный белковый комплекс сыворотки крови.

Система комплемента состоит из 30 белков (компонентов, или фракций , системы комплемента).

Активируется система комплемента за счет каскадного процесса: продукт предыдущей реакции исполняет роль катализатора последующей реакции. Причем при активации фракции компонента происходит, у первых пяти компонентов, ее расщепление. Продукты этого расщепления и обозначаются как активные фракции системы комплемента .

1. Больший из фрагментов (обозначаемый буквой b), образовавшихся при расщеплении неактивной фракции, остается на поверхности клетки – активация комплемента всегда происходит на поверхности микробной клетки, но не собственных эукариотических клеток. Этот фрагмент приобретает свойства фермента и способность воздействовать на последующий компонент, активируя его

2. Меньший фрагмент (обозначается буквой a) является растворимым и «уходит» в жидкую фазу, т.е. в сыворотку крови.

Фракции системы комплемента обозначаются по-разному.

1. Девять – открытых первыми – белков системы комплемента обозначаются буквой С (от английского слова complement) с соответствующей цифрой.

2. Остальные фракции системы комплемента обозначаются другими латинскими буквами или их сочетаниями.

СЛАЙД 4

Пути активации комплемента

Существуют три пути активации комплемента: классический, лектиновый и альтернативный.

СЛАЙД 5

1. Классический путь активации комплемента является основным. Участие в этом пути активации комплемента – главная функция антител.

Активацию комплемента по классическому пути запускает иммунный комплекс : комплекс антигена с иммуноглобулином (класса G или М). Место антитела может «занять» С-реактивный белок – такой комплекс также активирует комплемент по классическому пути.

Классический путь активации комплемента осуществляется следующим образом.

а. Сначала активируется фракция С1 : она собирается из трех субфракций (C1q, C1r, C1s) и превращается в фермент С1-эстеразу (С1qrs).

б. С1-эстераза расщепляет фракцию С4 .

в. Активная фракция С4b ковалентно связывается с поверхностью микробных клеток - здесь присоединяет к себе фракцию С2 .

г. Фракция С2 в комплексе с фракцией С4b расщепляется С1-эстеразой с образованием активной фракции С2b .

д. Активные фракции С4b и С2b в один комплекс – С4bС2b – обладающий ферментативной активностью. Это так называемая С3-конвертаза классического пути .

е. С3-конвертаза расщепляет фракцию С3 , нарабатываю большие количества активной фракции С3b.

ж. Активная фракция С3b присоединяется к комплексу С4bС2b и превращает его в С5-конвертазу (С4bС2bС3b ).

з. С5-конвертаза расщепляет фракцию С5 .

и. Появившаяся в результате этого активная фракция С5b присоединяет фракцию С6 .

к. Комплекс С5bС6 присоединяет фракцию С7 .

л. Комплекс С5bС6С7 встраивается в фосфолипидный бислой мембраны микробной клетки .

м. К этому комплексу присоединяется белок С8 и белок С9 . Данный полимер формирует в мембране микробной клетки пору диаметром около 10 нм, что приводит к лизису микроба (так как на его поверхности образуется множество таких пор – «деятельность» одной единицы С3-конвертазы приводит к появлению около 1000 пор). Комплекс С5bС6С7С8С9, образующийся в результате активации комплемента, называется мемранатакующим комплексом (МАК).

СЛАЙД 6

2. Лектиновый путь активации комплемента запускается комплексом нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (с остатками маннозы).

СЛАЙД 7

3. Альтернативный путь активации комплемента начинается с ковалентного связывания активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.

1. Дальнейшие события развиваются следующим образом.

а. С3b связывает фактор В , образуя комплекс С3bВ.

б. В связанном с С3b виде фактор В выступает в качестве субстрата для фактора D (сывороточной сериновой протеазы), которая расщепляет его с образованием активного комплекса С3bВb . Этот комплекс обладает ферментативной активностью, структурно и функционально гомологичен С3-конвертазе классического пути (С4bС2b) и называется С3-конвертазой альтернативного пути .

в. Сама по себе С3-конвертаза альтернативного пути нестабильна. Чтобы альтернативный путь активации комплемента успешно продолжался этот фермент стабилизируется фактором Р (пропердином).

2. Основное функциональное отличие альтернативного пути активации комплемента, по сравнению с классическим, заключается в быстроте ответа на патоген: так как не требуется время для накопления специфических антител и образования иммунных комплексов.

Важно понимать, что и классический и альтернативный пути активации комплемента действуют параллельно , еще и амплифицируя (т.е. усиливая) друг друга. Другими словами комплемент активируется не «или по классическому или по альтернативному», а «и по классическому и по альтернативному» путям активации. Это, еще и с добавлением лектинового пути активации, – единый процесс, разные составляющие которого могут просто проявляться в разной степени.

СЛАЙД 8

Функции системы комплемента

Система комплемента играет очень важную роль в защите макроорганизма от патогенов.

1. Система комплемента участвует в инактивации микроорганизмов , в т.ч. опосредует действие на микробы антител.

2. Активные фракции системы комплемента активируют фагоцитоз (опсонины - С3b и C5b) .

3. Активные фракции системы комплемента принимают участие в формировании воспалительной реакции .

СЛАЙД 9

Активные фракции комплемента С3а и С5а называются анафилотоксинами , так как участвуют, помимо прочего, в аллергической реакции, называемой анафилаксия. Наиболее сильным анафилотоксином является С5а. Анафилотоксины действуют на разные клетки и ткани макроорганизма.

1. Действие их на тучные клетки вызывает дегрануляцию последних.

2. Анафилотоксины действуют также на гладкие мышцы , вызывая их сокращение.

3. Действуют они и на стенку сосуда : вызывают активацию эндотелия и повышение его проницаемости, что создает условия для экстравазации (выхода) из сосудистого русла жидкости и клеток крови в ходе развития воспалительной реакции.

Корме того, анафилотоксины являются иммуномодуляторами , т.е. они выступают в роли регуляторов иммунного ответа.

1. С3а выступает в роли иммуносупрессора (т.е. подавляет иммунный ответ).

2. С5а является иммуностимулятором (т.е. усиливает иммунный ответ).

СЛАЙД 10

Белки острой фазы

Некоторые гуморальные реакции врожденного иммунитета по своему назначению аналогичны реакциям адаптивного иммунитета и могут рассматриваться как их эволюционные предшественники. Такие реакции врожденного иммунитета имеют преимущество перед адаптивным иммунитетом в быстроте развития, однако недостаток их заключается в отсутствии специфичности в отношении антигенов. Пару сходных по результатам реакций врожденного и адаптивного иммунитета мы рассмотрели выше в разделе, посвященном комплементу (альтернативная и классическая активация комплемента). Другой пример будет рассмотрен в данном разделе: белки острой фазы в ускоренном и упрощенном варианте воспроизводят некоторые эффекты антител.

Белки (реактанты) острой фазы представляют группу протеинов, секретируемых гепатоцитами. При воспалении продукция белков острой фазы изменяется. При усилении синтеза белки называют положительными, а при понижении синтеза - отрицательными реактантнами острой фазы воспаления.

Динамика и выраженность изменений сывороточной концентрации различных белков острой фазы при развитии воспаления неодинакова: концентарция С-реактивного белка и сывороточного амилоида Р возрастает очень сильно (в десятки тысяч раз) - быстро и кратковременно (практически нормализуется к концу 1-й недели); уровни гаптоглобина и фибриногена возрастают слабее (в сотни раз) соответственно на 2-й и 3-й неделях воспалительной реакции. В данной презентации будут рассмотрены только положительные реактанты, участвующие в иммунных процессах.

СЛАЙД 11

Согласно выполняемым функциям выделяют несколько групп белков острой фазы.

К транспортным белкам относят преальбумин, альбумин, орозомукоид, липокалины, гаптоглобин, трансферрин, маннозасвязывающий и ретинолсвязывающий белки и т.д. Они играют роль переносчиков метаболитов, ионов металлов, физиологически активных факторов. Роль факторов этой группы существенно возрастает и качественно изменяется при воспалении.

Другую группу образуют протеазы (трипсиноген, эластаза, катепсины, гранзимы, триптазы, химазы, металлопротеиназы), активация которых необходима для формирования многих медиаторов воспаления, а также для осуществления эффекторных функций, в частности киллерной. Активация протеаз (трипсина, химотрипсина, эластазы, металлопротеиназ) уравновешивается накоплением их ингибиторов. α2-Макроглобулин участвует в подавлении активности протеаз разных групп.

Помимо перечисленных, к белкам острой фазы относят факторы коагуляции и фибринолиза, а также белки межклеточного матрикса (например, коллагены, эластины, фибронектин) и даже белки системы комплемента.

СЛАЙД 12

Пентраксины. Наиболее полно проявляют свойства реактантов острой фазы белки семейства пентраксинов: в первые 2-3 сут развития воспаления их концентрация в крови повышается на 4 порядка.

С-реактивный белок и сывороточный амилоид Р образуются и секретируются гепатоцитами. Основной индуктор их синтеза - IL-6. Белок PTX3 вырабатывают миелоидные (макрофаги, дендритные клетки), эпителиальные клетки и фибробласты в ответ на стимуляцию через TLR, а также под действием провоспалительных цитокинов (например, IL-1β, TNFα).

Концентрация пентраксинов в сыворотке резко возрастает при воспалении: С-реактивного белка и сывороточного амилоида Р - с 1 мкг/мл до 1–2 мг/мл (т.е. в 1000 раз), РТХ3 - с 25 до 200–800 нг/мл. Пик концентрации достигается через 6–8 ч после индукции воспаления. Для пентраксинов характерна способность связываться с самыми разнообразными молекулами.

С-реактивный белок был впервые идентифицирован благодаря его способности связывать полисахарид С (Streptococcus рneumoniae ), что и определило его название. Пентраксины взаимодействуют и с множеством других молекул: C1q, бактериальными полисахаридами, фосфорилхолином, гистонами, ДНК, полиэлектролитами, цитокинами, белками межклеточного матрикса, сывороточными липопротеинами, компонентами комплемента, друг с другом, а также с ионами Са 2+ и других металлов.

Для всех рассматриваемых пентраксинов существуют высокоаффинные рецепторы на миелоидных, лимфоидных, эпителиальных и других клетках. Кроме того, эта группа белков острой фазы обладает достаточно высоким сродством к таким рецепторам, как FcγRI и FcγRII. Многочисленность молекул, с которыми взаимодействуют пентраксины, определяет широкое разнообразие их функций.

Распознавание и связывание пентраксинами PAMP дает основание рассматривать их как вариант растворимых патогенраспознающих рецепторов.

К наиболее важным функциям пентраксинов относят их участие в реакциях врожденного иммунитета в качестве факторов, запускающих активацию комплемента через C1q и участвующих в опсонизации микроорганизмов.

Комплементактивирующая и опсонизирующая способность пентраксинов делает их своеобразными «протоантителами», частично выполняющими функции антител на начальном этапе иммунного ответа, когда истинные адаптивные антитела еще не успели выработаться.

Роль пентраксинов во врожденном иммунитете заключается также в активации нейтрофилов и моноцитов/макрофагов, регуляции синтеза цитокинов и проявлении хемотаксической активности по отношению к нейтрофилам. Помимо участия в реакциях врожденного иммунитета пентраксины регулируют функции межклеточного матрикса при воспалении, контроле апоптоза и элиминации апоптотических клеток.

СЛАЙД 13

Биогенные амины

К этой группе медиаторов относят гистамин и серотонин, содержащиеся в гранулах тучных клеток. Освобождаясь при дегрануляции, эти амины вызывают разнообразные эффекты, играющие ключевую роль в развитии ранних проявлений гиперчувствительности немедленного типа.

Гистамин (5-β-имидазолилэтиламин) - главный медиатор аллергии. Он образуется из гистидина под влиянием фермента гистидиндекарбоксилазы.

Поскольку гистамин содержится в гранулах тучных клеток в готовом виде, а процесс дегрануляции происходит быстро, гистамин очень рано появляется в очаге аллергического поражения, причем сразу в большой концентрации, что определяет проявления немедленной гиперчувствительности. Гистамин быстро метаболизируется (95% за 1 мин) с участием 2 ферментов - гистамин-N-метилтрансферазы и диаминооксидазы (гистаминазы); при этом образуется (в соотношении примерно 2:1) соответственно N-метилгистамин и имидазолацетат.

Известно 4 разновидности рецепторов для гистамина Н 1 -Н 4 . При аллергических процессах гистамин действует преимущественно на гладкие мыщцы и эндотелий сосудов, связываясь с их Н 1 -рецепторами. Эти рецепторы поставляют активационный сигнал, опосредованный превращениями фосфоинозитидов с образованием диацилглицерола и мобилизацией Са 2+ .

Указанные эффекты частично обусловлены образованием в клетках (мишенях гистамина) оксида азота и простациклина. Действуя на нервные окончания, гистамин вызывает ощущение зуда, характерного для аллергических проявлений в коже.

У человека гистамин играет важную роль в развитии кожной гиперемии и аллергического ринита. Менее очевидно его участие в развитии общих аллергических реакций и бронхиальной астмы. В то же время через Н 2 -рецепторы гистамин и родственные вещества оказывают регуляторное действие, иногда уменьшающее проявления воспаления, ослабляя хемотаксис нейтрофилов и выброс ими лизосомных ферментов, а также высвобождение самого гистамина.

Через Н 2 -рецепторы гистамин действует на сердце, секреторные клетки желудка, подавляет пролиферацию и цитотоксическую активность лимфоцитов, а также секрецию ими цитокинов. Большинство этих эффектов опосредовано активацией аденилатциклазы и повышением внутриклеточного уровня цАМФ.

Данные об относительной роли различных рецепторов гистамина в реализации его действия очень важны, поскольку многие антиаллергические препараты представляют собой блокаторы Н 1 (но не Н 2 и других) рецепторов гистамина.

СЛАЙД 14

Липидные медиаторы.

Важную роль в регуляции иммунных процессов, а также в развитии аллергических реакций играют гуморальные факторы липидной природы. Наиболее многочислены и важны из них эйкозаноиды.

Эйкозаноиды - продукты метаболизма арахидоновой кислоты - жирной полиненасыщенной кислоты, молекула которой содержит 20 атомов углерода и 4 ненасыщенные связи. Арахидоновая кислота образуется из мембранных фосфолипидов как прямой продукт действия фосфолипазы А (PLA) или косвенный продукт превращений, опосредованных PLC.

Образование арахидоновой кислоты или эйкозаноидов происходит при активации различных типов клеток, особенно участвующих в развитии воспаления, в частности аллергического: эндотелиальных и тучных клеток, базофилов, моноцитов и макрофагов.

Метаболизм арахидоновой кислоты может проходить по 2 путям - катализироваться циклооксигеназой или 5’-липоксигеназой. Циклооксигеназный путь приводит к образованию простагландинов и тромбоксанов из нестабильных промежуточных продуктов - эндоперекисных простагландинов G2 и H2, а липоксигеназный - к образованию лейкотриенов и 5-гидроксиэйкозатетраеноата через промежуточные продукты (5-гидроперокси-6,8,11,14-эйкозатетраеновую кислоту и лейкотриен А4), а также липоксинов - продуктов двойной липоксигенации (под действием двух липоксигеназ - см. далее).

Простагландины и лейкотриены во многих отношениях проявляют альтернативные физиологические эффекты, несмотря на то, что внутри этих групп существуют значительные различия в активности.

Общее свойство этих групп факторов - преобладающее действие на стенку сосудов и гладкие мышцы, а также хемотаксический эффект. Эти эффекты реализуются при взаимодействии эйкозаноидов со специфическими рецепторами на поверхности клеток. Некоторые представители семейства эйкозаноидов усиливают действие других вазоактивных и хемотаксических факторов, например, анафилатоксинов (С3а, С5а).

СЛАЙД 15

Лейкотриены (LT) - С 20 -жирные кислоты, молекула которых в положении 5 содержит ОН-группу, а в положении 6 - боковые серосодержащие цепи, например глутатион.

Выделяют 2 группы лейкотриенов:

Одна из них включает лейкотриены С4, D4 и Е4, называемые цистеиниллей-котриенами (Cys-LT),

Во вторую входит один фактор - лейкотриен B4.

Лейкотриены образуются и секретируются в течение 5–10 мин после активации тучных клеток или базофилов.

Лейкотриен C4 присутствует в жидкой фазе в течение 3–5 мин, при этом он превращается в лейкотриен D4. Лейкотриен D4 существует в последующие 15 мин, медленно превращаясь в лейкотриен E4.

Лейкотриены оказывают свое действие через рецепторы, относящиеся к группе пуриновых рецепторов семейства родопсиноподобных рецепторов, 7-кратно пронизывающих мембрану и связанных с протеином G.

Рецепторы лейкотриенов экспрессируются на клетках селезен-ки, лейкоцитах крови, кроме того, CysLT-R1 представлен на макрофагах, клетках кишечника, воздухоносного эпителия, а CysLT-R2 - на клетках надпочечников и головного мозга.

Цистеиниловые лейкотриены (особенно лейкотриен D4) вызывают спазм гладкой мускулатуры и регулируют локальный кровоток, снижая артериальное давление. Цистеиниловые лейкотриены - медиаторы аллергических реакций, в частности, медленной фазы бронхоспазма при бронхиальной астме.

Кроме того, они подавляют пролиферацию лимфоцитов и способствуют их дифференцировке.

Ранее комплекс этих факторов (лейкотриены C4, D4 и E4) называли медленнореагирующей субстанцией А. Лейкотриен B4 (дигидроксиэйкозатетраеновая кислота) проявляет хемотаксическое и активирующее действие преимущественно в отношении моноцитов, макрофагов, нейтрофилов, эозинофилов и даже Т-клеток.

Еще один продукт липоксигеназного пути - 5-гидроксиэйкозатетраеноат - менее активен, чем лейкотриены, но может служить хемоаттрактантом и активатором нейтрофилов и тучных клеток.

СЛАЙД 16

Простагландины (PG ) - С 20 -жирные кислоты, молекула которых содержит циклопентановое кольцо.

Варианты простагландинов, отличающиеся по типу и положению замещающих групп (окси-, гидрокси-), обозначаются различными буквами; цифры в названии означают число ненасыщенных связей в молекуле.

Простагландины накапливаются в очаге воспаления позже кининов и гистамина, несколько позже лейкотриенов, но одновременно с монокинами (через 6–24 ч после запуска воспаления).

Помимо вазоактивного и хемотаксического эффекта, достигаемого в кооперации с другими факторами, простагландины (особенно простагландин E2) оказывают регулирующее действие при воспалительных и иммунных процессах.

Экзогенный простагландин E2 вызывает некоторые проявления воспалительной реакции, но подавляет иммунный ответ и аллергические реакции.

Так, простагландин E2 снижает цитотоксическую активность макрофагов, нейтрофилов и лимфоцитов, пролиферацию лимфоцитов, выработку этими клетками цитокинов.

Он способствует дифференцировке незрелых лимфоцитов и клеток других кроветворных рядов.

Некоторые эффекты простагландина Е2 связаны с повышением уровня внутриклеточного цАМФ.

Простагландины E2 и D2 подавляют агрегацию тромбоцитов; простагландины F2 и D2 вызывают сокращение гладкой мускулатуры бронхов, тогда как простагландин E2 расслабляет ее.

СЛАЙД 17

Тромбоксан А2 (ТХА2 ) - С 20 -жирная кислота; в его молекуле есть 6-членное кислородсодержащее кольцо.

Это очень нестабильная молекула (время полужизни - 30 с), превращающаяся в неактивный тромбоксан В2.

Тромбоксан А2 вызывает сужение сосудов и бронхов, агрегацию тромбоцитов с высвобождением из них ферментов и других активных факторов, способствующих митогенезу лимфоцитов.

Другой продукт циклоксигеназного пути - простагландин I2 (простациклин) - тоже нестабилен. Он проявляет свое действие через цАМФ, сильно расширяет сосуды, увеличивает их проницаемость, ингибирует агрегацию тромбоцитов.

Наряду с пептидным фактором брадикинином простациклин вызывает ощущение боли при воспалении.

СЛАЙД 18

Цитокины


Похожая информация.