Где вырабатывается электричество. Как наказать соседей за хищение электричества? Что такое электричество

Современную жизнь невозможно представить без электричества, этот тип энергии используется человечеством наиболее полно. Однако далеко не все взрослые люди способны вспомнить из школьного курса физики определение электрического тока (это направленный поток протекания элементарных частиц, имеющих заряд), совсем мало кто понимает, что же это такое.

Что такое электричество

Наличие электричества как явления объясняется одним из главных свойств физической материи – способностью обладать электрическим зарядом. Они бывают положительными и отрицательными, при этом объекты, обладающие разнополюсными знаками, притягиваются друг к другу, а «равнозначные», наоборот, отталкиваются. Движущиеся частицы также являются источником возникновения магнитного поля, что лишний раз доказывает связь между электричеством и магнетизмом.

На атомарном уровне существование электричества можно объяснить следующим образом. Молекулы, из которых состоят все тела, содержат атомы, составленные из ядер и электронов, циркулирующих вокруг них. Эти электроны могут при определенных условиях отрываться от «материнских» ядер и переходить на другие орбиты. Вследствие этого некоторые атомы становятся «недоукомплектованными» электронами, а у некоторых их в избытке.

Поскольку природа электронов такова, что они текут туда, где их не хватает, постоянное перемещение электронов от одного вещества к другому и составляет электрический ток (от слова «течь»). Известно, что электричество имеет направление от полюса «минус» к полюсу «плюс». Поэтому вещество с нехваткой электронов считается заряженным положительно, а с переизбытком – отрицательно, и именуется оно «ионами». Если речь идет о контактах электрических проводов, то положительно заряженный называется «нулевой», а отрицательно – «фаза».

В разных веществах расстояние между атомами различно. Если они очень маленькие, электронные оболочки буквально касаются друг друга, поэтому электроны легко и быстро переходят от одного ядра к другому и обратно, чем создается движение электрического тока. Такие вещества, например, как металлы, называются проводниками.

В других веществах межатомные расстояния относительно велики, поэтому они являются диэлектриками, т.е. не проводят электричество. Прежде всего, это резина.

Дополнительная информация . При испускании ядрами вещества электронов и их движении происходит образование энергии, которая прогревает проводник. Такое свойство электричества называется «мощность», измеряется она в ваттах. Также эту энергию можно преобразовывать в световую или другой вид.

Для непрерывного течения электричества по сети потенциалы на конечных точках проводников (от линий ЛЭП до домовой электропроводки) должны быть разными.

История открытия электричества

Что такое электричество, откуда оно берется, и прочие его характеристики фундаментально изучает наука термодинамика с сопредельными науками: квантовой термодинамикой и электроникой.

Сказать, что какой-либо ученый изобрел электрический ток, было бы неверным, ибо с древних времен много исследователей и ученых занимались его изучением. Сам термин «электричество» ввел в обиход греческий ученый-математик Фалес, это слово означает «янтарь», поскольку именно в опытах с янтарной палочкой и шерстью Фалесу получилось выработать статическое электричество и описать это явление.

Римлянин Плиний также занимался исследованием электрических свойств смолы, а Аристотель изучал электрических угрей.

В более позднее время первым, кто досконально стал изучать свойства электрического тока, стал В. Жильбер, врач английской королевы. Немецкий бургомистр из Магдебурга О.ф Герике считается создателем первой лампочки из натертого серного шарика. А великий Ньютон вывел доказательство существования статического электричества.

В самом начале 18 века английский физик С. Грей поделил вещества на проводники и непроводники, а голландским учёным Питером ван Мушенбруком была изобретена лейденская банка, способная накапливать электрический заряд, т. е. это был первый конденсатор. Американский ученый и политический деятель Б. Франклин впервые в научных терминах вывел теорию электричества.

Все 18 столетие было богатым на открытия в сфере электричества: установлена электрическая природа молнии, сконструировано искусственное магнитное поле, выявлено существование двух видов зарядов («плюс» и «минус») и, как следствие, двух полюсов (естествоиспытатель из США Р. Симмер), Кулоном открыт закон взаимодействия между точечными электрозарядами.

В следующем веке изобретены батарейки (итальянский ученый Вольта), дуговая лампа (англичанин Дейви), а также прототип первой динамо-машины. 1820 год считается годом зарождения электродинамической науки, сделал это француз Ампер, за что его имя присвоили единице для показаний силы электротока, а шотландец Максвелл вывел световую теорию электромагнетизма. Россиянин Лодыгин изобрел лампу накаливания, имеющую стержень из угля, – прародитель современных лампочек. Чуть более ста лет назад была изобретена неоновая лампа (французский ученый Жорж Клод).

И по сей день исследования и открытия в области электричества продолжаются, например, теория квантовой электродинамики и взаимодействия слабых электрических волн. Среди всех ученых, занимавшихся исследованием электричества, особое место принадлежит Николе Тесла –многие его изобретения и теории о том, как работает электричество, до сих пор не оценены по достоинству.

Природное электричество

Долгое время считалось, что электричества «самого по себе» не существует в природе. Это заблуждение развеял Б. Франклин, который доказал электрическую природу молний. Именно они, по одной из версий ученых, способствовали синтезу первых аминокислот на Земле.

Внутри живых организмов также вырабатывается электричество, которое порождает нервные импульсы, обеспечивающие двигательные, дыхательные и другие жизненно необходимые функции.

Интересно. Многие ученые считают человеческое тело автономной электрической системой, которая наделена функциями саморегуляции.

У представителей животного мира тоже имеется свое электричество. Например, некоторые породы рыб (угри, миноги, скаты, удильщики и другие) используют его для защиты, охоты, добывания пищи и ориентации в подводном пространстве. Особый орган в теле этих рыб вырабатывает электроэнергию и накапливает ее, как в конденсаторе, его частота – сотни герц, а напряжение – 4-5 вольт.

Получение и использование электричества

Электричество в наше время – это основа комфортной жизни, поэтому человечество нуждается в его постоянной выработке. Для этих целей возводятся различного рода электростанции (гидроэлектростанции, тепловые, атомные, ветровые, приливные и солнечные), способные с помощью генераторов вырабатывать мегаватты электричества. В основе этого процесса лежит преобразование механической (энергия падающей воды на ГЭС), тепловой (сжигание углеродного топлива – каменного и бурого угля, торфа на ТЭЦ) или межатомной энергии (атомного распада радиоактивных урана и плутония на АЭС) в электрическую.

Много научных исследований посвящено электрическим силам Земли, все они стремятся использовать атмосферное электричество для блага человечества – выработки электроэнергии.

Учеными предложено множество любопытных устройств генераторов тока, которые дают возможность добывать электричество из магнита. Они используют способности постоянных магнитов совершать полезную работу в виде крутящего момента. Он возникает в результате отталкивания между одноименно заряженными магнитными полями на статорном и роторном устройствах.

Электричество популярнее всех остальных источников энергии, поскольку обладает множеством преимуществ:

  • легкое перемещение до потребителя;
  • быстрый перевод в тепловой или механический вид энергии;
  • возможны новые области его применения (электромобили);
  • открытие все новых свойств (сверхпроводимость).

Электричество – это движение разнозаряженных ионов внутри проводника. Это большой подарок от природы, который люди познают с давних времен, и процесс этот еще не закончен, хотя человечество уже научилось добывать его в огромных объемах. Электричество играет огромную роль в развитии современного общества. Можно сказать, что без него жизнь большинства наших современников просто остановится, ведь недаром при отключении электричества люди говорят, что «отключили свет».

Видео

Подключение электричества к дому или участку может занять продолжительное время — минимум — месяц-полтора, максимум — до двух лет. Хотя законодательно разрешение вы должны получить в течение 30 дней с момента подачи заявки. Само подключение участка или дома к электросети занимает обычно до полугода, хотя могут и за полторы недели подключить, а могут тянуть несколько лет. Все зависит от ситуации, и частично — от вашей настойчивости.

Как получить разрешение на подключение электричества

Порядок действий одинаков, хотите вы подключить участок земли без строения или постройку постоянного (частный дом) или временного проживания (дача). Для начала находите адрес энергосбытовой кампании вашего района. Проще это сделать по интернету написав в поисковой строке «адрес энергосбытовой кампании» и добавить название района. Бывают ситуации, когда участок стоит на границе зон обслуживания двух организаций энеросбыта. Тогда заявка подается в ту, чей столб стоит ближе.

По найденному адресу отправляют заполненную заявку и пакет документов. В каждом районе перечень документов может немного отличаться, но в основном нужны будут:

  • Заявка на подключение (одна из форм и образец заполнения приведены на фото ниже).
  • Ксерокопию паспорта, данные которого указаны в заявке.
  • Копия свидетельства о праве на собственность.
  • Ксерокопию ИНН.
  • Перечень всех энергопотребляющих устройств, которые будут подключаться к сети с указанием их мощности.
  • Расчет нагрузки.
  • План участка и дома в масштабе, на котором указать расположение ближайших столбов электросети. Если на участке или около него есть трубопроводы (газ, водопровод, канализация и т.п.) они обязательно должны быть на плане. На плане дома указать места, где будут установлены электроустановки.

Подать документы можно по почте или лично. Если вы решили принести заявку лично, зайдите в приемную к секретарю, подайте заполненную заявку на подключение в двух экземплярах со всеми документами, на втором (он останется вам) попросите поставить дату принятия документов. При таком способе подачи, вам точно ответят в течение положенных законодательно 30 дней.

Можно отправить заявку по почте. В этом случае ждать нужно примерно 45 суток, учитывая время на доставку почты. Если ответа нет, посылайте запрос вторично или поезжайте и подавайте лично. Такое бывает нечасто, но встречаются и такие ситуации: письмо где-то потеряли, засортировали и т.п.

На фото приведен пример заполненой заявки. Это только один из образцов, формы меняются не реже одного-двух раз в год, так что вам нужно будет найти действующий на данный момент тип бланка и заполнить его.

Что будет в ответе

В письме от «Энергосбыта» вам придет два экземпляра договора по подключению к электросети, подписанных представителями кампании, и «Технические условия на подключение» (ТУ).

В договоре прописан срок подведения электричества к участку. Стандартно там стоит 6 месяцев. Этот максимальный срок, отведенный законодательно на выполнение всех работ. По факту, срок подключения сильно зависит от того, на каком расстоянии находится столб от участка. Для городских условий «рядом» означает на расстоянии не более 300 метров, для сельской местности — менее 500 метров.

Если расстояние в этих пределах, вам могут подключить быстрее — через пару месяцев. Если далеко — срок может быть намного больше, чем полгода. Хотя по прошествии этого срока вы можете предъявлять претензии. Независимо от того, когда вам подключат электричество на участок, начинаете стройку тогда, когда вам удобно.

Иногда в договоре стоит расплывчатая формулировка, без указания даты. Например, такая: «Подключение участка №…будет произведено в течение 6 месяцев, но при условии модернизации или ремонта (постройки) понижающей трансформаторной подстанции». Подписав договор, содержащий примерно такой или похожий текст, ждать вы можете годами: пока организация начнет постройку или модернизацию подстанции. Только после этого вам в течение 6 месяцев ваш участок могут подключить к электросети.

Сколько стоит провести электричество

Согласно принятого в 2011 году постановления № 129 если потребляемая мощность составляет до 15 кВт, а расстояние от участка до ближайшего столба 300 и 500 метров (в зависимости от типа населенного пункта), стоимость подключения электричества будет 550 рублей.

Если нагрузка или расстояние больше, подключение идет по коммерческим расценкам, а это — уже совсем другие суммы. Например, в Московской и прилегающих к ней областях, за подключение 1 кВт мощности нужно заплатить от 10 тыс. рублей. То есть, если вам нужны 16 кВт, то это 160-200 т.р. и больше. По коммерческим тарифам считается плата за подключение и если расстояние до столба в сельской местности превышает 500 метров, а в городской — 300 метров.

Потому целесообразно перед покупкой участка узнать, где стоит ближайший подключенный столб электросети. От этого зависит, сколько денег потребуется, чтобы подключить электричество к дому или участку. Согласитесь, 550 рублей и сотни тысяч — разница более чем ощутимая.

Иногда, даже если требуется вам 15 кВт и столб стоит в указанных пределах, вам говорят, что какие-то работы необходимо оплатить отдельно. Прав требовать у вас оплаты ни у кого нет. Даже если требуется повышение мощности оборудования или модернизация сети. Если ваши запросы укладываются в оговоренные выше условия, стоимость подключения электричества к земельному участку или дому будет 550 рублей.

Что потом

После того, как разрешение и технические условия получены, нужно разработать проект электрификации участка. В принципе, но если дом будет большим, с подсобными и техническими помещениями, с выводом электричества в зону установки насосной станции или насоса для подачи воды, лучше заказать проект в специализированной организации. И лучший вариант — в той энергосбытовой организации, куда вы подавали заявку на подключение. Проблем с приемкой будет куда меньше.

Если проект будете составлять сами, его нужно будет согласовать в энергоснабжающей организации. Если требования соблюдены, вам его утвердят, если есть нарушения, укажут, что нужно поменять. Внеся изменения, снова подаете проект на подпись. Только имея на руках готовый подписанный проект, можно приступать к его реализации.

Электричество, пожалуй, самое значимое открытие в истории человечества. Неведомая ранее сила существовала всегда и яркий пример тому – молния. Столкнувшись с этим явлением, ученые задавались вопросом – откуда взялось электричество и что это такое?

Изучение электричества продолжалось почти 2700 лет. С того самого момента, когда древний философ Фалес Милетский обнаружил притяжение мелких предметов янтарем, потертым о кусочек шерсти. Сегодня мы знаем, что электричество передается электронами – маленькими «шариками», бегущими по проводам.

Эксперимент: положите на стол мелкие кусочки бумаги, а затем возьмите простую пластиковую ручку и интенсивно потрите ее о кусочек шерсти или о волосы. Приблизив ручку к кусочкам бумаги, они просто начнут прилипать к ней. Это и есть притяжение, возникшее в следствии статического заряда.

В процессе исследований ученые задавались вопросом – откуда берется электричество, и находили все новые источники. В природе атмосферное электричество носит статический характер. Мельчайшие капельки воды, из которых состоят облака, трутся друг о друга. В результате трения накапливают заряд и в конечном итоге разряжаются друг в друга или в землю в виде молнии.

Электростатическая машина

Принцип ее действия основан все на том же трении, а современные электростатические машины демонстрируют на уроках физики. Первая такая машина появилась еще в 1663 году. Тогда ученые заметили, что при трении стекла о шелк возникает один заряд, а при трении смолы о шерсть ‒ другой. Противоположные заряды тогда называли «стеклянным и смоляным электричеством». Сегодня мы знаем, что это положительный (+) и отрицательный (-) заряды.

Накапливали эти заряды в лейденской банке. Это был первый конденсатор, который представлял собой стеклянную банку, обмотанную фольгой и заполненную соленой водой. Вода накапливала один заряд, а фольга ‒ второй. При сближении контактов между ними проскакивает искра, являя собой маленькую модель молнии.

Сегодня это обычная батарейка – источник постоянного тока. Электроток в батарейке появляется в результате химической реакции. Получить его можно и в домашних условиях. В стакан с уксусом опустите простой гвоздь, а рядом ‒ медную проволоку. Вот и все ‒ батарейка готова. Первый гальванический элемент создал выдающийся физик Вольт. Он взял цинковые и серебряные кружочки и, чередуя их по очереди, переложил бумажками, промоченными в соленой воде. Однако подсказкой для Вольта стал эксперимент профессора медицины Гальвани. Ученый, изучая анатомию, подвесил лягушечью лапку на медном крючке, а когда прикоснулся к ней стальным предметом лапка дёрнулась. Понадобилось более 10 лет, чтобы разгадать загадку откуда появилось электричество, но в итоге Вольт определил, что оно возникло в процессе взаимодействия разных металлов.

Генератор

Первый генератор был создан в 1831 году известным физиком Фарадеем. Принцип основан на связи электричества и магнетизма. Ученый намотал на катушку провод и, когда двигал внутри катушки магнит, в обмотке появлялось электрический ток. Тот же принцип сохраняется в современных динамо-машинах. Такие устройства устанавливают на переднее колесо велосипеда и подключают к фаре. В корпусе находится катушка, а в середине вращается постоянный магнит. Современные промышленные генераторы, работающие на электростанциях, устроены сложнее. В них постоянный магнит заменили катушкой возбуждения, то есть электромагнитом, а в остальном работает все тот же принцип, открытый Фарадеем.

Как уже упоминалось, электричество передается электронами. Для того чтобы электроны начали перемещаться по проводам, им нужна дополнительная энергия. В простых генераторах они получают эту энергию от магнитного поля, а вот в солнечных батареях ‒ от света. Маленькие частички света – фотоны, попадают на специальную матрицу, которая под воздействием света начинает отдавать электроны и возникает электрический ток.

Современное электричество

Сегодня без электричества трудно представить существование человечества. К тому же с ростом технологических мощностей одним из актуальных вопросов становится ‒ откуда брать электричество. Поэтому в мире строятся и работают множество различных электростанций. Не считая солнечные, все остальные производят электрический ток с помощью генераторов, а вот вращаются эти генераторы благодаря различным силам.

Принцип работы различных видов электростанций:

  • гидроэлектростанция – вращение происходит за счет прохождения потока воды через турбину (лопасти);
  • ветряная электростанция – вращение происходит за счет ветра, раскручивающего лопасти пропеллера;
  • теплоэлектростанция – сжигается топливо, нагревая воду и превращая ее в пар. В свою очередь, пар под давлением проходит через турбину и вращает лопасти, а вращение передается генератору;
  • атомная электростанция – принцип тот же, что и у тепловой, только вода нагревается не сгоранием топлива, а замедленной ядерной реакцией.

Вот откуда в наш дом приходит электричество. Правда на своем пути стремительные электроны проходят еще много различных установок, электрических станций и подстанций, где преобразовывается напряжение, распределяется мощность и др. Объяснить для детей откуда берется электричество можно проще, сказав, что это невидимая сила, получаемая из самой природы – течения рек, дуновения ветра, огня. При этом обязательно нужно предупредить, что электрический ток – опасен и не прощает шалостей, поэтому от розеток лучше держаться подальше.

Ноль

В обыкновенной розетке присутствует 2 контакта – фаза и ноль. Откуда берется ноль в электричестве, если плюс и минус являются переменными фазы? Каждый генератор на электростанции имеет 3 обмотки и в каждой генерируется отдельная фаза. Фазы обозначают латинскими буквами А, В и С. Концы всех 3-х обмоток замкнуты, а вторые концы – источники фаз. Точка замыкания обмоток и является нулем. Таким образом, ток от любой из обмоток, проходящий через нагрузку, возвращается в нулевую точку. Дополнительно в щитовой дома ноль заземляется, а схема называется «глухозаземленная нейтраль». При воздушной ЛЭП нулевой провод заземляется на опорах. Это сделано, чтобы при коротком замыкании ток достиг максимума, достаточного для срабатывания отсекающей автоматики. К тому же если на основном нулевом проводе произойдет обрыв, земля сработает как коллектор и аварии не произойдет.

На некоторых промышленных электроустановках выполняется изолированная нейтраль, так как это предусмотрено эксплуатационными особенностями самой установки. В домах же ноль обязательно заземляется.

Уважаемые читатели и просто посетители нашего журнала! Мы достаточно много и довольно подробно пишем о том, какими способами, при помощи каких именно энергетических ресурсов, производится электроэнергия на электростанциях. Атом, газ, вода – были нашими с вами «героями», разве что до альтернативных, «зеленых» вариантов еще не успели добраться. Но, если присмотреться внимательно, рассказы были далеко не полными. Еще ни разу мы не пробовали отследить детально путь электроэнергии от турбины до наших с вами розеток, с тропинками на освещение наших населенных пунктов и дорог, на обеспечение работы многочисленных насосов, обеспечивающих комфорт наших с вами жилищ.

Дороги и тропинки эти отнюдь не просты, порой извилисты и многократно меняют направление, но знать, как они выглядят – обязанность каждого культурного человека XXI века. Века, облик которого во многом определяет покорившаяся нам электроэнергия, которую мы научились преобразовывать так, чтобы были удовлетворены все наши потребности – как в промышленности, так и в частном пользовании. Ток в проводах линий электропередач и ток в батарейках наших гаджетов – очень разные токи, но они остаются все тем же электричеством. Какие усилия приходится прилагать электроэнергетикам, инженерам, чтобы обеспечить мощнейшие токи сталеплавильных заводов и маленькие, крошечные токи, допустим, наручных часов? Сколько работы приходится проделывать всем тем, кто поддерживает систему преобразований, передачи и распределения электроэнергии, какими такими методами обеспечена стабильность этой системы? Чем «Системный Оператор» отличается от «Федеральной Сетевой Компании», почему обе этих компании были, есть и будут в России не частными а государственными?

Вопросов очень много, ответы на них надо знать, чтобы более менее представлять, зачем нам так много энергетиков и чем же они, грубо говоря, занимаются? Мы ведь настолько привыкли, что с электричеством в домах и в городах все в полном порядке, что про электроинженеров вспоминаем только тогда, когда что-то вдруг перестает работать, когда мы выпадаем из зоны привычного уровня комфорта. Темно и холодно – вот только тогда мы с вами и говорим об энергетиках, причем говорим такие слова, которые мы печатать точно не будем.

Мы уверены, что нам откровенно повезло – взяться за эту не простую, нужную, да еще и огромную тему согласился настоящий профессионал. Просим любить и жаловать – Дмитрий Таланов, Инженер с большой буквы. Знаете, есть такая страна – Финляндия, в которой звание инженера настолько значимо, что в свое время ежегодно издавался каталог с перечнем специалистов, его имеющих. Хотелось бы, чтобы и в России когда-нибудь появилась такая славная традиция, благо в наш электронно-интернетный век завести такой ежегодно обновляемый каталог намного проще.

Статья, которую мы предлагаем вашему вниманию по инженерному коротка, точна и емка. Конечно, обо всем, что написал Дмитрий, можно рассказать намного подробнее, и в свое время наш журнал начал цикл статей о том, как в XIX веке происходило покорение электричества.

Георг Ом, Генрих Герц, Андре-Мари Ампер, Алессандро Вольт, Джеймс Ватт, Фарадей, Якоби, Ленц, Грамм, Фонтен, Лодыгин, Доливо-Добровольский, Тесла, Яблочков, Депрё, Эдисон, Максвелл, Кирхгоф, братья Сименсы и братья Вестингаузы – в истории электричества много славных имен, достойных того, чтобы мы о них помнили. В общем, если кому-то хочется припомнить подробности того, как все начиналось, милости просим, а статья Дмитрия – начало совсем другой истории. Очень надеемся, что она вам понравится, а продолжение статей Дмитрия Таланова мы увидим в самое ближайшее время.

Уважаемого Дмитрия от себя лично – с дебютом, ко всем читателям просьба – не скупитесь на комментарии!

Что такое электрический ток, откуда он берется и как добирается до наших домов?

Для чего нам электроэнергия и насколько она помогает нам жить, может узнать каждый, обведя критическим взглядом свое жилище и место работы.

Первое, что бросается в глаза, это освещение. И верно, без него даже 8-часовой рабочий день превратился бы в муку. Добираться до работы во многих мегаполисах и так небольшое счастье, а если придется это делать в темноте? А зимой так и в оба конца! Газовые фонари помогут на главных магистралях, но чуть свернул в сторону, и не видно ни зги. Можно легко провалиться в подвал или яму. А за городом на природе, освещаемой только светом звезд?

Ночное освещение улицы, Фото: pixabay.com

Удалять жару из офисов, куда с трудом добрался, без электричества тоже нечем. Можно, конечно, открыть окна и обвязать голову мокрым полотенцем, но надолго ли это поможет. Качающим воду насосам тоже нужно электричество, или придется регулярно ходить с ведром на ручную колонку.

Кофе в офисе? Забудьте! Только если всем сразу и не часто, чтобы дым от сгорающего угля не отравил рабочую атмосферу. Или за дополнительную денежку получать из соседнего трактира.

Отправить письмо в соседний офис? Надо взять бумагу, написать письмо от руки, затем ножками отнести его. На другой конец города? Вызываем курьера. В другую страну? А вы знаете, сколько это будет стоить? К тому же ответа не ждите ранее полугода из соседних стран и от года до пяти из-за океана.

Вернулись домой, надо зажечь свечи. Читать при них – мучение для глаз, поэтому придется заняться чем-то другим. А чем? ТВ нет, компьютеров нет, смартфонов – и тех нет, ибо нечем их запитать. Лежи на лавке и гляди в потолок! Хотя рождаемость точно повысится.

К этому следует добавить, что все пластмассы и удобрения сейчас получают из природного газа на заводах, где крутятся тысячи моторов, приводимых в движение всё тем же электричеством. Отсюда список доступных удобрений сильно укорачивается до тех, которые можно приготовить из природного сырья в чанах, размешивая в них ядовитую жижу лопатками с ручным, водяным или паровым приводом. Как результат, сильно сжимается объем производимых продуктов.

О пластмассах – забудьте! Эбонит – наше высшее счастье из длинного списка. А из металлов самым доступным становится чугун. Из медицины на сцену в качестве главного орудия снова выступают стетоскоп и быстро ржавеющий скальпель. Остальное канет в Лету.

Продолжать можно долго, но идея должна быть уже понятна. Нам нужно электричество. Мы можем выжить без него, но что это будет за жизнь! Так откуда же появилось это волшебное электричество?

Открытие электричества

Все мы знаем физическую истину, что ничто никуда бесследно не исчезает, а только переходит из одного состояния в другое. С этой истиной столкнулся греческий философ Фалес Милетский в VII веке до н. э. обнаружив электричество как вид энергии, натирая кусок янтаря шерстью. Часть механической энергии при этом перешла в электрическую и янтарь (на древнегреческом «электрон») электризовался, то есть приобрел свойства притягивать легкие предметы.

Этот вид электричества сейчас называют статическим, и он нашел себе широкое применение, в том числе в системах очистки газов на электростанциях. Но в Древней Греции ему не нашлось применения и, если бы Фалес Милетский не оставил после себя записей о своих экспериментах, мы бы никогда не узнали, кто был тот первый мыслитель, заостривший свое внимание на виде энергии, являющейся едва ли не самой чистой среди всех, с которыми мы знакомы по настоящий день. Ею также наиболее удобно управлять.

Сам термин «электричество» – то есть «янтарность» – ввел в употребление Уильям Гилберт в 1600 году. С этого времени с электричеством начинают широко экспериментировать, пытаясь разгадать его природу.

Как результат, с 1600 по 1747 годы последовала череда увлекательных открытий и появилась первая теория электричества, созданная американцем Бенджамином Франклином. Он ввел понятие положительного и отрицательного заряда, изобрел молниеотвод и с его помощью доказал электрическую природу молний.

Далее в 1785 происходит открытие закона Кулона, а в 1800 году итальянец Вольта изобретает гальванический элемент (первый источник постоянного тока, предшественник нынешних батарей и аккумуляторов), представлявший собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой. С появлением этого, стабильного по тем временам, источника электричества новые и важнейшие открытия быстро следуют одно за другим.

Майкл Фарадей, читающий рождественскую лекцию в Королевском институте. Фрагмент литографии, Фото: republic.ru

В 1820 году датский физик Эрстед обнаружил электромагнитное взаимодействие: замыкая и размыкая цепь с постоянным током, он заметил цикличные колебания стрелки компаса, расположенной вблизи проводника. А в 1821 году французский физик Ампер открыл, что вокруг проводника с переменным электрическим током образуется переменное электромагнитное поле. Это позволило уже Майклу Фарадею в 1831 году открыть электромагнитную индукцию, описать уравнениями электрическое и магнитное поле и создать первый электрогенератор переменного тока. Фарадей вдвигал катушку с проводом в намагниченный сердечник и в результате в обмотке катушки появлялся электрический ток. Фарадей также придумал первый электродвигатель – проводник с электрическим током, вращающийся вокруг постоянного магнита.

Всех участников «гонки за электричеством» невозможно упомянуть в этой статье, но результатом их усилий явилась доказуемая экспериментом теория, детально описывающая электричество и магнетизм, в соответствии с которой мы производим сейчас всё, что требует электричества для своего функционирования.

Постоянный или переменный ток?

В конце 1880-х годов, еще до появления мировых стандартов на производство, распределение и потребление промышленной электроэнергии, разразилась битва между сторонниками использования постоянного и переменного тока. Во главе противостоящих друг другу армий встали Тесла и Эдисон.

Оба были талантливыми изобретателями. Разве что Эдисон обладал куда более развитыми способностями к бизнесу и к моменту начала «войны» успел запатентовать множество технических решений, в которых использовался постоянный ток (в то время в США постоянный ток являлся стандартом по умолчанию; постоянным называется ток, направление которого не меняется по времени).

Но была одна проблема: в те времена постоянный ток было очень трудно трансформировать в более высокое или низкое напряжение. Ведь если сегодня мы получаем электроэнергию напряжением 240 вольт, а наш телефон требует 5 вольт, мы втыкаем в розетку универсальную коробочку, которая преобразует что угодно во что угодно в нужном нам диапазоне, используя современные транзисторы, управляемые крошечными логическими схемами с изощренным программным обеспечением. А что можно было сделать тогда, когда до изобретения самых примитивных транзисторов оставалось еще 70 лет? И если по условиям электрических потерь требовалось повысить напряжение до 100’000 вольт, чтобы доставить электроэнергию на расстояние 100 или 200 километров, любые столбы Вольта и примитивные генераторы постоянного тока оказывались бессильны.

Понимая это, Тесла выступал за переменный ток, трансформация которого в любые уровни напряжения не представляла труда и в те времена (переменным считается ток, величина и направление которого периодически меняются со временем даже при неизменном сопротивлении этому току; при частоте сети 50Гц это происходит 50 раз в секунду). Эдисон же, не желая терять патентные отчисления себе, развернул кампанию по дискредитации переменного тока. Он уверял, что этот вид тока особо опасен для всего живого, и в доказательство публично убивал бродячих кошек и собак, прикладывая к ним электроды, соединенные с источником переменного тока.

Эдисон проиграл битву, когда Тесла предложил за 399’000 долларов осветить весь город Буффало против предложения Эдисона сделать то же за 554’000 долларов. В день, когда город осветился электричеством, полученным от станции, расположенной у Ниагарского водопада и вырабатывающей именно переменный ток, компания General Electric выкинула постоянный ток из рассмотрения в своих будущих бизнес-проектах, полностью поддержав своим влиянием и деньгами переменный ток.

Томас Эдисон (США), Рис.: cdn.redshift.autodesk.com

Может показаться, что переменный ток навсегда завоевал мир. Однако у него имеются наследственные болячки, растущие из самого факта переменности. Прежде всего это электрические потери, связанные с потерями в индуктивной составляющей проводов ЛЭП, которые используются для передачи электроэнергии на большие расстояния. Эти потери в 10-20 раз превышают возможные потери в тех же самых ЛЭП в случае протекания по ним постоянного тока. Плюс сказывается повышенная сложность синхронизации узлов энергосистемы (для пущего понимания, скажем, отдельных городов), ведь для этого требуется не только выровнять напряжения узлов, но и их фазу, ибо переменный ток представляет собой волну синусоиды.

Отсюда видна и значительно большая приверженность к «качаниям» узлов по отношению к друг другу, когда напряжение-частота начинают меняться вверх-вниз, на что обычный потребитель обращает внимание, когда у него в квартире мигает свет. Обычно это предвестник конца совместной работы узлов: связи между ними рвутся и какие-то узлы оказываются с дефицитом энергии, что ведет к снижению в них частоты (т.е. к снижению скорости вращения тех же электродвигателей и вентиляторов), а какие-то с избытком энергии, приводящем к опасному повышению напряжения по всему узлу, включая наши розетки с подключенными к ним устройствам. А при достаточно большой длине ЛЭП, что, к примеру, критично для РФ, начинают проявляться и другие портящие настроение электрикам эффекты. Не вдаваясь в детали, можно указать, что передавать электроэнергию переменного тока по проводам на сверхдальние расстояния становится трудно, а иногда и невозможно. Для сведения, длина волны частотой 50 Гц составляет 6000 км, и при приближении к половине этой длины – 3000 км – начинают сказываться эффекты бегущих и стоячих волн плюс эффекты, связанные с резонансом.

Эти эффекты отсутствуют при использовании постоянного тока. А значит, повышается стабильность работы энергосистемы в целом. Принимая это во внимание, а также то, что компьютеры, светодиоды, солнечные панели, аккумуляторы и многое другое используют для своей работы именно постоянный ток, можно заключить: война с постоянным током еще не проиграна. Современным преобразователям постоянного тока на любые используемые сегодня мощности и напряжения осталось совсем немного, чтобы сравняться в цене с привычными человечеству трансформаторами переменного тока. После чего, видимо, начнется триумфальное шествие по планете уже постоянного тока.