Магнитный поток от времени. Раскрывая тайну магнитных потоков

Пусть в некоторой малой области пространства существует магнитное поле, которое можно считать однородным, то есть в этой области вектор магнитной индукции постоянен, как по величине, так и по направлению.
 Выделим малую площадку площадью ΔS , ориентация которой задается единичным вектором нормали n (рис. 445).

рис. 445
 Магнитный поток через эту площадку ΔФ m определяется как произведение площади площадки на нормальную составляющую вектора индукции магнитного поля

Где

скалярное произведение векторов B и n ;
B n − нормальная к площадке компонента вектора магнитной индукции.
 В произвольном магнитном поле магнитный поток через произвольную поверхность, определяется следующим образом (рис. 446):

рис. 446
− поверхность разбивается на малые площадки ΔS i (которые можно считать плоскими);
− определяется вектор индукции B i на этой площадке (который в пределах площадки можно считать постоянным);
− вычисляется сумма потоков через все площадки, на которые разбита поверхность

 Эта сумма называется потоком вектора индукции магнитного поля через заданную поверхность (или магнитным потоком).
 Обратите внимание, что при вычислении потока суммирование проводится по точкам наблюдения поля, а не по источникам, как при использовании принципа суперпозиции. Поэтому магнитный поток является интегральной характеристикой поля, описывающей его усредненные свойства на всей рассматриваемой поверхности.
 Трудно найти физический смысл магнитного потока, как и для иных полей это полезная вспомогательная физическая величина. Но в отличие от других потоков, магнитный поток настолько часто встречается в приложениях, что в системе СИ удостоился «персональной» единицы измерения − Вебер 2 : 1 Вебер − магнитный поток однородного магнитного поля индукции 1 Тл через площадку площадью 1 м 2 ориентированную перпендикулярно вектору магнитной индукции.
 Теперь докажем простую, но чрезвычайно важную теорему о магнитном потоке через замкнутую поверхность.
 Ранее мы установили, что силовые любого магнитного поля являются замкнутыми, уже из этого следует, что магнитный поток, через любую замкнутую поверхность равен нулю.

Тем не менее, приведем более формальное доказательство этой теоремы.
 Прежде всего, отметим, что для магнитного потока справедлив принцип суперпозиции: если магнитное поле создано несколькими источниками, то для любой поверхности поток поля, созданного системой элементов тока, равен сумме потоков полей, созданных каждым элементом тока в отдельности. Это утверждение следует непосредственно из принципа суперпозиции для вектора индукции и прямо пропорциональной связью между магнитным потоком и вектором магнитной индукции. Следовательно достаточно доказать теорему для поля, созданного элементом тока, индукция которого определяется по закону Био-Саварра-Лапласа. Здесь для нас важна структура поля, обладающего осевой круговой симметрией, значение модуля вектора индукции несущественно.
 Выберем в качестве замкнутой поверхности поверхность бруска, вырезанного, как показано на рис. 447.

рис. 447
 Магнитный поток отличен от нуля только через его две боковые грани, но эти потоки имеют противоположные знаки. Вспомним, что для замкнутой поверхности выбирают внешнюю нормаль, поэтому на одной из указанных граней (передней) поток положительный, а на задней отрицательный. Причем модули этих потоков равны, так как распределение вектора индукции поля на этих гранях одинаково. Данный результат не зависит от положения рассмотренного бруска. Произвольное тело можно разбить на бесконечно малые части, каждая из которых подобна рассмотренному бруску.
 Наконец, сформулируем еще одно важное свойство потока любого векторного поля. Пусть произвольная замкнутая поверхность ограничивает некоторое тело (рис. 448).

рис. 448
 Разобьем это тело на две части, ограниченные частями исходной поверхности Ω 1 и Ω 2 , и замкнем их общей границей раздела тела. Сумма потоков через эти две замкнутые поверхности равна потоку через исходную поверхность! Действительно сумма потоков через границу (один раз для одного тела, другой раз для другого) равна нулю, так как в каждом случае надо брать разные, противоположные нормали (каждый раз внешнюю). Аналогично можно доказать утверждение для произвольного разбиения тела: если тело разбито на произвольное число частей, то поток через поверхность тела равен сумме потоков через поверхности всех частей разбиения тела. Это утверждение очевидно для потока жидкости.
 Фактически мы доказали, что если поток векторного поля равен нулю через некоторую поверхность ограничивающее малый объем, то этот поток равен нулю через любую замкнутую поверхность.
 Итак, для любого магнитного поля справедлива теорема о магнитном потоке: магнитный поток через любую замкнутую поверхность равен нулю Ф m = 0.
 Ранее мы рассматривали теоремы о потоке для поля скоростей жидкости и электростатического поля. В этих случаях поток через замкнутую поверхность полностью определялся точечными источниками поля (истоками и стоками жидкости, точечными зарядами). В общем случае наличие ненулевого потока через замкнутую поверхность свидетельствует о наличии точечных источников поля. Следовательно, физическим содержанием теоремы о магнитном потоке является утверждение об отсутствии магнитных зарядов.

Если вы хорошо разобрались в данном вопросе и сумеете объяснить и отстоять свою точку зрения, то можете формулировать теорему о магнитном потоке и так: «Еще никто не нашел монополя Дирака».

Следует особо подчеркнуть, что, говоря об отсутствии источников поля, мы имеем виду именно точечных источников, подобных электрическим зарядам. Если провести аналогию с полем движущейся жидкости, электрические заряды подобны точкам, из которых вытекает (или втекает) жидкость, увеличивая или уменьшая ее количество. Возникновение магнитного поля, благодаря движению электрических зарядов подобно движению тела в жидкости, которое приводит к появлению вихрей, не изменяющих общего количества жидкости.

Векторные поля, для которых поток через любую замкнутую поверхность равен нулю получили красивое, экзотическое название − соленоидальные . Соленоидом называется проволочная катушка, по которой можно пропускать электрический ток. Такая катушка может создавать сильные магнитные поля, поэтому термин соленоидальный означает «подобный полю соленоида», хотя можно было назвать такие поля попроще − «магнитоподобные». Наконец такие поля еще называют вихревыми , подобно полю скоростей жидкости, образующей в своем движении всевозможные турбулентные завихрения.

Теорема о магнитном потоке имеет большое значение, она часто используется при доказательстве различных свойств магнитных взаимодействий, с ней мы будем встречаться неоднократно. Так, например, теорема о магнитном потоке доказывает, что вектор индукции магнитного поля, создаваемого элементом, не может иметь радиальной составляющей, иначе поток через цилиндрическую поверхность коаксиальную с элементом тока был бы отличен от нуля.
 Теперь проиллюстрируем применение теоремы о магнитном потоке для расчета индукции магнитного поля. Пусть магнитное поле создается кольцом с током, которое характеризуется магнитным моментом p m . Рассмотрим поле вблизи оси кольца на расстоянии z от центра, значительно большем радиуса кольца (рис. 449).

рис. 449
 Ранее мы получили формулу для индукции магнитного поля на оси для больших расстояний от центра кольца

 Мы не допустим большой ошибки, если будем считать, что такое же значение имеет вертикальная (пусть ось кольца вертикальна) компонента поля в пределах небольшого кольца радиуса r , плоскость которого перпендикулярна оси кольца. Так как вертикальная компонента поля изменяется с изменением расстояния, то неизбежно должны присутствовать радиальные компоненты поля, иначе не будет выполняться теорема о магнитном потоке! Оказывается этой теоремы и формулы (3) достаточно, чтобы найти эту радиальную компоненту. Выделим тонкий цилиндр толщиной Δz и радиуса r , нижнее основание которого находится на расстоянии z от центра кольца, соосный с кольцом и применим теорему о магнитном потоке к поверхности этого цилиндра. Магнитный поток через нижнее основание равен (учтите, что вектора индукции и нормали здесь противоположны)

где B z (z) z ;
поток через верхнее основание равен

где B z (z + Δz) − значение вертикальной компоненты вектора индукции на высоте z + Δz ;
поток через боковую поверхность (из осевой симметрии следует, что модуль радиальной составляющей вектора индукции B r на этой поверхности постоянен):

 По доказанной теореме сумма этих потоков равна нулю, поэтому справедливо уравнение

из которого определим искомую величину

 Осталось использовать формулу (3) для вертикальной составляющей поля и провести необходимые вычисления 3


 Действительно, убывание вертикальной компоненты поля приводит к появлению горизонтальных компонент: уменьшение вытекания через основания приводит к «течи» через боковую поверхность.
 Таким образом, мы доказали «криминальную теорему»: если через один конец трубы вытекает меньше, чем вливают в нее с другого конца, то где-то воруют через боковую поверхность.

1 Достаточно взять текст с определением потока вектора напряженности электрического поля и изменить обозначения (что здесь и сделано).
2 Названа в честь немецкого физика (члена Петербургской академии наук) Вильгельма Эдуарда Вебера (1804 – 1891)
3 Самые грамотные могут увидеть в последней дроби производную функции (3) и элементарно ее вычислить, нам же придется очередной раз воспользоваться приближенной формулой (1 + x) β ≈ 1 + βx.

Потоком вектора магнитной индукции В (магнитным потоком ) через малую поверхность площадью dS называется скалярная физическая величина, равная

Здесь , - единичный вектор нормали к площадке площадью dS , В n - проекция вектора В на направление нормали, - угол между векторами В и n (рис. 6.28).

Рис. 6.28. Поток вектора магнитной индукции через площадку

Магнитный поток Ф B через произвольную замкнутую поверхность S равен

Отсутствие в природе магнитных зарядов приводит к тому, что линии вектора В не имеют ни начала, ни конца. Поэтому поток вектора В через замкнутую поверхность должен быть равен нулю. Таким образом, для любого магнитного поля и произвольной замкнутой поверхности S выполняется условие

Формула (6.28) выражает теорему Остроградского - Гаусса для вектора :

Подчеркнем еще раз: эта теорема является математическим выражением того факта, что в природе отсутствуют магнитные заряды, на которых начинались бы и заканчивались линии магнитной индукции, как это имело место в случае напряженности электрического поля Е точечных зарядов.

Это свойство существенным образом отличает магнитное поле от электрического. Линии магнитной индукции замкнуты, поэтому число линий, входящих в некоторый объем пространства, равно числу линий, выходящих из этого объема. Если входящие потоки брать с одним знаком, а выходящие - с другим, то суммарный поток вектора магнитной индукции через замкнутую поверхность будет равен нулю.

Рис. 6.29. В. Вебер (1804–1891) - немецкий физик

Отличие магнитного поля от электростатического проявляется также в значении величины, которую мы называем циркуляцией - интеграла от векторного поля по замкнутому пути. В электростатике равен нулю интеграл

взятый по произвольному замкнутому контуру. Это связано с потенциальностью электростатического поля, то есть с тем фактом, что работа по перемещению заряда в электростатическом поле не зависит от пути, но лишь от положения начальной и конечной точек.

Посмотрим, как обстоит дело с аналогичной величиной для магнитного поля. Возьмем замкнутый контур, охватывающий прямой ток, и вычислим для него циркуляцию вектора В , то есть

Как было получено выше, магнитная индукция, создаваемая прямолинейным проводником с током на расстоянии R от проводника, равна

Рассмотрим случай, когда контур, охватывающий прямой ток, лежит в плоскости, перпендикулярной току, и представляет собой окружность радиусом R с центром на проводнике. В этом случае циркуляция вектора В по этой окружности равна

Можно показать, что результат для циркуляции вектора магнитной индукции не меняется при непрерывной деформации контура, если при этой деформации контур не пересекает линий тока. Тогда в силу принципа суперпозиции циркуляция вектора магнитной индукции по пути, охватывающем несколько токов, пропорциональна их алгебраической сумме (рис. 6.30)

Рис. 6.30. Замкнутый контур (L) с заданным направлением обхода.
Изображены токи I 1 , I 2 и I 3 , создающие магнитное поле.
Вклад в циркуляцию магнитного поля вдоль контура (L) дают только токи I 2 и I 3

Если выбранный контур не охватывает токов, то циркуляция по нему равна нулю.

При вычислении алгебраической суммы токов следует учитывать знак тока: положительным будем считать ток, направление которого связано с направлением обхода по контуру правилом правого винта. Например, вклад тока I 2 в циркуляцию - отрицательный, а вклад тока I 3 - положительный (рис. 6.18). Воспользовавшись соотношением

между силой тока I через любую замкнутую поверхность S и плотностью тока , для циркуляции вектора В можно записать

где S - любая замкнутая поверхность, опирающаяся на данный контур L .

Такие поля называются вихревыми . Поэтому для магнитного поля нельзя ввести потенциал, как это было сделано для электрического поля точечных зарядов. Наиболее наглядно разницу потенциального и вихревого полей можно представить по картине силовых линий. Силовые линии электростатического поля похожи на ежей: они начинаются и кончаются на зарядах (либо уходят в бесконечность). Силовые линии магнитного поля никогда не напоминают «ежей»: они всегда замкнуты и охватывают текущие токи.

Для иллюстрации применения теоремы о циркуляции найдем другим методом уже известное нам магнитное поле бесконечного соленоида. Возьмем прямоугольный контур 1-2-3-4 (рис. 6.31) и вычислим циркуляцию вектора В по этому контуру

Рис. 6.31. Применение теоремы о циркуляции В к определению магнитного поля соленоида

Второй и четвертый интегралы равны нулю в силу перпендикулярности векторов и

Мы воспроизвели результат (6.20) без интегрирования магнитных полей от отдельных витков.

Полученный результат (6.35) можно использовать для нахождения магнитного поля тонкого тороидального соленоида (рис.6.32).

Рис. 6.32. Тороидальная катушка: линии магнитной индукции замыкаются внутри катушки и представляют собой концентрические окружности. Они направлены так, что глядя вдоль них, мы увидели бы ток в витках, циркулирующим по часовой стрелке. Одна из линий индукции некоторого радиуса r 1 ≤ r < r 2 изображена на рисунке

На картинке показано однородное магнитное поле. Однородное означает одинаковое во всех точках в данном объеме. В поле помещена поверхность с площадью S. Линии поля пересекают поверхность.

Определение магнитного потока :

Магнитным потоком Ф через поверхность S называют количество линий вектора магнитной индукции B, проходящих через поверхность S.

Формула магнитного потока:

здесь α - угол между направлением вектора магнитной индукции B и нормалью к поверхности S.

Из формулы магнитного потока видно, что максимальным магнитный поток будет при cos α = 1, а это случится, когда вектор B параллелен нормали к поверхности S. Минимальным магнитный поток будет при cos α = 0, это будет, когда вектор B перпендикулярен нормали к поверхности S, ведь в этом случае линии вектора B будут скользить по поверхности S, не пересекая её.

А по определению магнитного потока учитываются только те линии вектора магнитной индукции, которые пересекают данную поверхность.

Измеряется магнитный поток в веберах (вольт-секундах): 1 вб = 1 в * с. Кроме того, для измерения магнитного потока применяют максвелл: 1 вб = 10 8 мкс. Соответственно 1 мкс = 10 -8 вб.

Магнитный поток является скалярной величиной.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии. В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля. Энергия магнитного поля равна собственной энергии тока. Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока. Куда пропадает энергия магнитного поля после прекращения тока? - выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

4.1. Закон электромагнитной индукции. Самоиндукция. Индуктивность

Основные формулы

· Закон электромагнитной индукции (закон Фарадея):

, (39)

где – эдс индукции;– полный магнитный поток (потокосцепление).

· Магнитный поток, создаваемый током в контуре,

где – индуктивность контура;– сила тока.

· Закон Фарадея применительно к самоиндукции

· Эдс индукции, возникающая при вращении рамки с током в магнитном поле,

где – индукция магнитного поля;– площадь рамки;– угловая скорость вращения.

· Индуктивность соленоида

, (43)

где – магнитная постоянная;– магнитная проницаемость вещества;– число витков соленоида;– площадь сечения витка;– длина соленоида.

· Сила тока при размыкании цепи

где – установившаяся в цепи сила тока;– индуктивность контура,– сопротивление контура;– время размыкания.

· Сила тока при замыкании цепи

. (45)

· Время релаксации

Примеры решения задач

Пример 1.

Магнитное поле изменяется по закону , где= 15 мТл,. В магнитное поле помещен круговой проводящий виток радиусом = 20 см под угломк направлению поля (в начальный момент времени). Найти эдс индукции, возникающую в витке в момент времени= 5 с.

Решение

По закону электромагнитной индукции возникающая в витке эдс индукции , где– магнитный поток, сцепленный в витке.

где – площадь витка,;– угол между направлением вектора магнитной индукциии нормалью к контуру:.

Подставим числовые значения: = 15 мТл,,= 20 см = = 0,2 м,.

Вычисления дают .

Пример 2

В однородном магнитном поле с индукцией = 0,2 Тл расположена прямоугольная рамка, подвижная сторона которой длиной= 0,2 м перемещается со скоростью= 25 м/с перпендикулярно линиям индукции поля (рис. 42). Определить эдс индукции, возникающую в контуре.

Решение

При движении проводника АВ в магнитном поле площадь рамки увеличивается, следовательно, возрастает магнитный поток сквозь рамку и возникает эдс индукции.

По закону Фарадея , где, тогда, но, поэтому.

Знак «–» показывает, что эдс индукции и индукционный ток направлены против часовой стрелки.

САМОИНДУКЦИЯ

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции. Это явление называется самоиндукцией.Самоиндукция - явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

Замыкание цепи При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны). В результатеЛ1 загорается позже, чем Л2.

Размыкание цепи При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает. Вывод в электротехнике явление самоиндукции проявляется при замыкании цепи (эл.ток нарастает постепенно) и при размыкании цепи (эл.ток пропадает не сразу).

ИНДУКТИВНОСТЬ

От чего зависит ЭДС самоиндукции? Эл.ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф ~ B), индукция пропорциональна силе тока в проводнике (B ~ I), следовательно магнитный поток пропорционален силе тока (Ф ~ I). ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник. Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью. Индуктивность - физ. величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду. Также индуктивность можно рассчитать по формуле:

где Ф - магнитный поток через контур, I - сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от: числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды (возможен сердечник).

ЭДС САМОИНДУКЦИИ

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

Для характеристики намагниченности вещества в магнитном поле используетсямагнитный момент (Р м ). Он численно равен механическому моменту, испытываемому веществом в магнитном поле с индукцией в 1 Тл.

Магнитный момент единицы объема вещества характеризует его намагниченность - I , определяется по формуле:

I = Р м /V , (2.4)

где V - объем вещества.

Намагниченность в системе СИ измеряется, как и напряженность, в А/м , величина векторная.

Магнитные свойства веществ характеризуются объемной магнитной восприимчивостью - c о , величина безразмерная.

Если какое-либо тело поместить в магнитное поле с индукцией В 0 , то происходит его намагничивание. Вследствие этого тело создает свое собственное магнитное поле с индукцией В " , которое взаимодействует с намагничивающим полем.

В этом случае вектор индукции в среде (В) будет слагаться из векторов:

В = В 0 + В " (знак вектора опущен), (2.5)

где В " - индукция собственного магнитного поля намагнитившегося вещества.

Индукция собственного поля определяется магнитными свойствами вещества, которые характеризуются объемной магнитной восприимчивостью - c о , справедливо выражение:В " = c о В 0 (2.6)

Разделим на m 0 выражение (2.6):

В " / m о = c о В 0 /m 0

Получим: Н " = c о Н 0 , (2.7)

но Н " определяет намагниченность вещества I , т.е. Н " = I , тогда из (2.7):

I = c о Н 0 . (2.8)

Таким образом, если вещество находится во внешнем магнитном поле с напряженностьюН 0 , то внутри него индукция определяется выражением:

В=В 0 + В " = m 0 Н 0 +m 0 Н " = m 0 0 + I) (2.9)

Последнее выражение строго справедливо, когда сердечник (вещество) находится полностью во внешнем однородном магнитном поле (замкнутый тор, бесконечно длинный соленоид и т.д.).

МАГНИТНЫЙ ПОТОК

МАГНИТНЫЙ ПОТОК (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m - магнитная ПРОНИЦАЕМОСТЬ среды, а Н - интенсивность магнитного поля. Плотность магнитного потока - это поток на единицу площади (символ В), который равен Н. Изменение магнитного потока через электрический проводник наводит ЭЛЕКТРОДВИЖУЩУЮ СИЛУ.


Научно-технический энциклопедический словарь .

Смотреть что такое "МАГНИТНЫЙ ПОТОК" в других словарях:

    Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь

    - (поток магнитной индукции), поток Ф вектора магн. индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия

    магнитный поток - Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика

    МАГНИТНЫЙ ПОТОК - поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см.) … Большая политехническая энциклопедия

    Величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь

    Магнитный поток - скалярная величина, равная потоку магнитной индукции... Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

    Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь

    Классическая электродинамика … Википедия

    магнитный поток - , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии

    Магнитный поток - 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было…
  • Магнитный поток и его преобразование , Миткевич В. Ф.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о…

Поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = ВndS, где Bn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Большой Энциклопедический словарь

МАГНИТНЫЙ ПОТОК - (поток магнитной индукции), поток Ф вектора магн. индукции В через к. л. поверхность. М. п. dФ через малую площадку dS, в пределах к рой вектор В можно считать неизменным, выражается произведением величины площадки и проекции Bn вектора на… … Физическая энциклопедия

магнитный поток - Скалярная величина, равная потоку магнитной индукции. [ГОСТ Р 52002 2003] магнитный поток Поток магнитной индукции через перпендикулярную магнитному полю поверхность, определяемый как произведение магнитной индукции в данной точке на площадь… … Справочник технического переводчика

МАГНИТНЫЙ ПОТОК - (символ Ф), мера силы и протяженности МАГНИТНОГО ПОЛЯ. Поток через площадь А под прямым углом к одинаковому магнитному полю есть Ф=mНА, где m магнитная ПРОНИЦАЕМОСТЬ среды, а Н интенсивность магнитного поля. Плотность магнитного потока это поток… … Научно-технический энциклопедический словарь

МАГНИТНЫЙ ПОТОК - поток Ф вектора магнитной индукции (см. (5)) В через поверхность S, нормальную вектору В в однородном магнитном поле. Единица магнитного потока в СИ (см.) … Большая политехническая энциклопедия

МАГНИТНЫЙ ПОТОК - величина, характеризующая магнитное воздействие на данную поверхность. М. п. измеряется количеством магнитных силовых линий, проходящих через данную поверхность. Технический железнодорожный словарь. М.: Государственное транспортное… … Технический железнодорожный словарь

Магнитный поток - скалярная величина, равная потоку магнитной индукции... Источник: ЭЛЕКТРОТЕХНИКА. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от 09.01.2003 N 3 ст) … Официальная терминология

магнитный поток - поток вектора магнитной индукции В через какую либо поверхность. Магнитный поток через малую площадку dS, в пределах которой вектор В неизменен, равен dФ = BndS, где Вn проекция вектора на нормаль к площадке dS. Магнитный поток Ф через конечную… … Энциклопедический словарь

магнитный поток - , поток магнитной индукции поток вектора магнитной индукции через какую либо поверхность. Для замкнутой поверхности суммарный магнитный поток равен нулю, что отражает соленоидный характер магнитного поля, т. е. отсутствие в природе … Энциклопедический словарь по металлургии

Магнитный поток - 12. Магнитный поток Поток магнитной индукции Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа 12 магнитный по … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Миткевич В. Ф.. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о магнитном потоке, и что не было до сих пор достаточно определенно высказано или не было… Купить за 2252 грн (только Украина)
  • Магнитный поток и его преобразование , Миткевич В. Ф.. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В этой книге содержится многое, на что не всегда обращается должное внимание, когда речь идет о…