Метод аппроксимации по двум точкам. Аппроксимация с помощью других функций

Среди различных методов прогнозирования нельзя не выделить аппроксимацию. С её помощью можно производить приблизительные подсчеты и вычислять планируемые показатели, путем замены исходных объектов на более простые. В Экселе тоже существует возможность использования данного метода для прогнозирования и анализа. Давайте рассмотрим, как этот метод можно применить в указанной программе встроенными инструментами.

Наименование данного метода происходит от латинского слова proxima – «ближайшая» Именно приближение путем упрощения и сглаживания известных показателей, выстраивание их в тенденцию и является его основой. Но данный метод можно использовать не только для прогнозирования, но и для исследования уже имеющихся результатов. Ведь аппроксимация является, по сути, упрощением исходных данных, а упрощенный вариант исследовать легче.

Главный инструмент, с помощью которого проводится сглаживания в Excel – это построение линии тренда. Суть состоит в том, что на основе уже имеющихся показателей достраивается график функции на будущие периоды. Основное предназначение линии тренда, как не трудно догадаться, это составление прогнозов или выявление общей тенденции.

Но она может быть построена с применением одного из пяти видов аппроксимации:

  • Линейной;
  • Экспоненциальной;
  • Логарифмической;
  • Полиномиальной;
  • Степенной.

Рассмотрим каждый из вариантов более подробно в отдельности.

Способ 1: линейное сглаживание

Прежде всего, давайте рассмотрим самый простой вариант аппроксимации, а именно с помощью линейной функции. На нем мы остановимся подробнее всего, так как изложим общие моменты характерные и для других способов, а именно построение графика и некоторые другие нюансы, на которых при рассмотрении последующих вариантов уже останавливаться не будем.

Прежде всего, построим график, на основании которого будем проводить процедуру сглаживания. Для построения графика возьмем таблицу, в которой помесячно указана себестоимость единицы продукции, производимой предприятием, и соответствующая прибыль в данном периоде. Графическая функция, которую мы построим, будет отображать зависимость увеличения прибыли от уменьшения себестоимости продукции.


Сглаживание, которое используется в данном случае, описывается следующей формулой:

В конкретно нашем случае формула принимает такой вид:

y=-0,1156x+72,255

Величина достоверности аппроксимации у нас равна 0,9418 , что является довольно приемлемым итогом, характеризующим сглаживание, как достоверное.

Способ 2: экспоненциальная аппроксимация

Теперь давайте рассмотрим экспоненциальный тип аппроксимации в Эксель.


Общий вид функции сглаживания при этом такой:

где e – это основание натурального логарифма.

В конкретно нашем случае формула приняла следующую форму:

y=6282,7*e^(-0,012*x)

Способ 3: логарифмическое сглаживание

Теперь настала очередь рассмотреть метод логарифмической аппроксимации.


В общем виде формула сглаживания выглядит так:

где ln – это величина натурального логарифма. Отсюда и наименование метода.

В нашем случае формула принимает следующий вид:

y=-62,81ln(x)+404,96

Способ 4: полиномиальное сглаживание

Настал черед рассмотреть метод полиномиального сглаживания.


Формула, которая описывает данный тип сглаживания, приняла следующий вид:

y=8E-08x^6-0,0003x^5+0,3725x^4-269,33x^3+109525x^2-2E+07x+2E+09

Способ 5: степенное сглаживание

В завершении рассмотрим метод степенной аппроксимации в Excel.


Данный способ эффективно используется в случаях интенсивного изменения данных функции. Важно учесть, что этот вариант применим только при условии, что функция и аргумент не принимают отрицательных или нулевых значений.

Общая формула, описывающая данный метод имеет такой вид:

В конкретно нашем случае она выглядит так:

y = 6E+18x^(-6,512)

Как видим, при использовании конкретных данных, которые мы применяли для примера, наибольший уровень достоверности показал метод полиномиальной аппроксимации с полиномом в шестой степени (0,9844 ), наименьший уровень достоверности у линейного метода (0,9418 ). Но это совсем не значит, что такая же тенденция будет при использовании других примеров. Нет, уровень эффективности у приведенных выше методов может значительно отличаться, в зависимости от конкретного вида функции, для которой будет строиться линия тренда. Поэтому, если для этой функции выбранный метод наиболее эффективен, то это совсем не означает, что он также будет оптимальным и в другой ситуации.

Если вы пока не можете сразу определить, основываясь на вышеприведенных рекомендациях, какой вид аппроксимации подойдет конкретно в вашем случае, то есть смысл попробовать все методы. После построения линии тренда и просмотра её уровня достоверности можно будет выбрать оптимальный вариант.

Аппроксимация функций

Введение

Когда обрабатывается выборка экспериментальных данных, то они, чаще всего, представляются в виде массива, состоящего из пар чисел (x i ,y i ). Поэтому возникает задача аппроксимации дискретной зависимости y(x i ) непрерывной функцией f(x).

Аппроксимацией (приближением) функции называется нахождение такой функции (аппроксимирующей функции ) , которая была бы близка заданной.

Функция f(x), в зависимости от специфики задачи, может отвечать различным требованиям.

  • Функция f(x) должна проходить через точки (x i ,y i ), т. е. f(x i )=y i ,i=1...n. В этом случае говорят об интерполяции данных функцией f(x) во внутренних точках между x i , или экстраполяции за пределами интервала, содержащего все x i .
  • Функция f(x) должна некоторым образом (например, в виде определенной аналитической зависимости) приближать y(x i ), не обязательно проходя через точки (x i ,y i ). Такова постановка задачи регрессии , которую во многих случаях также можно назвать сглаживанием данных.
  • Функция f(x) должна приближать экспериментальную зависимость y(x i ), учитывая, к тому же, что данные (x i ,y i ) получены с некоторой погрешностью, выражающей шумовую компоненту измерений. При этом функция f(x), с помощью того или иного алгоритма уменьшает погрешность, присутствующую в данных (x i ,y i ). Такого типа задачи называют задачами фильтрации. Сглаживание - частный случай фильтрации.

Критерии близости функций и могут быть различные.

В том случае, когда приближение строится на дискретном наборе точек, аппроксимацию называют точечной или дискретной.

В том случае, когда аппроксимация проводится на непрерывном множестве точек (отрезке), аппроксимация называется непрерывной или интегральной . Примером такой аппроксимации может служить разложение функции в ряд Тейлора, то есть замена некоторой функции степенным многочленом.

Наиболее часто встречающим видом точечной аппроксимации является интерполяция (в широком смысле).

Пусть задан дискретный набор точек, называемых узлами интерполяции , причем среди этих точек нет совпадающих, а также значения функции в этих точках. Требуется построить функцию , проходящую через все заданные узлы. Таким образом, критерием близости функции является.

В качестве функции обычно выбирается полином, который называют интерполяционным полиномом .

В том случае, когда полином един для всей области интерполяции, говорят, что интерполяция глобальная .

В тех случаях, когда между различными узлами полиномы различны, говорят о кусочной или локальной интерполяции .

Найдя интерполяционный полином, мы можем вычислить значения функции между узлами (провести интерполяцию в узком смысле слова ), а также определить значение функции даже за пределами заданного интервала (провести экстраполяцию ).

Различные виды построения аппроксимирующей зависимости f(x) иллюстрирует рис. 1. На нем исходные данные обозначены кружками, интерполяция отрезками прямых линий - пунктиром, линейная регрессия - наклонной прямой линией, а фильтрация - жирной гладкой кривой.

Рис. 1. Виды построения аппроксимирующей зависимости

Интерполяция и экстраполяция

В огромном количестве численных методов используются алгоритмы интерполяции. Вообще говоря, вычислительная математика - это наука о дискретных представлениях функций. Именно конечный набор значений y(x i ) представляет на компьютерном языке математическую абстрацию - непрерывную функцию y(x). Задача интерполяции функции одной переменной состоит в замене дискретной зависимости y(x i ), т.е. N пар чисел (x i ,y i ), или, по-другому, узлов, некоторой непрерывной функцией y(x). При этом основным условием является то, что функция y(x) должна проходить через точки (x i ,y i ), т. е. y(x i )=y i ,i=1...N, а также возможность вычислить значение y(x) в любой точке, находящейся между узлов.

Рис. 2. Построение интерполирующих и экстраполирующих зависимостей.

Когда искомое значение y(x) вычисляется в точке x, которая находится между каких-либо из узлов x i , говорят об интерполяции , а когда точка x лежит вне границ интервала, включающего все x i - об экстраполяции функции y(x).

На Рис. 2 по множеству точек (x i ,y i ), обозначенных кружками, построена как интерполирующая (при x>100), так и экстраполирующая их функция (при x<100). Интерполяция-экстраполяция показаны на рис. сплошной кривой.

Следует иметь в виду, что точность экстраполяции обычно очень невелика.

Для экстраполяции данных в отдельных версиях пакета применяется функция predict (v, m ,n) . Она формирует вектор предсказанных значений, построенный на m последовательных элементах вектора v .

Параметры функции predict (v, m ,n ) : v - вектор, чьи значения представляют выборки, принятые в равных интервалах, m и n - целые числа.

Таким образом «предсказывающаяся функция» predict (v, m ,n) использует существующие данные, чтобы предсказать новые данные, которые находящиеся за пределами задания. Она использует линейный алгоритм предсказания, который является достаточным, когда функции гладкие или знакопеременные, хотя не обязательно периодические.

Пример ниже иллюстрирует использование линейного предсказания.

7 .1 Локальная интерполяция

7 .1.1. Линейная интерполяция

Простейшим случаем локальной интерполяции является линейная интерполяция, когда в качестве интерполяционной функции выбирается полином первой степени, то есть узловые точки соединяются прямой линией.

Линейная интерполяции представляет искомую зависимость y(x) в виде ломаной линии. Интерполирующая функция у(x) состоит из отрезков прямых, соединяющих точки (x i ,y i ) (см. рис. 3).

Рис.3 Линейная интерполяция

Для построения линейной интерполяции достаточно на каждом из интервалов (x i ,x i+1 ) вычислить уравнение прямой, проходящей через эти две точки:

При кусочно-линейной интерполяции вычисления дополнительных точек выполняются по линейной зависимости. Графически это означает просто соединение узловых точек отрезками прямых. Линейная интерполяция на Mathcad ’е осуществляется с помощью встроенной функции linterp .

linterp (VX , VY , х)

Для заданных векторов VX и VY узловых точек и заданного аргумента х linterp возвращает значение функции при ее линейной интерполяции. При экстраполяции используются отрезки прямых, проведенных через две крайние точки.

Пусть требуется провести линейную интерполяцию функции sin(x ) на интервале , используя пять узлов интерполяции, и вычислить значения функции в четырех точках Xk :

Задаем интервал изменения x и число узловых точек

Определяем шаг изменения x :

Вычисляем координаты узлов и значения функции в них:

Проводим линейную интерполяцию:

Вычислим значение интерполяционной функции в заданных точках и сравним их с точными значениями

Как видно, результаты интерполяции отличаются от точных значений функции незначительно.

7 .1.2. Интерполяция сплайнами

В настоящее время среди методов локальной интерполяции наибольшее распространение получила интерполяция сплайнами (от английского слова spline – гибкая линейка).

В большинстве практических приложений желательно соединить экспериментальные точки (x i ,y i )не ломаной линией, а гладкой кривой. Лучше всего для этих целей подходит интерполяция у(x) квадратичными или кубическими сплайнами, т. е. отрезками квадратичных или кубических парабол (см. рис.4).

При этом строится интерполяционный полином третьей степени, проходящий через все заданные узлы и имеющий непрерывные первую и вторую производные.

Рис.4 Сплайн-интерполяция

На каждом интервале интерполирующая функция является полиномом третьей степени

и удовлетворяет условиям.

Если всего n узлов, то интервалов – . Значит, требуется определить неизвестных коэффициентов полиномов. Условие дает нам n уравнений. Условие непрерывности функции и ее первых двух производных во внутренних узлах интервала дает дополнительно уравнений

Всего имеем различных уравнений. Два недостающих уравнения можно получить, задавая условия на краях интервала. В частности, можно потребовать нулевой кривизны функции на краях интервала, то есть. Задавая различные условия на концах интервала, можно получить разные сплайны.

Для осуществления сплайновой аппроксимации MathCAD предлагает четыре встроенные функции. Три из них служат для получения векторов вторых производных сплайн-функций при различном виде интерполяции:

cspIine(VX, VY) — возвращает вектор VS вторых производных при приближении в опорных точках к кубическому полиному;

pspline(VX, VY) — возвращает вектор VS вторых производных при приближении к опорным точкам к параболической кривой;

lspline(VX, VY) — возвращает вектор VS вторых производных при приближении к опорным точкам прямой.

Наконец, четвертая функция

interp (VS , VX , VY , x)

возвращает значение у(х) для заданных векторов VS, VX, VY и заданного значения х.

Таким образом, сплайн-аппроксимация проводится в два этапа. На первом с помощью одной из функций cspline, pspline или lspline отыскивается вектор вторых производных функции у(х), заданной векторами VX и VY ее значений (абсцисс и ординат). Затем на втором этапе для каждой искомой точки вычисляется значение у(х) с помощью функции interp.

Решим задачу об интерполяции синуса с помощью сплайнов через функцией interp(VS,x,y,z) . Переменные x и y задают координаты узловых точек, z является аргументом функции, VS определяет тип граничных условий на концах интервала.

Определим интерполяционные функции для трех типов кубического сплайна

Вычисляем значения интерполяционных функций в заданных точках и сравниваем результаты с точными значениями

Следует обратить внимание, что результаты интерполяции различными типами кубических сплайнов практически не отличаются во внутренних точках интервала и совпадают с точными значениями функции. Вблизи краев интервала отличие становится более заметным, а при экстраполяции за пределы заданного интервала различные типы сплайнов дают существенно разные результаты. Для большей наглядности результаты представлены на графиках (Рис.5) .

Рис.5 Сравнение сплайн-интерполяция

Аналогично можно убедиться, что первые и вторые производные сплайна непрерывны (Рис.6).

Рис.6 Сравнение производных (1-х и 2-х) сплайн-интерполяция

П роизводные более высоких порядков уже не являются непрерывными.

7.1.3. Интерполяция B-cплайнами

Рис.7 Интерполяция B-cплайнами

Чуть более сложный тип интерполяции – так называемая полиномиальная сплайн-интерполяция, или интерполяция B-сплайнами . В отличие от обычной сплайн-интерполяции, сшивка элементарных B-сплайнов производится не в точках (t i ,x i ), а в других точках, координаты которых обычно предлагается определить пользователю. Таким образом, требование равномерного следования узлов при интерполяции B-сплайнами отсутствует, и ими можно приближать разрозненные данные.

Сплайны могут быть полиномами первой, второй или третьей степени (линейные, квадратичные или кубические). Применяется интерполяция B-сплайнами точно так же, как и обычная сплайн-интерполяция, различие состоит только в определении вспомогательной функции коэффициентов сплайна.

bspline (vx , vy , u , n ) Возвращает вектор, содержащий коэффициенты В- сплайна степени n для данных , которые находяться в векторах vx и vy (с учет ом значений узл ов, которые заданы в u ) . Возвращаемый вектор становится первым аргументом функции interp .

interp (vs , vx , vy , x ) Возвращает B - сплайн интерполированной величины vy в точке x , где vs – результат работы функции bspline .

Аргументы

vx x .

vy y vx .

U - действительный вектор с числом элементов n-1 меньшим, чем в vx (где n - 1, 2, или 3). Элементы u должны быть в порядке возрастания. Элементы содержат значения узлов для интерполяции. Первый элемент в u должен быть меньше чем или равняться первому элементу в vx . Последний элемент в u должен быть больше или равняться последнему элементу в x.

N - целое число, равняются 1, 2, или 3, указывая степень индивидуального кусочно-линейного (n=1) , - квадратичного (n=2) , или кубического (n=3) полиномиал соответственно.

vs - вектор, образованный bspline .

X - значения независимой переменной, по которой Вы хотите интерполировать результаты. Для лучших результатов она должна принадлежать интервалу задания исходных значений х.

B - spline интерполяция позволяет передавать кривую через набор точек. Эта кривая строится на трех смежных точках полиномами градуса степени n и проходит через эти точки. Эти полиномы сопрягаются вместе в узлах так, чтобы сформировать законченную кривую.

7 .2. Глобальная интерполяция

При глобальной интерполяции ищется единый полином для всего интервала. Если среди узлов { x i ,y i } нет совпадающих, то такой полином будет единственным, и его степень не будет превышать n .

Запишем систему уравнений для определения коэффициентов полинома

Определим матрицу коэффициентов системы уравнений

Решим систему уравнений матричным методом

Определим интерполяционный полином

Вычислим значения интерполяционного полинома в заданных точках и сравним их с точными значениями

Коэффициенты интерполяционного полинома следующие:

Для наглядности результаты представлены на графике (Рис.8).

Примечание.

Из-за накопления вычислительной погрешности (ошибок округления) при большом числе узлов (n>10) возможно резкое ухудшение результатов интерполяции. Кроме того, для целого ряда функций глобальная интерполяция полиномом вообще не дает удовлетворительного результата. Рассмотрим в качестве примера две таких функции. Для этих функций точность интерполяции с ростом числа узлов не увеличивается, а уменьшается.

Рис. 8 . Глобальная интерполяция полиномом функции sin (z ).

Следующим примером является функция. Для нее интерполяционный полином строится на интервале [–1;1], используется 9 точек.

Результаты представлены на графике Рис. 9.

Рис. 9 Глобальная интерполяция полиномом функции.

Для функция найдем интерполяционный полином, используя заданные выше точки.

Результаты представлены на графике Рис. 10.

Рис. 10 Глобальная интерполяция полиномом функции.

При увеличении числа узлов интерполяции, результаты интерполирования вблизи концов интервала ухудшаются.

7 .3 Метод наименьших квадратов

Наиболее распространенным методом аппроксимации экспериментальных данных является метод наименьших квадратов. Метод позволяет использовать аппроксимирующие функции произвольного вида и относится к группе глобальных методов. Простейшим вариантом метода наименьших квадратов является аппроксимация прямой линией (полиномом первой степени). Этот вариант метода наименьших квадратов носит также название линейной регрессии.

Критерием близости в методе наименьших квадратов является требование минимальности суммы квадратов отклонений от аппроксимирующей функции до экспериментальных точек:

Таким образом, не требуется, чтобы аппроксимирующая функция проходила через все заданные точки, что особенно важно при аппроксимации данных, заведомо содержащих погрешности.

Важной особенностью метода является то, что аппроксимирующая функция может быть произвольной. Ее вид определяется особенностями решаемой задачи, например, физическими соображениями, если проводится аппроксимация результатов физического эксперимента. Наиболее часто встречаются аппроксимация прямой линией (линейная регрессия), аппроксимация полиномом (полиномиальная регрессия), аппроксимация линейной комбинацией произвольных функций. Кроме того, возможно путем замены переменных свести задачу к линейной (провести линеаризацию). Например, пусть аппроксимирующая функция ищется в виде. Прологарифмируем это выражение и введем обозначения , . Тогда в новых обозначениях задача сводится к отысканию коэффициентов линейной функции.

7 .3.1. Аппроксимация линейной функцией

Применим метод наименьших квадратов для аппроксимации экспериментальных данных.

Данные считываются из файлов datax и datay

При использовании MathCAD имя файла следует заключать в кавычки и записывать его по правилам MS DOS, например, READPRN("c:\mylib\datax.prn").

Определяется количество прочитанных данных (число экспериментальных точек).

В дальнейшем используются встроенные функции slope и intercept для определения коэффициентов линейной регрессии (аппроксимация данных прямой линией).

Функция slope(vx , vy ) определяет угловой коэффициент прямой, а функция intercept(vx , vy ) – точку пересечения графика с вертикальной осью.

Mathcad 2000 предлагает для этих же целей использовать функцию line(vx , vy ) , которая образует вектор (первый элемент - угловой коэффициент прямой, второй - точку пересечения с вертикальной осью).

Аргументы

v x - вектор действительных значений данных в порядке возрастания. Они соответствуют значениям x .

vy - вектор действительных значений данных. Они соответствуют значениям y . Содержит тот же число элементов, что и vx .

Коэффициенты линейной регрессии –

Стандартное отклонение составляет:

Рис. 11. Аппроксимация линейной функцией.

7 .3.2. Аппроксимация полиномами.

Для аппроксимация экспериментальных данных полиномами второй и третьей степени служат встроенные функции regress и уже знакомая нам функция interp . (Очевидно, что если в качестве аппроксимирующей функции брать полином степени на единицу меньше числа точек, то задача сведется к задаче глобальной интерполяции и полученный полином будет точно проходить через все заданные узлы.)

Вводим степени полиномов:

Функция regress(vx , vy , k ) является вспомогательной, она подготавливает данные, необходимые для работы функции interp .

Аргументы

v x - вектор действительных значений данных в порядке возрастания. Они соответствуют значениям x .

vy - вектор действительных значений данных. Они соответствуют значениям y . Содержит тот же число элементов, что и vx ,

k - степень полинома .

Вектор vs содержит, в том числе, и коэффициенты полинома

Функция interp (vs , vx , vy , z ) возвращает полином интерполированной величины vy в точке z , где vs – результат работы функции regress .

Определяя новые функции f2, f3 , мы получаем возможность находить значение полинома в любой заданной точке:

а также коэффициенты:

Стандартные отклонения почти не отличают друг от друга, коэффициент при четвертой степени z невелик, поэтому дальнейшее увеличение степени полинома нецелесообразно и достаточно ограничиться только второй степенью.

Функция regress имеется не во всех версиях Matcad "а. Однако, провести полиномиальную регрессию можно и без использования этой функции. Для этого нужно определить коэффициенты нормальной системы и решить полученную систему уравнений, например, матричным методом.

Теперь попытаемся аппроксимировать экспериментальные данные полиномами степени m и m1, не прибегая к помощи встроенной функции regress .

Вычисляем элементы матрицы коэффициентов нормальной системы

и столбец свободных членов

Находим коэффициенты полинома, решая систему матричным методом,

Определяем аппроксимирующие функции

Коэффициенты полиномов следующие:

Рис. 12. Аппроксимация полиномами 2-й и 3-й степени.

Функция regress создает единственный приближающий полином, коэффициенты которого вычисляются по всей совокупности заданных точек, т. е. глобально. Иногда полезна другая функция полиномиальной регрессии, дающая локальные приближения отрезками полиномов второй степени: loess(VX, VY, span ) — возвращает вектор VS , используемый функцией interp(VS, VX, VY, x) , дающей наилучшее приближение данных (с координатами точек в векторах VX и VY ) отрезками полиномов второй степени. Аргумент span > 0 указывает размер локальной области приближаемых данных (рекомендуемое начальное значение — 0,75). Чем больше span , тем сильнее сказывается сглаживание данных. При больших span эта функция приближается к regress(VX, VY, 2) .

Ниже в примере показано приближение сложной функции со случайным разбросом ее ординат с помощью совокупности отрезков полиномов второй степени (функция loess ) для двух значений параметра span .

По рисунку примера можно отметить, что при малом значении span = 0.05 отслеживаются характерные случайные колебания значений функции, тогда как уже при span = 0.5 кривая регрессии становится практически гладкой. К сожалению, из-за отсутствия простого описания аппроксимирующей функции в виде отрезков полиномов этот вид регрессии получил ограниченное применение.

Проведение многомерной регрессии

MathCAD позволяет выполнять также многомерную регрессию. Самый типичный случай ее — приближение поверхностей в трехмерном пространстве. Их можно характеризовать массивом значений высот z , соответствующих двумерному массиву Мху координат точек (х,у) на горизонтальной плоскости.

Новых функций для этого не задано. Используются уже описанные функции в несколько иной форме:

regress(Mxy, Vz, n ) — возвращает вектор, запрашиваемый функцией interp (VS, Мху, Vz, V) для вычисления многочлена n -й степени, который наилучшим образом приближает точки множества Мху и Vz . Мху — матрица т 2, содержащая координаты х и у. Vz — m -мер-ный вектор, содержащий z -координаты, соответствующие т точкам, указанным в Мху;

Loes(Mxy, Vz, span ) — аналогичен loes(VX, VY, span ), но в многомерном случае;

interp(VS, Мху, Vz, V) — возвращает значение z по заданным векторам VS (создается функциями regress или loess ) и Мху , Vz и V (вектор координат х и у заданной точки, для которой находится z ).

Пример многомерной интерполяции был приведен выше. В целом многомерная регрессия применяется сравнительно редко из-за сложности сбора исходных данных.

7 .3.3. Аппроксимация линейной комбинацией функций

Mathcad предоставляет пользователям встроенную функцию linfit для аппроксимации данных по методу наименьших квадратов линейной комбинацией произвольных функций.

Функция linfit(x , y , F ) имеет три аргумента:

  • вектор x – x –координаты заданных точек,
  • вектор y – y –координаты заданных точек,
  • функция F – содержит набор функций, который будет использоваться для построения линейной комбинации.

Задаем функцию F (аппроксимирующая функция ищется в виде:

Определяем аппроксимирующую функцию:

Вычисляем дисперсию:

Рис. 1 3 . Аппроксимация линейной комбинацией функций

8.3.4.

Теперь построим аппроксимирующую функцию дробно–

рационального типа . Для этого воспользуемся функцией genfit(x , y , v,F ) .

Функция имеет следующие параметры:

  • x, y – векторы, содержащие координаты заданных точек,
  • F – функция, задающая искомую функциональную n –параметрическую зависимость и частные производные этой зависимости по параметрам.
  • v – вектор, задающий начальные приближения для поиска параметров.

Поскольку нулевой элемент функции F содержит искомую функцию, определяем функцию следующим образом:

Вычисляем среднее квадратичное отклонение

Рис. 1 4 . Аппроксимация функцией произвольного вида

на основе genfit .

Функция genfit имеется не во всех реализациях Mathcad "а. Возможно, однако, решить задачу, проведя линеаризацию.

Заданная функциональная зависимость может быть линеаризована

введением переменных и. Тогда .

Определим матрицы коэффициентов нормальной системы.

Находим коэффициенты функции, решая систему матричным методом,

Определяем функцию:

Вычислим стандартное отклонение

Обратите внимание! Мы получили другие коэффициенты! Задача на нахождение минимума нелинейной функции, особенно нескольких переменных, может иметь несколько решений.

Стандартное отклонение больше, чем в случае аппроксимации полиномами, поэтому следует остановить свой выбор на аппроксимации полиномом.

Представим результаты аппроксимации на графиках

Рис. 1 5 . Аппроксимация функцией произвольного вида

на основе genfit .

В тех случаях, когда функциональная зависимость оказывается достаточно сложной, может оказаться, что самый простой способ нахождения коэффициентов – минимизация функционала Ф "в лоб".

Аппроксимацией (приближением) функции называется нахождение такой функции (аппроксимирующей функции ) , которая была бы близка заданной. Критерии близости функций и могут быть различные.

Основная задача аппроксимации - построение приближенной (аппроксимирующей) функции, в целом наиболее близко проходящей около данных точек или около данной непрерывной функции. Такая задача возникает при наличии погрешности в исходных данных (в этом случае нецелесообразно проводить функцию точно через все точки, как в интерполяций) или при желании получить упрощенное математическое описание сложной или неизвестной зависимости.

Рис. 3.6 Метод Лагранжа

Концепция аппроксимации

Близость исходной и аппроксимирующей функций определяется числовой мерой

- критерием аппроксимации (близости). Наибольшее распространение получил квадратичный критерий, равный сумме квадратов отклонений расчетных значений от "экспериментальных" (т.е. заданных), - критерий близости в заданных точках:

Здесь у i - заданные табличные значения функции; у i расч - расчетные значения по аппроксимирующей функции; b i - весовые коэффициенты, учитывающие относительную важность i -и точки (увеличение b ,. приводит при стремлении уменьшить R к уменьшению, прежде всего отклонения в i - й точке, так как это отклонение искусственно увеличено за счет относительно большого значения весового коэффициента).

Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

Другим распространенным критерием близости является следующий:

Этот критерий менее распространен в связи с аналитическими и вычислительными трудностями, связанными с отсутствием гладкости функции и ее дифференцируемости.

Выделяют две основные задачи:

1) получение аппроксимирующей функции, описывающей имеющиеся данные, с погрешностью не хуже заданной;

2) получение аппроксимирующей функции заданной структуры с наилучшей возможной погрешностью.

Чаще всего первая задача сводится ко второй перебором различных аппроксимирующих функций и последующим выбором наилучшей.

Метод наименьших квадратов

Метод базируется на применении в качестве критерия близости суммы квадратов отклонений заданных и расчетных значений. При заданной структуре аппроксимирующей функции у i расч (х) необходимо таким образом подобрать параметры этой функции, чтобы получить наименьшее значение критерия близости, т.е. наилучшую аппроксимацию. Рассмотрим путь нахождения этих параметров на примере полиномиальной функции одной переменной:

Запишем выражение критерия аппроксимации при b i =1 (i =1, 2,…, n ) для полиномиального у i расч (х):

Искомые переменные а j можно найти из необходимого условия минимума R по этим переменным, т.е. dR / d а р = 0 (для р =0, 1,2,…,k). Продифференцируем по а р (р - текущий индекс):

После очевидных преобразований (сокращение на два, раскрытие скобок, изменение порядка суммирования) получим

Перепишем последние равенства

Получилась система n +1 уравнений с таким же количеством неизвестных а j , причем линейная относительно этих переменных. Эта система называется системой нормальных уравнений. Из ее решения находятся параметры а j аппроксимирующей функции, обеспечивающие minR , т.е. наилучшее возможное квадратичное приближение. Зная коэффициенты, можно (если нужно) вычислить и величину R (например, для сравнения различных аппроксимирующих функций). Следует помнить, что при изменении даже одного значения исходных данных (или пары значений х i , у i , или одного из них) все коэффициенты изменят в общем случае свои значения, так как они полностью определяются исходными данными. Поэтому при повторении аппроксимации с несколько изменившимися данными (например, вследствие погрешностей измерения, помех, влияния неучтенных факторов и т.п.) получится другая аппроксимирующая функция, отличающаяся коэффициентами. Обратим внимание на то, что коэффициенты а j полинома находятся из решения системы уравнений, т.е. они связаны между собой. Это приводит к тому, что если какой-то коэффициент вследствие его малости захочется отбросить, придется пересчитывать заново оставшиеся. Можно рассчитать количественные оценки тесноты связи коэффициентов. Существует специальная теория планирования экспериментов, которая

позволяет обосновать и рассчитать значения х i , используемые для аппроксимации, чтобы получить заданные свойства коэффициентов (несвязанность, минимальная дисперсия коэффициентов и т.д.) или аппроксимирующей функции (равная точность описания реальной зависимости в различных направлениях, минимальная дисперсия предсказания значения функции и т.д.).

Рис. 3.7 Влияние степени аппроксимирующего полинома М на точность аппроксимации

В случае постановки другой задачи - найти аппроксимирующую функцию, обеспечивающую погрешность не хуже заданной, - необходимо подбирать и структуру этой функции. Эта задача значительно сложнее предыдущей (найти параметры аппроксимирующей функции заданной структуры, обеспечивающей наилучшую возможную погрешность) и решается в основном путем перебора различных функций и сравнения получающихся мер близости. Для примера на рис. 3.7 приведены для визуального сравнения исходная и аппроксимирующие функции с различной степенью полинома, т.е. функции с различной структурой. Не следует забывать, что с повышением точности аппроксимации растет и сложность функции (при полиномиальных аппроксимирующих функциях), что делает ее менее удобной при использовании.

Рассмотрим решение задачи аппроксимации и интерполяции с шумом в

программе MathCAD (рисунок 3.8).

Пример 3.1. В ходе проведения эксперимента были получены данные, представленные в таблице 3.1. Необходимо способом наименьших квадратов подобрать для заданных значений x и y квадратичную функцию . Построить на одной координатной плоскости экспериментальные данные и аппроксимирующую функцию.

Таблица 3.1 Данные эксперимента

Решение. Для определения коэффициентов квадратичной функции построим дополнительную таблицу 3.2.

Таблица 3.2 Дополнительная таблица

Строим систему уравнений

В нашем случае она будет иметь вид:

Из полученной системы уравнений находим

Искомая зависимость

Строим график экспериментальных данных и найденной зависимости.

Рис.3.8 Аппроксимация и интерполяция в задаче с помехами

Если требуется построить зависимость в виде показательной функции , то необходимо составить систему:

(3.7)

Для этого строится таблица

Иногда возникает необходимость аппроксимации данной функции другими функциям, которые легче вычислить. В частности, рассматривается задача о наилучшем приближении в нормированном пространстве Н, когда заданную функцию f требуется заменить линейной комбинацией заданных элементов из Н так, чтобы отклонение ||f - || было минимальным.

Метод наименьших квадратов

Mетод наименьших квадратов был предложен Гауссом и Лежандром в конце XVIII - начале XIX веков в связи с проблемой обработки экспериментальных данных. В этом случае задача построения функции непрерывного аргумента по дискретной информации, характеризуется двумя особенностями:

  • 1. Число точек, в которых проводятся измерения, обычно бывает достаточно большим.
  • 2. Значения функции в точках сетки определяются приближенно в связи с неизбежными ошибками измерения.

С учетом этих обстоятельств строить функцию в виде суммы большого числа слагаемых и добиваться ее точного равенства в точках сетки величинам, как это делалось при интерполировании, становится нецелесообразным.

В методе наименьших квадратов аппроксимирующая функция ищется в виде суммы, аналогичной, но содержащей сравнительно небольшое число слагаемых

погрешность уравнение интерполяция

в частности, возможен вариант.

Предположим, что мы каким-то образом выбрали коэффициенты, тогда в каждой точке сетки, можно подсчитать погрешность

Сумма квадратов этих величин называется суммарной квадратичной погрешностью

Она дает количественную оценку того, насколько близки значения функции в точках сетки к величинам.

Меняя значения коэффициентов, мы будем менять погрешность, которая является их функцией. В результате естественно возникает задача:

Найти такой, набор коэффициентов, при которых суммарная квадратичная погрешность оказывается минимальной.

Функцию с набором коэффициентов, удовлетворяющих этому требованию, называют наилучшим приближением по методу наименьших квадратов.

Построение наилучшего приближения сводится к классической задаче математического анализа об экстремуме функции нескольких переменных. Метод решения этой задачи известен.

Необходимым условием экстремума является равенство нулю в экстремальном точке всех первых частных производных рассматриваемой функции. В случае это дает

Оставим члены, содержащие, слева и поменяем в них порядок суммирования по индексам и. Члены, содержащие, перенесем направо. В результате уравнения примут вид

Мы получили систему линейных алгебраических уравнений, в которой роль неизвестных играют искомые коэффициенты разложения. Число уравнении и число неизвестных в этой системе совпадает и равно. Матрица коэффициентов системы Г состоит из элементов, которые определяются формулой. Ее называют матрицей Грама для системы функций на сетке. Отметим, что матрица Грама является симметричной: для ее элементов, согласно, справедливо равенство. Числа, стоящие в правой части уравнений, вычисляются по формуле через значения сеточной функции.

Предположим, что функции выбраны такими, что определитель матрицы Грама, отличен от нуля:

В этом случае при любой правой части система имеет единственное решение

Рассмотрим наряду с набором коэффициентов, полученных в результате решения системы, любой другой набор коэффициентов. Представим числа в виде

и сравним значения суммарной квадратичной погрешности для функций, построенных с помощью коэффициентов и.


Квадрат погрешности и точке для функции с коэффициентами можно записать в виде

Здесь в среднем слагаемом мы заменили в одной из сумм индекс суммирования на, чтобы не использовать один и тот же индекс в двух разных суммах и иметь возможность перемножить их почленно.

Чтобы получить суммарную квадратичную погрешность, нужно просуммировать выражения для по индексу Первые слагаемые не содержат. Их сумма дает погрешность, вычисленную для функции с коэффициентами.

Рассмотрим теперь сумму вторых слагаемых, которые зависят от линейно:

Здесь мы поменяли местами порядок суммирования и воспользовались тем, что коэффициенты, удовлетворяют системе уравнений.


С учетом будем иметь

Формула показывает, что функция с коэффициентами, полученными в результате решения уравнений, действительно минимизирует суммарную квадратичную погрешность. Если мы возьмем любой другой набор коэффициентов, отличный от, то согласно формуле к погрешности добавится положительное слагаемое и она увеличится.

Итак, чтобы построить наилучшее приближение сеточной функции, по методу наименьших квадратов, нужно взять в качестве коэффициентов разложения решение системы линейных уравнений.

Зачем нужна аппроксимация функций В окружающем нас мире все взаимосвя-зано, поэтому одной из наиболее часто встре-чающихся задач является поиск зависимости между различными величинами, что позволяет по значению одной величины определить значение другой. Математической моделью такой зависимости является понятие функции y = f (x).

При расчетах, связанных с обработкой полученных экспериментальных данных, вычислением f (x), разработкой вычислительных методов, встречаются следующие две ситуации: 1. Как установить вид функции y = f (x), если она неизвестна, а известны только некоторые ее значения (полученные из экспериментальных измерений, или из сложных расчетов). 2. Как упростить вычисление известной функции f (x) или ее характеристик, если f (x) имеет слишком сложный вид?

Ответы на эти вопросы дает теория аппроксимации функций, основная задача которой – нахождение функции (x), близкой (аппроксимирующей) к исходной f (x). ыбирают Функцию (x) чтобы такой, она была максимально удобной для расчетов. Основной подход к решению этой задачи заключается в том, что (x) выбирается зависящей от нескольких свободных параметров, значения которых подбираются из некоторого условия близости функций f (x) и (x).

Обоснование способа нахождения вида функциональной зависимости и выбора параметров составляет задачу теории аппроксимации функций. В зависимости от способа выбора параметров получены разные методы аппроксимации. Наиболее распространенными являются: интерполяция и среднеквадратичное приближение, частным случаем которого является метод наименьших квадратов.

Наиболее простой является линейная аппроксимация, при которой выбирают функцию линейно зависящую от параметров ci (i = 1, 2, …, n) в виде многочлена: , (1) {φk (x) } – линейно независимые функции, в качестве которых выбирают элементарные функции (тригонометрические, экспоненты, логарифмические или их комбинации).

Интерполяция это один из способов аппроксимации функций. Суть ее в следующем. Для x на интервале , где функции f и должны быть близки, выбирают систему точек (узлов) x 1

В случае линейной аппроксимации (1) система для нахождения коэффициентов сi линейна и имеет следующий вид: (2) При интерполяции для расчетов наиболее удобны обычные алгебраические многочлены.

Интерполяционным многочленом называют алгебраический многочлен степени (n – 1), совпадающий с аппроксимируемой функцией в выбранных n точках (узлах). Общий вид алгебраического многочлена: (3)

Матрица системы (2) в этом случае имеет вид. (4) Ее определитель отличен от нуля, если точки xi разные. Поэтому задача (2) обязательно имеет решение.

При h 0 порядок погрешности интерполяции алгебраическим многочленом равен количеству выбранных узлов n. Величина может быть сделана малой как за счет увеличения n, так и уменьшения h. В практических расчетах обычно используют многочлены невысокого порядка (n 6), в связи с тем, что с ростом n возрастает погрешность вычисления самого многочлена из-за погрешностей округления.

Многочлены можно записать по-разному: P 1(x) = 1 – 2 x + x 2 = (x – 1)2. В зависимости от решаемых задач применяют различные виды представления многочлена и способы интерполяции. Наиболее часто используют интерполяционные многочлены Лагранжа и Ньютона. Их особенность в том, что не надо находить параметры сi , т. к. эти многочлены записаны через значения таблицы (узлы) { (xi, yi), i = 1, …, n }.

Параметрами этой функции являются: xt – текущая точка, в которой находится неизвестное значение функции по известным узлам; x и y – узлы, т. е. массивы известных значений (рекомендуется передавать по адресу); m – количество узлов (размер массивов x и y); Понятно, что циклы должны быть организованы от 0 и до значения, меньшего указанного, например первый цикл: for (i = 0; i

Src="https://present5.com/presentation/91940964_324663347/image-18.jpg" alt="Линейная и квадратичная интерполяция При интерполяции по заданной таблице (узлам) из m > 3"> Линейная и квадратичная интерполяция При интерполяции по заданной таблице (узлам) из m > 3 точек применяют квадратичную для n = 3 или линейную для n = 2 интерполяцию. В этом случае для приближенного вычисления значения функции f в точке x находят в таблице ближайший к этой точке i-й узел, строят интерполяционный многочлен Ньютона первой или второй степени по следующим формулам.

(1) где xi– 1 ≤ x. Т ≤ xi. За приближенное значение функции f (x. T) принимают N 1(x. T) – линейная интерполяция.

(2) где xi– 1 ≤ x. Т ≤ xi+1. За приближенное значение функции f (xt) принимают N 2(xt) – квадратичная интерполяция.

Параметрами функций в рассмотренных схемах линейной и квадратичной интерполяций являются значения, аналогичные рассмотренным в схеме функции расчета многочлена Ньютона. Результат линейной интерполяции yt = N 1(xt) (приближенное значение функции в точке xt) рассчитывается по формуле (1) и возвращается в точку вызова функции, а результат квадратичной интерполяции yt = N 2(xt) – по формуле (2).

Интерполяционный многочлен Лагранжа (8) Многочлены выбраны так, что во всех узлах, кроме k-го, они равны нулю, а в k-м узле – единице: Из выражения (8) видно, что Ln– 1(xi) = yi.

Параметрами функции являются значения, аналогичные рассмотренным ранее схемам. Рассчитанный согласно формуле (8) результат yt возвращается в точку вызова функции. Текст функции, реализующий предложенный алгоритм, может иметь следующий вид:

double Metod (double xt, double *x, int m) { int i, k; double e, yt = 0; for (k = 0; k

В данном случае массив табличных значений функции y не используется, т. к. функция f (x) реализована в виде функции пользователя: double fun (double x) { return «Вид функции f (x)» ; } Вместо блока yt = yt + e yk в схеме алгоритма используем вычисление yt += e * fun (x[k]);

Общий алгоритм аппроксимации функции В заданиях вид функции f (x) известен для того, чтобы можно было найти нужное количество узлов (значений таблицы) на отрезке и сравнить полученные результаты. Пусть на отрезке задана таблица из m известных узлов. Необходимо аппроксимировать f (x) в n точках, n ≥ m, т. е. найти по небольшому количеству известных значений m нужное количество n неизвестных значений функции.