Регуляция репликации. Процесс репликации днк

Лекция 3. Репликация различных ДНК и ее регуляция и репарация

Уотсон и Крик предположили, что для удвоения ДНК должны произойти разрыв водородных связей, удерживающих вместе спиральный дуплекс, и расхождение цепей. Они также высказали мысль, что каждая цепь дуплекса служит матрицей при синтезе комплиментарной цепи и в результате образуются две пары цепей, в каждой из которых только одна является родительской. Уотсон и Крик предполагали, что репликация ДНК осуществляется спонтанно, без участия ферментов, но это оказалось неверно. Тем не менее идея о том, что удвоение ДНК происходит путем последовательного соединения нуклеотидов в соответствии с правилом комплиментарности, заданным каждой цепью спирали, разрешила концептуальную проблему точного воспроизведения генов.

С того времени как было высказано это предположение, матричная природа механизма репликации была подтверждена многочисленными данными, полученными как in vitro так и in vivo для различных организмов. Согласно модели репликация всех двуцепочечных ДНК полуконсервативна. Доказательство полуконсервативного механизма было получено в 1958 г. учеными Мезельсоном и Сталь(ем). Сначала они выращивали бактерий длительное время на среде, содержащей тяжелый изотоп азота (15 N), который включался в ДНК, а затем переносили их на среду, содержащую обычный легкий изотоп азота (14 N). После репликации дочернюю ДНК первого поколения фракционировали по плотности. Оказалось, что вся дочерняя ДНК однородна и имеет плотность, промежуточную между плотностью тяжелой и легкой ДНК. Следовательно, одна цепь молекулы дочерней ДНК содержала 15 N, а другая 14 N, что отвечает полуконсервативному механизму. Существуют ли в природе альтернативные способы репликации двуцепочечной ДНК (консервативный и дисперсный) – неизвестно. Итак, после одно раунда репликации одна цепь в каждой из двух дочерних ДНК является родительской, т.е. консервативной, а другая – синтезированной заново.

Репликация одноцепочечной ДНК у вирусов. Если геном представлен одноцепочечной ДНК (как у некоторых вирусов), то эта единственная цепь служит матрицей для образования комплиментарной цепи, с которой она образует дуплекс, а затем на этом дуплексе синтезируются либо дочерние дуплексы, либо одноцепочечные копии одной их матричных цепей. Репликация генетического материала вируса осуществляет обычно с участием ферментов клетки-хозяина. На некоторых молекулах вирусной ДНК синтезируются также ее ДНК-копии – с помощью либо клеточной, либо кодируемой вирусом ДНК-полимеразы. Эти ДНК-копии используются в последствии при сборке вирусных частиц. Репликация ДНК вирусов происходит либо в ядре клетки-хозяина (вирус герпеса), либо в цитоплазме (поксвирусы).

Репликация у прокариот. Редупликацию ДНК (процесс, при котором информация, закодированная в последовательности оснований молекулы родительской ДНК, передается с максимальной точностью дочерней ДНК) осуществляет особый фермент ДНК-полимераза. Посадке этого фермента на одну из нитей ДНК предшествует строго локализованный разрыв кольца, если ДНК кольцевая (у бактерий) и некоторое расплетание концевого участка ее гигантской двунитевой спирали. Заметим сразу, что ДНК-полимераза может садиться на любой из двух концов спирали, но обязательно на ту нить, для которой этот конец является 3"-концом (будь то «кодирующая» или «защитная» нить). Продвижение фермента вдоль «матрицы» материнской нити всегда идет в направлении от 3"-конца к 5"-концу. Отсюда следует, что синтезируемая по этой матрице, «комплементарная» к ней новая нить ДНК будет начинаться своим 5"-концом и наращиваться в направлении своего будущего 3"-конца. Эти два направления нельзя путать. В случае сомнения достаточно вспомнить, что наращивание новосинтезируемой нити происходит путем последовательного присоединения нуклеотидов, уже несущих фосфатную группу, связанную с 5"-углеродом дезоксирибозы. Следовательно, к предыдущему, уже стоящему на своем месте нуклеотиду он должен присоединяться по его ОН-группе, связанной с 3"-углеродом дезоксирибозы. А это и означает, что наращивание новой нити ДНК идет в направлении 5"-3" . Здесь же уместно напомнить, что работа продвижения ДНК-полимеразы осуществляется за счет энергии разрыва химической связи между первым и вторым фосфатами соответствующего нуклеозидтрифосфата - предшественника присоединяемого нуклеотида.

Теперь перейдем к добавлениям и уточнениям. Начнем с того, что в клетке кишечной палочки (E.coli) обнаружилась не одна, а целых три ДНК-полимеразы. Они заметно отличаются друг от друга по молекулярному весу и по числу молекул каждой из них, содержащихся в клетке. А также по их роли в процессе редупликации ДНК.

Исторически первой была обнаружена и очищена ДНК-полимераза I (фермент Корнберга). Потом появились ДНК-полимеразы II и III, Молекулярные веса этих трех ферментов, соответственно, 109, 90 и 300 кДа, а их представительство в одной клетке: 300, 40 и 20 штук. Различие функций будет видно из дальнейшего.

Описание 1-го этапа редупликации начнем с того, что первоначальное расплетание конца двунитевой материнской молекулы ДНК осуществляется с помощью специального белка «топоизомеразы». (прозрачка 6) в точке начала репликации – ori (origin – начало репликации).

Структура точек начала репликации. Фрагменты ДНК, несущие точку начала репликации выделены из E.coli и некоторых плазмид, а также из дрожжей и ряда эукариотических вирусов. В некоторых случаях место начала репликации имеет такую нуклеотидную последовательность, что дуплекс принимает необычную конфигурацию, колторую распознают белки, участвующие в инициации. Природа взаимодействия между точкой начала репликации и белками и механизм инициации в целом исследованы мало.

Итак, топоизомераза продвигается по двунитевой молекуле, ослабляя ее водородные связи настолько, что на пройденном им коротком концевом участке эти связи разрываются уже при температуре 37°С. Вслед за топоизомеразой на материнскую ДНК садится и начинает продвигаться по ней другой белок ДНК-геликаза, которому предстоит сыграть свою роль позже. Затем особая РНК-полимераза, работающая только с конца нити ДНК, именуемая «праймаза» строит очень короткую цепочку рибонуклеотидов (получившую название «праймера») комплементарно к началу нити ДНК. У бактерий это всего 5 нуклеотидов, а у эукариотов - порядка 40. (На рис. 28 все праймеры показаны тонкой линией, а все нити ДНК - жирной.)

Только теперь, сразу за праймером на ту же нить ДНК (условимся, для простоты, называть ее «первой») садится ДНК-полимераза, которая может начать строительство комплементарной нити ДНК только начиная от праймера, присоединяясь к нему («танцует от печки»). Это - ДНК-полимераза III, самая крупная, состоящая из 6-ти субъединиц и по своей функции главная - она будет вести «комплементарный синтез» ДНК по этой первой материнской нити ДНК до самого конца. Первоначальное движение этой ДНК-полимеразы ограничено 1-2-мя тысячами нуклеотидов первой нити (у эукариотов - всего на 200 нуклеотидов).

Вторая материнская нить (еще пустая) формирует вместе с первой нитью «вилку редупликации».

Между геликазой и ДНК-полимеразой III образуется некоторый участок обнаженной 1-й нити. 2-я нить тоже еще ничем не прикрыта. Эти две нити после ухода геликазы могут вновь сомкнуться. Чтобы этого не происходило, вплотную за геликазой на 1-ю нить садятся четыре, так называемых «ДНК-связывающих белка». Им не приписывают иных функций, кроме защиты от восстановления двойной спирали ДНК близ вершины вилки...

Пройдя до вершины вилки разошедшихся нитей материнской ДНК тандем геликаза-ДНК-связывающие белки - ДНК-полимераза III останавливается (см. рис. 28). Топоизомераза уходит дальше по двухнитевой материнской ДНК, а геликаза разрывает сахаро-фосфатную связь на 2-й нити. Уплотненные на участке, прилегающем к вилке, витки двойной спирали расправляются, 1-я нить ДНК вместе с сидящими на ней белками вращается вокруг своей оси, а вокруг этой нити поворачивается и отрезанный кусок 2-й нити, временно связанный с геликазой. Этот кусок называют «фрагментом Оказаки» - по имени ученого, обнаружившего появление таких фрагментов при редупликации. После снятия напряжения нити двойной спирали материнской ДНК снова могут начать расходиться. Но до этого с отрезанного конца фрагмента Оказаки другая праймаза начинает на нем построение нового рибонуклеотидного праймера. Затем геликаза освобождает фрагмент и уходит вперед, а специальный фермент «лигаза» пришивает начало фрагмента Оказаки на прежнее место - ко 2-й нити материнской ДНК. Заметим, что лигаза (М=96 тыс.) в клетке E.coli представлена наиболее многочисленной популяцией - около 200 молекул. Из чего следует, что она выполняет не случайные «ремонтные» работы, а является полноправным членом совокупности ферментов, обеспечивающих редупликацию ДНК (подобно значению ниток для хирурга).

Когда праймер готов, впереди него, по направлению к 5"-концу 2-й материнской нити ДНК садится ДНК-полимераза I. Начинается строительство нити, комплементарной к этому фрагменту 2-й нити, опять в направлении 3"- 5", считая по этой нити. ДНК-полимераза I доходит до конца фрагмента Оказаки и снимается. Этим заканчивается 1-й этап редупликации (рис. 28).

Между тем праймер, оставшийся в начале 1-й нити разрушается некой «рибонуклеазой Н», - ферментом, рвущим нить РНК, находящуюся в комплексе с нитью ДНК. На его место ДНК-полимераза II ставит «правильные» дезоксирибонуклеотиды. В то же время топоизомераза, геликаза, а за ними и ДНК-полимераза III продвигаются вперед.

Начинается 2-й этап редупликации. Вилка репликации тоже продвигается, прилегающий к ней участок материнской двунитевой ДНК уплотняется и весь синтезирующий тандем останавливается. Геликаза опять разрезает 2-ю нить, образуя второй фрагмент Оказаки. Так же, как раньше, на обрезанном (временно) конце фрагмента создается праймер, к нему «подсаживается» ДНК-полимераза I и начинает копировать второй фрагмент Оказаки, т.е. 2-ю нить материнской ДНК. Отличие второго этапа будет только в том, что на пути этой полимеразы встретится праймер, оставшийся от копирования 1-го фрагмента Оказаки. Но ДНК-полимераза I, в отличие от всех прочих ДНК-полимераз, обладает еще и 5"-3" экзонуклеазной активностью, т. е. в направлении своего движения. Она разрушает праймер и доходит до того места, с которого начинала копирование 1-го фрагмента Оказаки ее предшественница. Остается только связать фосфодиэфирной связью эти два куска новосинтезированной комплементарной нити. Естественно, что это делает вездесущая ДНК-лигаза.


Репликация ДНК

Схематическое изображение процесса репликации: (1) запаздывающая нить, (2) лидирующая нить, (3) ДНК-полимераза, (4) ДНК-лигаза, (5) РНК-праймер, (6) праймаза, (7) фрагмент Оказаки, (8) ДНК-полимераза, (9) хеликаза, (10) одиночная нить со связанными белками, (11) топоизомераза.

Реплика́ция ДНК - процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый реплисомой.

Репликация проходит в три этапа:

  1. инициация репликации
  2. элонгация
  3. терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации. В геноме таких сайтов может быть как всего один, так и много.

Репликон - это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта.

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка - место непосредственной репликации ДНК.

Суть репликации днк заключается в том, что специальный фермент разрывает слабые водородные связи, которые соединяют между собой нуклеотиды двух цепей. В результате цепи ДНК разъединяются, и из каждой цепи «торчат» свободные азотистые основания (возникновение так называемой вилки репликации). Особый фермент ДНК-полимераза начинает двигаться вдоль свободной цепи ДНК от 5"- к З"-концу (лидирующая цепь), помогая присоединиться свободным нуклеотидам, постоянно синтезируемым в клетке, к З"-концу вновь синтезируемой цепи ДНК. На второй нити ДНК (отстающая нить) новая ДНК образуется в виде небольших сегментов, состоящих из 1000-2000 нуклеотидов (фрагменты Оказаки).

Для начала репликации ДНК фрагментов этой нити требуется синтез коротких фрагментов РНК как затравок, для чего используется особый фермент - РНК-полимераза (праймаза). Впоследствии праймеры РНК удаляются, в образовавшиеся бреши встраивается ДНК с помощью ДНК полимеразы I. Таким образом, каждая цепь ДНК используется как матрица или шаблон для построения комплементарной цепи.

Основные ферменты репликации ДНК:

ДНК - полимераза

ДНК-полимераза - фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент «читает» и использует в качестве шаблона. ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов.

ДНК - лигазы

Лигаза - фермент, катализирующий соединение двух молекул с образованием новой химической связи (лиᴦᴎҏование). ДНК-лигазы -- ферменты, катализирующие ковалентное сшивание цеᴨȇй ДНК при репликации.

ДНК - хеликазы

ДНК хеликазы - ферменты раскручивающие двуцепочечную спираль ДНК.

ДНК-топоизомеразы

ДНК-топоизомеразы-ферменты, изменяющие стеᴨȇньсверхспиральности и тип сверхспирали. Путём одноцепочечного разрыва они создают шарнир, вокруг которого нереплецированный дуплекс ДНК, находящейся ᴨȇред вилкой, может свободно вращаться. Это снимает механическое напряжение, возникающее при раскручивании двух цеᴨȇй в репликативной вилке, что является необходимым условием для её непрерывного движения.

Праймаза

Праймаза - фермент, обладающий РНК-полимеразной активностью; служит для образования РНК-праймеров, необходимых для инициации синтеза ДНК в точке ori и дальнейшем для синтеза отстающей цепи.

Репликация ДНК

Реплика́ция ДНК - процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый англ. replisome ) .

История изучения

Каждая молекула ДНК состоит из одной цепи исходной родительской молекулы и одной вновь синтезированной цепи. Такой механизм репликации называется полуконсервативным. В настоящее время этот механизм считается доказанным благодаря опытам Мэтью Мезельсона и Франклина Сталя ( г.) . Ранее существовали и две другие модели: «консервативная» - в результате репликации образуется одна молекула ДНК, состоящая только из родительских цепей, и одна, состоящая только из дочерних цепей; «дисперсионная» - все получившиеся в результате репликации молекулы ДНК состоят из цепей, одни участки которых вновь синтезированы, а другие взяты из родительской молекулы ДНК.

Общие представления

Репликация ДНК - ключевое событие в ходе деления клетки . Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

  1. инициация репликации
  2. элонгация
  3. терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации . В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон . Репликон - это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта. Геномы бактерий , как правило, представляют собой один репликон, это значит, что репликация всего генома является следствием всего одного акта инициации репликации. Геномы эукариот (а также их отдельные хромосомы) состоят из большого числа самостоятельных репликонов, это значительно сокращает суммарное время репликации отдельной хромосомы. Молекулярные механизмы, которые контролируют количество актов инициации репликации в каждом сайте за один цикл деления клетки, называются контролем копийности. В бактериальных клетках помимо хромосомной ДНК часто содержатся плазмиды , которые представляют собой отдельные репликоны. У плазмид существуют свои механизмы контроля копийности: они могут обеспечивать синтез как всего одной копии плазмиды за клеточный цикл , так и тысяч копий .

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка - место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок - участок хромосомы, где ДНК уже реплицирована, окруженный более протяженными участками нереплицированной ДНК .

В репликационной вилке ДНК копирует крупный белковый комплекс (реплисома), ключевым ферментом которого является ДНК-полимераза . Репликационная вилка движется со скоростью порядка 100 000 пар нуклеотидов в минуту у прокариот и 500-5000 - у эукариот .

Молекулярный механизм репликации

Ферменты (хеликаза , топоизомераза) и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы , способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.

Цепи молекулы ДНК расходятся, образуют репликационную вилку , и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.

Характеристики процесса репликации

Примечания

Литература

  • Сохранение ДНК в ряду поколений: Репликация ДНК (Фаворова О.О., СОЖ, 1996) PDF (151 KB)
  • Репликация ДНК (анимация) (англ.)

Wikimedia Foundation . 2010 .

  • Репликант (BeOS)
  • Репниха

Смотреть что такое "Репликация ДНК" в других словарях:

    репликация днк - – биосинтез новых ДНК на матрице материнской ДНК … Краткий словарь биохимических терминов

    репликация ДНК - DNR biosintezė statusas T sritis chemija apibrėžtis Fermentų katalizuojama polinukleotidinė DNR sintezė ant DNR matricos. atitikmenys: angl. DNA replication rus. репликация ДНК ryšiai: sinonimas – DNR replikacija … Chemijos terminų aiškinamasis žodynas

    РЕПЛИКАЦИЯ - (от позднелат. replicatio повторение), редупликация, ауторепликация, процесс самовоспроизведения макромолекул нуклеиновых к т, обеспечивающий точное копирование генетич. информации и передачу её от поколения к поколению. В основе механизма Р.… … Биологический энциклопедический словарь

    РЕПЛИКАЦИЯ - (от позднелат. replicatio повторение) (ауторепродукция аутосинтез, редупликация), удвоение молекул ДНК (у некоторых вирусов РНК) при участии специальных ферментов. Репликацией называется также удвоение хромосом, в основе которого лежит репликация … Большой Энциклопедический словарь

    ДНК - (дезоксирибонуклеиновая кислота), НУКЛЕИНОВАЯ КИСЛОТА, которая является основным компонентом ХРОМОСОМ ЭУКАРИОТОВЫХ клеток и некоторых ВИРУСОВ. ДНК часто называют «строительным материалом» жизни, поскольку в ней хранится ГЕНЕТИЧЕСКИЙ КОД,… … Научно-технический энциклопедический словарь

    Репликация неуправляемая - * рэплікацыя некіруемая * runaway replication множественная репликация ДНК плазмид, которая не связана с делением клетки и не контролируется этим делением … Генетика. Энциклопедический словарь

    ДНК - Двойная спираль ДНК Дезоксирибонуклеиновая кислота (ДНК) один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная… … Википедия

    Репликация (биология)

    Репликация (цитология) - Схематическое изображение процесса репликации, цифрами отмечены: (1) запаздывающая нить, (2) лидирующая нить, (3) ДНК полимераза (Polα), (4) ДНК лигаза, (5) РНК праймер, (6) ДНК праймаза, (7) фрагмент Оказаки, (8) ДНК полимераза (Polδ), (9)… … Википедия


Подробное рассмотрение молекулярных механизмов регуляции репликации ДНК выходит за рамки книги, поэтому ограничимся несколькими замечаниями по данному вопросу и более детально обсудим лишь механизм регуляции репликации у E. coli, в том числе и бактериальных плазмид, что имеет непосредственное отношение к функционированию плазмидных векторов в бактериальных клетках.

Синтез ДНК тесно связан с другими процессами, подготавливающими деление клеток, так как передача необходимой генетической информации родительских клеток дочерним является для клеток-потомков жизненно важной. Наличие избыточной генетической информации отрицательно сказывается на жизнеспособности клеток, тогда как недостаток ее, возникающий вследствие недорепликации ДНК, приводит к летальному эффекту из-за отсутствия жизненно важных генов. Однако процесс передачи генетической информации от родительских клеток дочерним у эукариот не ограничивается простой редупликацией ДНК хромосом. Так, для насекомых многих видов характерно наличие гигантских политенных хромосом, которые возникают в результате множественных раундов репликации ДНК исходных хроматид, не сопровождающейся их расхождением.

Политенизация хромосом представляет обширный класс генетических явлений, связанных с избирательной избыточной репликацией (мультипликацией ) или недорепликацией отдельных генетических локусов эукариот. Ярким примером такого рода является изменение числа генов рибосомных РНК у животных. Амплификация генов рРНК в ооцитах амфибий происходит путем образования их внехромосомных (экстрахромосомных) копий в виде кольцевых молекул рибосомных (р) ДНК, которые далее реплицируются по механизму "катящегося кольца". При этом в каждой клетке амплифицируется только по одному из сотен повторов рДНК, так что амплификация рДНК на одном повторе каким-то образом подавляет процесс амплификации на других, и все образовавшиеся повторы одного ооцита идентичны, но отличаются от наборов амплифицированных рДНК других ооцитов. Строгая стадие- и тканеспецифичность, а также избирательная амплификация только одного повтора рДНК указывают на наличие тонких регуляторных механизмов процесса репликации и в этом случае.

Характерными примерами возрастания числа генов вследствие их избирательной репликации являются магнификация генов рРНК и изменение числа генов, определяющих устойчивость клеток к лекарственным препаратам. В первом случае утрата части генов рРНК у дрозофилы в результате делеции сопровождается постепенным восстановлением их числа, тогда как во втором случае у клеток, находящихся в условиях селективного действия токсичного для них лекарственного препарата, возрастает число копий генов, необходимых для его нейтрализации. В частности, это характерно для гена дигидрофолатредуктазы в присутствии метотрексата. Высказывается предположение, что в основе изменения числа копий таких генов лежит механизм неравного кроссинговера.

Репликация хромосом бактерий тесно сопряжена с метаболизмом клеток. Например, частота инициаций новых раундов репликации зависит от скорости роста бактериальных клеток, и в клетках быстро растущих бактерий могут содержаться хромосомы с несколькими работающими репликативными вилками, хотя для репликации одной бактериальной хромосомы их требуется только две, инициированные в единственной области начала репликации (ori) и расходящиеся в противоположных направлениях. Это позволяет бактериям при благоприятных условиях затратить для генерации меньше времени, чем для полной репликации бактериальной хромосомы. Очевидно, что для поддержания строго упорядоченного характера репликации должны существовать тонкие механизмы регуляции репликации на уровне инициации новых раундов. Такие механизмы, действительно, существуют.

Наиболее хорошо изученными в настоящее время являются механизмы регуляции синтеза ДНК у E. coli, в том числе механизмы контроля числа копий у небольшой плазмиды E. coli ColE1, которые будут рассмотрены ниже более подробно из-за важности этих явлений для генной инженерии.
^

4.2.1.Инициация репликации ДНК у E. coli и ее регуляция


Репликация хромосомной ДНК у бактерий играет ключевую роль в их жизненном цикле. В ходе этого процесса микроорганизмы редуплицируют свой геном, а образовавшиеся дочерние геномы далее переходят в дочерние клетки. Высокая точность, с которой бактерии осуществляют такие процессы, указывает на наличие специальных механизмов их координации и контроля.

^ Структура области начала репликации oriC. Хромосома E. coli содержит единственную область начала репликации (origin), названную oriC , на которой происходит инициация репликации (рис. I.47,а ). Размер минимальной области начала репликации, обеспечивающей автономную репликацию хромосомы, составляет 258 п.о. (положение 11–268 на рис. I.47). Сравнение первичных структур областей начала репликации различных энтеробактерий показало, что их последовательности представлены короткими консервативными участками, которые перемежаются дивергировавшими сегментами ДНК, длины которых, однако, высококонсервативны. Консервативные участки оказались сайтами связывания регуляторных белков, разделенных спейсерными последовательностями. OriC содержит пять консенсусных 9-нуклеотидных сайтов связывания инициатора DnaA (непалиндромные повторы), названных DnaA-боксами. У всех энтеробактерий области начала репликации содержат 9–14 сайтов GATC, положение восьми из которых консервативно.

В левой части oriC находится AT-богатая область, содержащая три похожих последовательности длиной в 13 нуклеотидов, каждая из которых начинается с GATC. Здесь же локализован AT-кластер, который вместе с левой 13-нуклеотидной последовательностью образует область нестабильной спирали ДНК (ДНК-расплетающий элемент ). Этот участок ДНК может быть заменен без потери функции на аналогичный по нуклеотидному составу, но с другой последовательностью нуклеотидов.

OriC содержит сайты связывания белков, изгибающих ДНК, IHF (integration host factor) и FIS (factor for inversion stimulation). Оба белка, по-видимому, помогают инициатору DnaA раскручивать ДНК.

Димерный белок IciA, состоящий из субъединиц с молекулярной массой 33 кДа, специфически связывается с AT-богатыми 13-мерными повторами. Функция этого белка неизвестна, так же как и функция белка Rob, который специфически взаимодействует с 26-нуклеотидным сайтом в правой части DnaA-бокса R4. ДНК вблизи Rob-сайта обнаруживает изгиб, который более ярко выражен у молекул, полностью метилированных Dam-метилтрансферазой (см. ниже). С такими полностью метилированными ДНК взаимодействует гистоноподобный белок H-NS, сайт связывания которого перекрывается с Rob-сайтом. Это взаимодействие оказывает влияние на функционирование oriC .


Рис. I.47. Структура области начала репликации хромосомы E. coli (а ) и схема инициации ее репликации (б )

HobH – белок, взаимодействующий с метилированной по одной цепи ДНК области начала репликации (hemimethylated origin binding)
^ Функции белка DnaA. Белок DnaA играет ключевую роль в сборке реплисомы – многокомпонентного белкового комплекса, осуществляющего двунаправленный синтез ДНК. Белок распознает область начала репликации и привлекает к месту сборки остальные белковые компоненты реплисомы.

^ Этапы инициации синтеза ДНК на oriC . Сборка исходного комплекса начинается с взаимодействия белка DnaA с DnaA-боксами R1–R4 и M (см. рис. I.47,б ). Для успешного прохождения последующих этапов сборки реплисомы белок DnaA должен находиться в комплексе с ATP и взаимодействовать с сверхспирализованным oriC . С помощью электронного микроскопа исходный комплекс обнаруживается в виде компактной эллипсоидной структуры, содержащей 20 мономеров DnaA, которая закрывает oriC . Исходный комплекс обладает высокоупорядоченной структурой.

В присутствии ATP в высокой концентрации (5 мМ) исходный комплекс превращается в открытый комплекс . В этом комплексе происходит частичное расплетение АТ-богатых 13-нуклеотидных повторов, расположенных в левой части oriC . При 37 ° или выше единственный белок DnaA может обеспечивать расплетение ДНК. Для образования открытого комплекса при более низких температурах требуется участие структурирующего белка HU или интеграционного фактора бактерии-хозяина IHF. В открытом комплексе обнаруживают небольшие участки расплетенной ДНК в правой части oriC между DnaA-боксами R2 и R4, которые рассматривают как места посадки хеликазы.

Белок DnaB является хеликазой репликативной вилки и входит в открытый комплекс с образованием препраймирующего комплекса I , взаимодействуя с одноцепочечными участками частично расплетенной ДНК. Такие участки подготавливаются белком DnaA, который вытесняет SSB-белок с соответствующих сайтов. DnaB входит в препраймирующий комплекс I в виде гексамеров, образовавших комплекс с шестью мономерами DnaC, каждый из которых связывает одну молекулу ATP. В этом комплексе хеликазная активность белка DnaB блокирована. Освобождение DnaC из комплекса происходит в результате гидролиза ATP. Следствием этого является активация хеликазы DnaB и ее правильное расположение в комплексе. Совокупность этих событий превращает препраймирующий комплекс I в препраймирующий комплекс II .

Хеликаза должна начать функционировать в месте старта репликативной вилки в правой части oriC вблизи DnaA-боксов R2, R3 и R4. Для этого она должна быть транслоцирована от места ее первоначального вхождения в комплекс к точке начала репликации. Предполагается, что транслокация ассоциирована с ATP-зависимым освобождением из комплекса белка DnaC, что сопровождается активацией хеликазы.

В праймирующем комплексе хеликаза DnaB взаимодействует с DnaG-праймазой, которая играет ключевую роль в обеспечении инициации репликации именно на oriC . Оба этих фермента обеспечивают сопряжение функционирования двух репликативных вилок, движущихся в противоположные стороны. В бесклеточной системе при низких концентрациях праймазы репликация становится однонаправленной и может инициироваться не на oriC . В праймирующем комплексе присутствие белка DnaA больше не требуется, и он после освобождения из комплекса может быть повторно использован для инициации репликации на другом oriC . Полагают, что во время координированной сборки двух репликативных вилок в одной из них синтезируется праймер, который становится затравкой при синтезе ведущей цепи другой репликативной вилкой, движущейся в противоположном направлении. Праймаза в праймирующем комплексе функционирует по дистрибутивному механизму. После синтеза праймеров она покидает репликативную вилку и заменяется новой молекулой праймазы во время образования очередного фрагмента Оказаки.

При образовании реплисомы в каждой репликативной вилке происходит ATP-зависимое формирование димерного комплекса холофермента ДНК-полимеразы III, связанного с 3"-концами праймеров (скользящий зажим, см. выше). Вслед за этим происходит координированная элонгация праймеров, сопровождаемая двунаправленным синтезом ведущих и отстающих цепей ДНК. В бесклеточной системе точки начала синтеза ведущих цепей локализованы в oriC вблизи DnaA-боксов R2, R3 и R4.

^ Механизмы контроля инициации репликации in vivo. Инициация репликации ДНК у E. coli регулируется, по крайней мере, на трех уровнях: 1) инициация синхронизирована с клеточным циклом; 2) синтез ДНК в каждой области начала репликации в клеточном цикле инициируется только один раз; 3) инициация происходит синхронно во всех областях начала репликации, присутствующих в данной бактериальной клетке. Установлено, что синтез ДНК начинается после того, как масса бактериальной клетки в расчете на одну область начала репликации достигает определенного значения, названного массой инициации (initiation mass). В качестве основного водителя ритма (пейсмекера), играющего ключевую роль в контроле инициации репликации, в настоящее время рассматривается белок DnaA.

Подавление синтеза белка in vivo сопровождается завершением уже инициированного синтеза ДНК на фоне прекращения новых раундов инициации. Возобновление синтеза белка приводит к инициации репликации после лаг-периода в одну клеточную генерацию. При наличии всех необходимых белков инициация чувствительна к рифампину – специфическому ингибитору бактериальной РНК-полимеразы, что указывает на зависимость инициации от синтеза нетранслируемой РНК.

Роль топологии oriC в инициации репликации . Топоизомераза I и топоизомераза II (ДНК-гираза) поддерживают бактериальную хромосому в негативно суперскрученном состоянии. Приблизительно половина супервитков нейтрализуется гистоноподобными белками HU, IHF и FIS, тогда как остающаяся сверхспирализация бактериальной хромосомы облегчает транскрипцию, репликацию и сайт-специфическую рекомбинацию. Предполагается, что бактериальная хромосома состоит из 40–50 суперскрученных доменов с 25 супервитками на 1 т.п.о. ДНК. В настоящее время отсутствуют точные данные о топологическом состоянии oriC , необходимом для инициации репликации у E. coli. Известно, что мутации в гене топоизомеразы topA супрессируют температурно-чувствительные мутации dnaA (Ts) . Предполагается, что в этих мутантных штаммах топология oriC изменена таким образом, что допускает инициацию репликации при меньших внутриклеточных концентрациях белка DnaA. Кроме того, на важность определенного топологического состояния oriC для инициации указывает факт нарушения инициации у мутантных бактерий с измененным геном gyrB (Ts) , кодирующим B-субъединицу ДНК-гиразы.

Активация репликации транскрипцией. В том случае, если сверхспирализация минихромосом или плазмид, содержащих oriC , недостаточна для инициации их репликации, инициация может происходить при одновременной транскрипции ДНК в окрестностях oriC . Изменение топологии oriC в этом случае может осуществляться за счет образования R-петель (ДНК–РНК-гибрида в двухцепочечной ДНК) или вследствие транскрипции, как таковой, при которой перед транскрибирующей РНК-полимеразой имеет место локальная положительная сверхспирализация ДНК, а вслед за ней – отрицательная. Это облегчает образование открытых комплексов при инициации синтеза ДНК.

^ Роль белка DnaA в регуляции инициации репликации. ~60 минут необходимо бактерии для репликации хромосомной ДНК, разделения дочерних хромосом и подготовки к новому делению. Следовательно, клетки со временем генерации короче этого периода (например при повышенных температурах на богатых питательных средах) должны инициировать репликацию хромосом, предназначенных для последующих делений, до завершения предыдущего раунда репликации. Таким образом, в отдельной клетке может содержаться реплицирующаяся хромосома со множественными точками начала репликации. При этом инициация репликации на множественных областях начала репликации происходит одновременно.

Сверхпродукция DnaA в бактериях приводит к резкому возрастанию частоты инициаций репликации без изменения общей скорости синтеза ДНК, что указывает на DnaA как на позитивный регулятор этого процесса. Среди моделей, объясняющих механизм регуляторного действия белка DnaA наибольшее распространение получила модель титрования DnaA. В соответствии с этой моделью весь вновь синтезируемый белок DnaA связывается (титруется) DnaA-боксами oriC хромосомы. Как только количество молекул инициатора превышает число внутриклеточных DnaA-боксов (все DnaA-боксы оказываются занятыми белком), происходит инициация синтеза ДНК. После запуска инициации на одном oriC наблюдается освобождение молекул DnaA, резкое повышение его внутриклеточной концентрации и синхронная инициация синтеза ДНК на других доступных областях начала репликации. При этом ассоциация с мембранами первой oriC защищает ее от использования в реинициации.

Роль Dam-метилирования в инициации синтеза ДНК. Как уже упоминалось выше, Dam-метилтрансфераза E. coli модифицирует остатки аденина в последовательностях 5"-GATC. В результате репликации молекула ДНК временно превращается из полностью метилированной молекулы в метилированную по одной цепи, что позволяет клетке распознавать вновь синтезированную ДНК. Расположение кластеров Dam-сайтов в oriC энтеробактерий высококонсервативно (см. рис. I.47,а ). Неметилированная или наполовину метилированная плазмидная ДНК в клетках dam-мутантов не реплицируется, хотя и служит субстратом в бесклеточной системе репликации. Репликация хромосомной ДНК у dam-мутантов начинается на oriC , однако контроль репликации нарушен, что проявляется в асинхронности репликации на множественных oriC . Оказалось, что лишь наполовину метилированная, но не полностью метилированная или неметилированная oriC- ДНК специфически связывается с фракцией мембран E. coli in vitro. При этом в быстро растущих клетках 1/3 времени генерации oriC- ДНК находится в наполовину метилированном состоянии, после чего полностью метилируется. То же самое характерно и для промотора гена инициатора DnaA, у которого метилированное наполовину состояние связано с подавлением транскрипции гена. В отличие от этого реметилирование вновь синтезированной цепи ДНК остальной части бактериальной хромосомы происходит быстро – в течение 1–2 мин. На основании такого рода данных высказывается предположение, что в не полностью метилированном состоянии вышеупомянутые последовательности экранированы бактериальными мембранами от контактов с регуляторными белками и не могут участвовать в повторном раунде инициации репликации (период эклипса ). Мутации в гене seqA резко уменьшают время эклипса, что проявляется в асинхронности инициаций репликации. Белок SeqA оказался негативным регулятором инициации репликации, действующим на этапе взаимодействия oriC с бактериальными мембранами.

^ Роль белка SeqA в регуляции репликации бактериальных хромосом. Ген seqA кодирует белок длиной в 181 аминокислотный остаток, инактивация которого летальна для бактериальных клеток. Исследование взаимодействия этого белка с неметилированной, частично и полностью метилированной областями начала репликации методом смещения полос при электрофорезе в полиакриламидном геле показало его предпочтительное связывание с частично метилированными последовательностями. Однако для полной (контекст-зависимой) специфичности его взаимодействия требуется присутствие дополнительных факторов. Действительно, в составе ДНК-белковых комплексов, образованных с участием частично метилированных последовательностей oriC , обнаружен белок с молекулярной массой 24 кДа, который специфически взаимодействует с метилированной цепью ДНК в oriC . Скрининг клонотеки последовательностей E. coli позволил клонировать ген hobH (hemimethylated origin binding), кодирующий этот белок. Мутации по данному гену приводили к частичной утрате бактериальными клетками синхронизации в инициациях репликации, что также косвенно указывает на участие белка HobH в регуляции инициации репликации бактериальных хромосом на ранних стадиях клеточного цикла. Однако истинная роль этого белка в репликации окончательно не известна.

Период эклипса может заканчиваться в результате постепенного завершения метилирования частично метилированной последовательности oriC , находящейся в комплексе с мембранами. Полное метилирование этих последовательностей предотвращает их взаимодействие с мембранами и делает доступными для инициатора DnaA.

^ Терминация репликации. Встреча двух репликативных вилок в конце цикла репликации бактериальной хромосомы сопровождается несколькими событиями, которые необходимы для полного разделения двух образовавшихся бактериальных хромосом до деления клетки. Движение репликативных вилок навстречу друг другу сопровождается гомологичной рекомбинацией между дочерними хроматидами. В том случае, если количество произошедших рекомбинаций нечетное, образуется димер бактериальной хромосомы, тогда как при четном числе рекомбинаций – две катенированные (зацепленные друг за друга) хромосомы. Во втором случае разделение катенанов с помощью топоизомеразы IV приводит к полному разделению дочерних хромосом, тогда как в случае димера бактериальной хромосомы этого недостаточно. Разделение димера с образованием мономеров происходит в результате сайт-специфической рекомбинации в локусе dif под действием резольвазы (сайт-специфической рекомбиназы) XerCD.
^

4.2.2.Регуляция репликации плазмиды ColE1


Многие клетки прокариот в дополнение к основной хромосоме содержат небольшие внехромосомные ДНК, называемые плазмидами . Плазмиды, размеры которых варьируют от нескольких тысяч до сотен тысяч пар оснований, а число копий на клетку – от одной до нескольких сотен, способны к автономной (независимой от основной хромосомы) репликации и стабильно наследуются в ряду клеточных поколений. Хотя многие плазмиды дают клеткам-хозяевам ощутимые селективные преимущества (устойчивость к антибиотикам, тяжелым металлам и т.п.), большинство из них являются криптическими , т.е. не проявляющимися в видимом фенотипе клеток. Поскольку их существование – это весомая нагрузка на метаболизм клеток-хозяев, остается непонятным смысл их эволюционной стабильности. Несмотря на то что в природных условиях бактериальные клетки, по-видимому, не испытывают давления отбора, направленного на сохранение плазмид внутри клеток, последние с помощью тонких механизмов, регулирующих число их копий в клетках, стабильно сегрегируют между дочерними бактериальными клетками.

Область начала репликации небольшой плазмиды ColE1, несущей гены устойчивости к колицинам, традиционно используется в генной инженерии при конструировании векторных молекул ДНК, которые находят применение для клонирования и экспрессии в клетках E. coli коротких последовательностей нуклеотидов. Именно поэтому целесообразно рассмотреть механизмы контроля репликации плазмиды ColE1.

^ Инициация репликации плазмиды ColE1. Репликация плазмиды ColE1 происходит в одном направлении (однонаправленная репликация) с использованием репликативного аппарата клетки-хозяина. Сама по себе плазмида не кодирует ни одного фермента, который требовался бы для ее репликации. Область начала репликации содержит два промотора, один из них обеспечивает синтез РНК-праймера (РНК II), необходимого для инициации репликации плазмиды. Синтезированная РНК II, длина которой зависит от типа реплицируемой плазмиды, далее подвергается процессингу с помощью РНКазы H с образованием РНК длиной в 550 нуклеотидов. Эта молекула эффективно используется ДНК-полимеразой I в качестве праймера при синтезе ведущей цепи ДНК. В отсутствие РНКазы H затравкой во время репликации служит 3’-конец РНК II, хотя и с меньшей эффективностью. В клетках, дефектных по РНКазе H и ДНК-полимеразе, инициация репликации ColE1 осуществляется ДНК-полимеразой III с участием РНК II по механизму, подробно рассмотренному выше.

Все три механизма инициации репликации плазмиды основаны на уникальном свойстве РНК II образовывать стабильный ДНК–РНК-гибрид в области начала репликации. Действительно, обычные транскрипты освобождаются из транскрипционного комплекса после завершения транскрипции и отделения РНК-полимеразы от матрицы, чего не происходит с РНК II. Анализ мутантов плазмиды, дефектных по репликации, а также их ревертантов показал, что в стабильном гибриде РНК II с матрицей происходит взаимодействие между G-богатой петлей РНК II, образованной 265 нуклеотидами выше точки инициации репликации (положение –265), и С-богатым участком ДНК, расположенным в окрестностях нуклеотида –20 (рис. I.48,а ). Обе эти последовательности оказались консервативными у родственных плазмид pMB1, p15A и KSF1030. Взаимодействия между указанными последовательностями, по-видимому, происходят в тот момент, когда РНК-полимераза еще находится в транскрипционном комплексе и цепи ДНК в окрестностях комплекса расплетены. Равновесие между двумя альтернативными конформациями РНК II является критическим в определении доли молекул РНК, остающейся в ДНК–РНК-гибриде, необходимом для инициации репликации плазмиды. Выбор между двумя альтернативными конформациями РНК II определяется первичной структурой участка, расположенного между нуклеотидами –359 и –380 (последовательность ) (см. рис. I.48,б ). Эта последовательность может взаимодействовать с выше расположенной комплементарной последовательностью  (структура ) или с гомологичной последовательностью , расположенной ниже (структура ). После того как РНК-полимераза транскрибирует первые 200 нуклеотидов, образовавшаяся РНК II формирует временную вторичную структуру, для которой характерно наличие трех доменов типа "стебель–петля" (I, II и III). Удлинение РНК II еще на несколько нуклеотидов приводит к разрушению стебля III и образованию стебля IV, который стабилизируется в результате комплементарных взаимодействий между последовательностями  и . В течение последующей элонгации РНК II у нее возникают две альтернативные возможности формировать свою вторичную структуру. Выбор в пользу той или иной конформации зависит от того, останется ли последовательность  связанной с последовательностью  или же образует новые контакты с -последовательностью. Переход от комплементарных пар  к  сопровождается сильными изменениями конформации РНК II, которые в конечном счете определяют ее способность служить праймером при репликации плазмиды. Молекулы РНК II в конформации  могут образовывать РНК–ДНК-гибрид, служащий субстратом для РНКазы H, а в конформации  такой способностью не обладают. Предложенная модель подтверждается, прежде всего, тем, что мутации, делающие предпочтительным образование конформации  из-за дестабилизации стебля IV, затрудняют функционирование РНК II в качестве праймера и приводят к понижению числа копий плазмиды ColE1 внутри бактериальных клеток. Такие мутантные плазмиды, дефектные по репликации, активизируются в результате супрессорных мутаций, стабилизирующих стебель IV. Таким образом, инициация репликации плазмиды ColE1 зависит от способности РНК II образовывать РНК–ДНК-гибрид вблизи точки начала репликации (ori). При этом на образование гибрида оказывают влияние вторичная и третичная структуры выше расположенной последовательности нуклеотидов предшественника праймера.

^ Рис. I.48. Схема регуляции репликации плазмиды ColE1

а – предполагаемая вторичная структура РНК II, после транскрибирования РНК-полимеразой  500 нуклеотидов ДНК плазмиды; дальнейшее удлинение РНК II сопровождается образованием ДНК–РНК-гибрида (жирная стрелка) между РНК II и транскрибируемой ДНК;

б – возможный механизм контроля репликации плазмиды. В верхней части рисунка изображена генетическая карта участка ДНК, необходимого для инициации репликации плазмидной ДНК и ее контроля. Схематически представлены пространственные структуры двух ингибиторов репликации плазмиды: РНК I и белка Rop. В нижней части изображены две альтернативные конформации РНК II, образующиеся под действием РНК I, I–X – элементы вторичной структуры
^ Контроль числа копий плазмиды ColE1. Контроль инициации репликации плазмиды ColE1 осуществляется главным образом на уровне изменения пространственной структуры РНК II. Поскольку плазмиды контролируют собственный биосинтез, т.е. их репликация проходит по аутокаталитическому механизму, было постулировано, что инициация репликации ColE1 находится под влиянием ингибитора, кодируемого плазмидой, концентрация которого в клетке тем выше, чем больше число внутриклеточных копий плазмиды. Действительно, анализ механизмов репликации мутантных плазмид, для которых характерна высокая копийность, позволил выявить два транс- действующих фактора, кодируемых плазмидой и оказывающих влияние на репликацию плазмиды in vivo.

Основным ингибитором репликации оказалась небольшая РНК длиной в 108 нуклеотидов, названная РНК I, полностью комплементарная 5’-концевой последовательности предшественника праймера (РНК II). Промотор гена РНК I расположен в области начала репликации плазмиды ColE1 и направлен в противоположную сторону по отношению к промотору РНК II (см. рис. I.48). Комплементарные взаимодействия между РНК I и РНК II оказывают влияние на образование пространственной структуры РНК II таким образом, что предпочтительно возникает конформация βγ, неактивная в отношении инициации репликации (см. рис. I.48,б , внизу справа).

Взаимодействие между РНК I и РНК II происходит продуктивно лишь до тех пор, пока синтезируется короткий транскрипт РНК II длиной не более 80 нуклеотидов. Хотя взаимодействие РНК I с такой короткой последовательностью нуклеотидов происходит медленнее, чем с транскриптом длиной в 360 нуклеотидов, в последнем случае РНК I не оказывает влияния на конформацию 5’-концевой части РНК II и на ее способность функционировать в качестве затравки при репликации плазмиды (конформация αβ, рис. I.48,б , внизу слева). Из этого ясно, что скорость образования гибридов между РНК I и РНК II является определяющей для эффективного функционирования механизма регуляции репликации плазмиды. Процесс взаимодействия РНК I и РНК II в настоящее время детально изучен. Он проходит через образование нескольких промежуточных продуктов и завершается получением стабильного гибрида между полностью комплементарными друг другу РНК I и 5’-концевой областью РНК II.

^ РНК-организующий белок Rop. Ген второго компонента, негативно регулирующего репликацию плазмиды ColE1, картирован непосредственно за областью начала репликации. Этот ген кодирует 63-звенный белок, названный Rop (repressor of primer), существующий в растворе в виде димера. Как in vivo, так и in vitro Rop усиливает ингибирующую активность РНК I, не оказывая влияния на синтез РНК II. При этом Rop влияет на начальные фазы взаимодействия РНК I и РНК II, облегчая переход очень нестабильного промежуточного продукта С* в более стабильный – С m *. Белок Rop обладает высоким сродством к С* и лишь слабо взаимодействует с изолированными РНК I и РНК II in vitro. Предполагают, что Rop проявляет незначительную специфичность в отношении последовательностей нуклеотидов и распознает некоторые общие особенности структуры комплекса РНК I–РНК II, возникающего на ранних этапах их взаимодействия. Таким образом, функции белка Rop, по-видимому, заключаются в преобразовании нестабильного комплекса РНК–РНК в более стабильный, что, в свою очередь, сопровождается подавлением формирования праймера, необходимого для инициации репликации плазмиды ColE1.

Использование антисмысловых РНК в контроле репликации бактериальных плазмид является распространенным приемом. В частности, репликация небольшой, низкокопийной плазмиды R1 контролируется белком RepA, который участвует в инициации репликации плазмиды в качестве позитивного регуляторного фактора. Синтез RepA, в свою очередь, регулируется посттранскрипционно с помощью небольшой антисмысловой РНК CopA, которая связывается с RepA-мРНК в результате многоступенчатой реакции, напоминающей образование гибрида между РНК I и РНК II, рассмотренное выше. Такое взаимодействие подавляет экспрессию гена repA , возможно, вследствие расщепления РНК–РНК-дуплекса РНКазой III. Внутриклеточная концентрация антисмысловой CopA-РНК прямо пропорциональна числу копий плазмиды R1. Аналогичный механизм описан и для регуляции инициации репликации плазмиды pT181 Staphylococcus aurеus.

При получении бактериальных векторов для генной инженерии, многие из которых содержат область начала репликации плазмиды ColE1, с целью повышения числа их копий в бактериальных клетках часто используют ингибиторы биосинтеза белка, в частности хлорамфеникол. После обсуждения механизмов регуляции контроля репликации этой плазмиды становятся понятными принципы, на которых основан данный прием. Действительно, внесение в культуральную среду хлорамфеникола блокирует биосинтез бактериальных белков, в том числе, и белка Rop, который необходим для эффективного подавления инициации репликации плазмиды под действием РНК I. В результате нарушается контроль копийности плазмид в бактериальных клетках, и они начинают непрерывно реплицироваться, используя для этой цели предварительно синтезированные бактериальные белки.

Известно, что две фенотипически различающиеся плазмиды, использующие одинаковый механизм контроля репликации, несовместимы в одной бактериальной клетке. Клетки, содержащие две плазмиды из разных групп совместимости, в процессе размножения быстро образуют две популяции, каждая из которых содержит только один тип плазмид. Это происходит вследствие случайного выбора плазмид для репликации внутри бактериальных клеток и случайного распределения исходного пула плазмид по дочерним клеткам. Эволюционное возникновение механизма контроля репликации бактериальных плазмид с использованием антисмысловых РНК расширило возможности появления плазмид, принадлежащих к разным группам совместимости и сосуществующих в одних и тех же бактериальных клетках. Действительно, несмотря на использование одного и того же механизма, антисмысловые РНК, обладающие разными последовательностями нуклеотидов, не смогут узнавать "чужие," гетерологичные РНК-мишени. Это позволяет таким плазмидам сосуществовать в одной бактериальной клетке и создает условия для их более широкого распространения в природных популяциях микроорганизмов.

  • Внеклеточное Биологическая Внутриклеточное пространство мембрана пространство
  • Возбудители коклюша и паракоклюша. Характеристика их свойств. Патогенез коклюша. Микробиологическая диагностика. Специфическая профилактика.
  • Генетический аппарат бактерий (хромосомы, плазмиды) характеристика бактериальных транспозонов. Биологическая роль плазмид.
  • Реплика́ция ДНК - процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение. Репликацию ДНК осуществляет сложный ферментный комплекс, состоящий из 15-20 различных белков, называемый реплисомой (англ. replisome).

    История изучения

    Каждая молекула ДНК состоит из одной цепи исходной родительской молекулы и одной вновь синтезированной цепи. Такой механизм репликации называется полуконсервативным. В настоящее время этот механизм считается доказанным благодаря опытам Мэтью Мезельсона и Франклина Сталя (1958 г.). Ранее существовали и две другие модели: «консервативная» - в результате репликации образуется одна молекула ДНК, состоящая только из родительских цепей, и одна, состоящая только из дочерних цепей; «дисперсионная» - все получившиеся в результате репликации молекулы ДНК состоят из цепей, одни участки которых вновь синтезированы, а другие взяты из родительской молекулы ДНК.

    Общие представления

    Репликация ДНК - ключевое событие в ходе деления клетки. Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

    инициация репликации

    элонгация

    терминация репликации.

    Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации. В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон. Репликон - это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта. Геномы бактерий, как правило, представляют собой один репликон, это значит, что репликация всего генома является следствием всего одного акта инициации репликации. Геномы эукариот (а также их отдельные хромосомы) состоят из большого числа самостоятельных репликонов, это значительно сокращает суммарное время репликации отдельной хромосомы. Молекулярные механизмы, которые контролируют количество актов инициации репликации в каждом сайте за один цикл деления клетки, называются контролем копийности. В бактериальных клетках помимо хромосомной ДНК часто содержатся плазмиды, которые представляют собой отдельные репликоны. У плазмид существуют свои механизмы контроля копийности: они могут обеспечивать синтез как всего одной копии плазмиды за клеточный цикл, так и тысяч копий.

    Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка - место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок - участок хромосомы, где ДНК уже реплицирована, окружённый более протяжёнными участками нереплицированной ДНК.

    В репликационной вилке ДНК копирует крупный белковый комплекс (реплисома), ключевым ферментом которого является ДНК-полимераза. Репликационная вилка движется со скоростью порядка 100 000 пар нуклеотидов в минуту у прокариот и 500-5000 - у эукариот.

    Молекулярный механизм репликации

    Ферменты (хеликаза, топоизомераза) и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и активностью ДНК-полимеразы, способной распознать и исправить ошибку. Репликация у эукариот осуществляется несколькими разными ДНК-полимеразами. Далее происходит закручивание синтезированных молекул по принципу суперспирализации и дальнейшей компактизации ДНК. Синтез энергозатратный.

    Цепи молекулы ДНК расходятся, образуют репликационную вилку, и каждая из них становится матрицей, на которой синтезируется новая комплементарная цепь. В результате образуются две новые двуспиральные молекулы ДНК, идентичные родительской молекуле.

    Характеристики процесса репликации

    матричный - последовательность синтезируемой цепи ДНК однозначно определяется последовательностью материнской цепи в соответствии с принципом комплементарности;

    полуконсервативный - одна цепь молекулы ДНК, образовавшейся в результате репликации, является вновь синтезированной, а вторая - материнской;

    идёт в направлении от 5’-конца новой молекулы к 3’-концу;

    полунепрерывный - одна из цепей ДНК синтезируется непрерывно, а вторая - в виде набора отдельных коротких фрагментов (фрагментов Оказаки);

    начинается с определённых участков ДНК, которые называются сайтами инициации репликации (англ. origin).

    Основные ферменты репликации ДНК

    Информация / Репликация ДНК / Основные ферменты репликации ДНК

    ДНК – полимераза

    ДНК-полимераза - фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент «читает» и использует в качестве шаблона. Тип нового нуклеотида определяется по принципу комплементарности с шаблоном, с которого ведётся считывание. Собираемая молекула комплементарна шаблонной моноспирали и идентична второму компоненту двойной спирали.

    Выделяют ДНК-зависимую ДНК-полимеразу, использующую в качестве матрицы одну из цепей ДНК, и РНК-зависимую ДНК-полимеразу, способную также к считыванию информации с РНК (обратная транскрипция).

    ДНК-полимеразу считают холоферментом, поскольку для нормального функционирования она требует присутствия ионов магния в качестве кофактора. В отсутствии ионов магния о ней можно говорить как об апоферментe.

    ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. Среднее количество нуклеотидов, присоединяемое ферментов ДНК-полимеразой за один акт связывания/диссоциации с матрицей, называют процессивностью.

    ДНК – лигазы

    Лигаза - фермент, катализирующий соединение двух молекул с образованием новой химической связи (лигирование). При этом обычно происходит отщепление (гидролиз) небольшой химической группы от одной из молекул.

    Лигазы относятся к классу ферментов EC 6.

    В молекулярной биологии лигазы разделяют на две большие группы - РНК-лигазы и ДНК-лигазы. ДНК-лигаза, осуществляющая репарацию ДНК

    ДНК-лигазы - ферменты, катализирующие ковалентное сшивание цепей ДНК в дуплексе при репликации, репарации и рекомбинации. Они образуют фосфодиэфирные мостики между 5"-фосфорильной и 3"-гидроксильной группами соседних дезоксинуклеотидов в местах разрыва ДНК или между двумя молекулами ДНК. Для образования этих мостиков лигазы используют энергию гидролиза пирофосфорильной связи АТФ. Один из самых распространённых коммерчески доступных ферментов - ДНК-лигаза бактериофага Т4.

    ДНК – геликазы

    ДНК геликазы - ферменты раскручивающие двуцепочечную спираль ДНК с затратой энергии гидролиза трифосфатов NTP. Образуемая одноцепочечная ДНК участвует в различных процессах, таких как репликация, рекомбинация, и репарация. ДНК геликазы необходимы для репликации, репарации, рекомбинации и транскрипции. Геликазы присутствуют во всех организмах.

    ДНК-топоизомеразы

    ДНК-топоизомеразы-ферменты, изменяющие степень сверхспиральности и тип сверхспирали. Путём одноцепочечного разрыва они создают шарнир, вокруг которого нереплецированный дуплекс ДНК, находящейся перед вилкой, может свободно вращаться. Это снимает механическое напряжение, возникающее при раскручивании двух цепей в репликативной вилке, что является необходимым условием для её непрерывного движения. Кроме того, топоизомеразы (типа II) обеспечивают разделение или образование катенанов - сцепленных кольцевых ДНК (образуются в результате репликации кольцевой ДНК), а также устранение узлов и спутанных клубков из длинной линейной ДНК. Существует два типа топоизомераз. Топоизомеразы типа I уменьшают число сверхвитков в ДНК на единицу за один акт. Эти топоизомеразы надрезают одну из двух цепей, в результате чего фланкирующие дуплексные области могут повернутся вокруг интактной цепи, и затем воссоединяют концы разрезанной цепи. Эта реакция не требует энергии АТФ, т.к. энергия фосфодиэфирной связи сохраняется благодаря тому, что тирозиновый остаток в молекуле фермента выступает то в роли акцептора, то в роли донора фосфорильного конца разрезанной цепи.

    Топоизомеразы типа II вносят временные разрывы в обе комплиментарные цепи, пропускают двухцепочечный сегмент той же самой или другой молекулы ДНК через разрыв, а затем соединяют разорванные концы. В результате за один акт снимаются два положительных или отрицательных сверхвитка. Топоизомеразы типа II тоже используют тирозиновые остатки для связывания 5¢-конца каждой разорванной цепи в то время. когда другой дуплекс проходит через место разрыва.

    Праймаза

    Праймаза-фермент, обладающий РНК-полимеразной активностью; служит для образования РНК-праймеров, необходимых для инициации синтеза ДНК в точке ori и дальнейшем для синтеза отстающей цепи.