Закон сохранения электрического заряда замкнутой системы. «Закон сохранения электрического заряда

Гласит, что алгебраическая сумма электрических зарядов всех частиц изолированной системы не меняется при происходящих в ней процессах.

Электрический заряд любой частицы или системы частиц является целым кратным элементарному электрическому заряду (равному по величине заряду электрона) или нулевым.

Одним из подтверждений закона сохранения электрического заряда служит строгое равенство (по абсолютной величине) электрических зарядов электрона и протона. Изучение движения атомов (молекул) и микроскопических тел в электрических полях подтверждает электронейтральность вещества и, соответственно, равенство зарядов электрона и протона (и электронейтральность ней-трона) с точностью до 10 -21 .

Закон сохранения заряда подтверждается и простыми опытами по электризации тел. Укрепим на стержне электромера металлический диск и, положив на него прослойку из сукна, поставим сверху еще один такой же диск, но с ручкой из диэлектрика. Совершив несколько движений верхним диском по изоляционной прослойке, уберем его в сторону. Мы увидим, что стрелка электромера отклонится, свидетельствуя о появлении на сукне и соприкасающемся с ним диске электрического заряда. Далее прикоснемся вторым диском (которым мы терли о сукно) к стерж-ню второго электромера. Стрелка этого электромера отклонится примерно на такой же угол, что и стрелка первого электромера. Это означает, что при электризации оба диска получили одинако-вый по модулю заряд. Что можно сказать о знаках этих зарядов? Для ответа на этот вопрос завер-шим опыт, соединив электромеры металлическим стержнем. Мы увидим, как стрелки приборов опустятся вниз. Нейтрализация зарядов свидетельствует о том, что они были равны по модулю, но противоположны по знаку (и, следовательно, в сумме давали нуль).

Этот и другие опыты показывают, что в процессе электризации общий (суммарный) заряд тел сохраняется: если он был равен нулю до электризации, то таким он останется и после нее.

Полный электрический заряд сохраняется и в том случае, если первоначальные заряды тел были отличны от нуля. Если обозначить первоначальные заряды тел как q 1 и q 2 , а заряд тех же тел после их взаимодействия как q’ 1 и q’ 2 то можно записать:

q’ 1 + q’ 2 = q 1 + q 2 .

При любых взаимодействиях тел их полный электрический заряд остается неизменным.

В этом заключается фундаментальный закон природы — закон сохранения электрического заряда.

Закон сохранения заряда был установлен в 1750 г. американским ученым и видным политическим деятелем Бенджамином Франклином. Он же ввел понятие о положительных и отрицатель-ных зарядах, обозначив их знаками «+» и «-».

Закон сохранения заряда имеет глубокий смысл. Он очевиден, когда число элементарных частиц не меняется. Однако элементарные частицы могут возникать (рождаться) и исчезать, т. е. пре-терпевать различные превращения. Возникают и исчезают элементарные частицы всегда пара-ми (с противоположными зарядами). Многочисленные наблюдения превращений элементарных частиц подтверждают закон сохранения заряда. Этот закон выражает одно из фундаментальных свойств электрического заряда.

Таким образом, электрический заряд во Вселенной сохраняется, а полный электрический за-ряд Вселенной, скорее всего, равен нулю.

При электризации тел выполняется закон сохранения электрического заряда . Этот закон справедлив для замкнутой системы. В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной . Если заряды частиц обозначить через q 1 , q 2 и т.д., то

q 1 + q 2 + q 3 + … + q n = const.

Основной закон электростатики – закон кулона

Если расстояние между телами во много раз больше их размеров, то ни форма, ни размеры заряженных тел существенно не влияют на взаимодействия между ними. В таком случае эти тела можно рассматривать как точечные.

Сила взаимодействия заряженных тел зависит от свойств среды между заряженными телами.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними. Эту силу называют кулоновской.

|q 1 | и |q 2 | - модули зарядов тел,

r – расстояние между ними,

k – коэффициент пропорциональности.

F - сила взаимодействия

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела.

Единица электрического заряда

Единица силы тока – ампер.

Один кулон (1 Кл) – это заряд, проходящий за 1 с через поперечное сечение проводника при силе тока 1 А

g [Кулон=Кл]

е=1,610 -19 Кл

-электрическая постоянная

БЛИЗКОДЕЙСТВИЕ И ДЕЙСТВИЕ НА РАССТОЯНИИ

Предположение о том, что взаимодействие между удаленными друг от друга телами всегда осуществляется с помощью промежуточных звеньев (или среды), передающих взаимодействие от точки к точке, составляет сущность теории близкодействия. Распр. с конечной скоростью.

Теория прямого действия на расстоянии непосредственно через пустоту. Согласно этой теории действие передается мгновенно на сколь угодно большие расстояния.

Обе теории являются взаимно противоположными друг другу. Согласно теории действия на расстоянии одно тело действует на другое непосредственно через пустоту и это действие передается мгновенно.

Теория близкодействия утверждает, что любое взаимодействие осуществляется с помощью промежуточных агентов и распространяется с конечной скоростью.

Существования определенного процесса в пространстве между взаимодействующими телами, который длится конечное время, - вот главное, что отличает теорию близкодействия от теории действия на расстоянии.

Согласно идее Фарадея электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой заряд, и наоборот. По мере удаления от заряда поле ослабевает.

Электромагнитные взаимодействия должны распространятся в пространстве с конечной скоростью.

Электрическое поле существует реально, его свойства можно исследовать опытным путем, но мы не можем сказать из чего это поле состоит.

О природе электрического поля можно сказать, что поле материально; оно сущ. независимо от нас, от наших знаний о нем;

Поле обладает определенными свойствами, которые не позволяют спутать его с чем-либо другим в окружающем мире;

Главное свойство электрического поля – действие его на электрические заряды с некоторой силой;

Электрическое поле неподвижных зарядов называют электростатическим . Оно не меняется со временем. Электростатическое поле создается только электрическими зарядами. Оно существует в пространстве, окружающем эти заряды, и неразрывно с ним связано.

Напряженность электрического поля.

Отношение силы, действующей на помещенный в данную точку поля заряд, к этому заряду для каждой точки поля не зависит от заряда и может рассматриваться как характеристика поля.

Напряженность поля равна отношению силы, с которой поле действует на точечный заряд, к этому заряду.


Напряженность поля точечного заряда.

.

Модуль напряженности поля точечного заряда q o на расстоянии r от него равен:

.

Если в данной точке пространства различные заряженные частицы создают электрические поля, напряженности которых и т. д., то результирующая напряженность поля в этой точке равна:

СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛ.

НАПРЯЖЕННОСТЬ ПОЛЯ ЗАРЯЖЕННОГО ШАРА

Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным.

Густота силовых линий больше вблизи заряженных тел, где напряженность поля также больше.

-напряженность поля точечного заряда.

Внутри проводящего шара (r > R) напряженность поля равна нулю.

ПРОВОДНИКИ В ЭЛЕКТРИЧЕСКОМ ПОЛЕ.

В проводниках имеются заряженные частицы, способные перемещаться внутри проводника под влиянием электрического поля. Заряды этих частиц называют свободными зарядами.

Электростатического поля внутри проводника нет. Весь статический заряд проводника сосредоточен на его поверхности. Заряды в проводнике могут располагаться только на его поверхности.

В основе всего разнообразия явлений природы лежат 4 фундаментальных взаимодействия между элементарными частицами: сильное, электромагнитное, слабое и гравитационное. Каждый вид взаимодействия связывается с определенной характеристикой частиц: например – электромагнитное – с электрическим зарядом. Электрический заряд является неотъемлемым свойством некоторых элементарных частиц. Элементарными частицами будем называть мельчайшие известные в настоящее время частицы материи. Все тела в природе способны электризоваться, т.е. приобретать электрический заряд. Электрический заряд частицы - основная ее характеристика. Он обладает тремя фундаментальными свойствами:

Самая маленькая частица электрического заряда - называется элементарным зарядом.

Заряд всех элементарных частиц (если он не равен нулю) одинаков по абсолютной величине.

Положительный элементарный заряд будем обозначать символом (+е), отрицательный – (-е).

Из протонов, электронов и нейтронов построены атомы и молекулы любого вещества. Известны также частицы, называемые резонансами, заряд которых равен 2е.

2) Всякий заряд q образуется совокупностью элементарных зарядов, и является целым кратным е.

Электрический элементарный заряд очень мал, поэтому можно считать возможную величину макроскопических зарядов изменяющейся непрерывно.

3) Если физическая величина может принимать только определенные, дискретные значения, то говорят, что эта величина квантуется. Электрический заряд квантуется.

Величина заряда, измеряемая в различных инерциальных системах отсчета, оказывается одинаковой. Его величина не зависит от системы отсчета, а значит, не зависит от того, движется он или покоится.

Электрический заряд является релятивистски инвариантным. Электрические заряды могут исчезать и возникать вновь. Но всегда возникают или исчезают 2 электрических заряда противоположных знаков. Электрон и позитрон при встрече аннигилируют , т.е. превращаются в нейтральные гамма-фотоны, при этом исчезают заряды +е и -е. Если гамма-фотон попадает в поле атомного ядра, то рождается пара частиц – электрон и позитрон, при этом возникают заряды +е и -е.

Закон сохранения электрического заряда . Он был установлен из обобщения опытных данных и экспериментально подтвержден в 1843 г. физиком М. Фарадеем.

Электрически изолированной системой будем называть систему, если между ней и внешними телами нет обмена электрическими зарядами. В такой системе могут возникать новые электрически заряженные частицы, но всегда рождаются частицы, суммарный электрический заряд которых равен нулю.

Алгебраическая сумма электрических зарядов любой электрически замкнутой системы остается неизменной, какие бы процессы не происходили внутри этой системы .

где- q 1 и q 2 -заряды тел системы до взаимодействия, а q 1 ¢ и q 2 ¢ - после взаимодействия.

Закон сохранения электрического заряда связан с релятивистской инвариантностью заряда. Действительно, если бы величина заряда зависела от его скорости, то, приведя в движение заряды одного какого-то знака, мы изменили бы суммарный заряд изолированной системы.

В нашей стране с 1982 введена система единиц СИ. Обозначается электрический заряд буквами - q или Q . Единицей измерения электрического заряда в СИ является Кулон, ([q] = 1 Кл), кулон – производная единица измерения.

1 Кулон - это электрический заряд, проходящий через поперечное сечение проводника при силе тока 1А за время 1 сек.

- [м], - [кг], -[сек], [ I ]-, - K ,

1Кл = 2,998 ·10 9 СГСЭ единиц заряда; или 1СГСз = 1/3·10 -9 Кл, e = +1,6·10 -19 Кл.

СГСЭ система - (см, г, с и СГСЭ единица заряда) называется абсолютной электростатической системой единиц.

СГСЭ единица заряда это такой заряд, который взаимодействует в вакууме с равным ему и находящимся на расстоянии 1 см зарядом с силой в 1 дину.

Элементарный заряд равен: e =+1,6·10 -19 Кл = 4,80·10 -10 СГСЭ - единиц заряда.

В СИ единицей силы служит ньютон (Н), 1Н= 10 5 дин .

— один из фундаментальных законов природы. Закон сохранения заряда был открыт в 1747 г. Б. Франклином.

Электрон - частица, входящая в состав атома. В истории физики существовало несколько моделей строения атома. Одна из них, позволяющая объяснить ряд экспериментальных фактов, в том числе явление электризации , была предложена Э. Резерфордом . На основании проделанных опытов он сделал вывод о том, что в центре атома находится положительно заряженное ядро, вокруг которого по орбитам движутся отрицательно заряженные электроны. У нейтрального атома положительный заряд ядра равен суммарному отрицательному заряду электронов. Ядро атома состоит из положительно заряженных протонов и нейтральных частиц нейтронов. Заряд протона по модулю равен заряду электрона. Если из нейтрального атома удалены один или несколько электронов, то он становится положительно заряженным ионом; если к атому присоединяются электроны, то он становится отрицательно заряженным ионом.

Знания о строении атома позволяют объяснить явление электризации трением . Электроны, слабо связанные с ядром, могут отделиться от одного атома и присоединиться к другому. Это объясняет, почему на одном теле может образоваться недостаток электронов , а на другом - их избыток . В этом случае первое тело становится заряженным положительно , а второе - отрицательно .

При электризации происходит перераспределение заряда , электризуются оба тела, приобретая равные по модулю заряды противоположных знаков. При этом алгебраическая сумма электрических зарядов до и после электризации остаётся постоянной:

q 1 + q 2 + … + q n = const.

Алгебраическая сумма зарядов пластин до и после электризации равна нулю. Записанное равенство выражает фундаментальный закон природы - закон сохранения электрического заряда .

Как и любой физический закон, он имеет определённые границы применимости: он справедлив для замкнутой системы тел , т.е. для совокупности тел, изолированных от других объектов.

О том, что электрические заряды в природе существуют, человечество знало со времен древнегреческих натурфилософов, которые открыли, что кусочки янтаря, если их потереть кошачьей шерстью, начинают отталкиваться друг от друга. Сегодня мы знаем, что электрический заряд, подобно массе, является одним из фундаментальных свойств материи. Все без исключения элементарные частицы, из которых состоит материальная Вселенная, имеют тот или иной электрический заряд — положительный (подобно протонам в составе атомного ядра), нейтральный (подобно нейтронам того же ядра) или отрицательный (подобно электронам, образующим внешнюю оболочку атомного ядра и обеспечивающим его электрическую нейтральность в целом).

Одним из полезнейших приемов в физике является выявление совокупных (суммарных) свойств системы, которые не изменяются ни при каких изменениях ее состояния. Такие свойства, выражаясь научным языком, являются консервативными , поскольку для них выполняются законы сохранения . Любой закон сохранения сводится к констатации того факта, что в замкнутой (в смысле полного отсутствия «утечки» или «поступления» соответствующей физической величины) консервативной системе соответствующая величина, характеризующая систему в целом, со временем не изменяется.

Электрический заряд как раз и относится к категории консервативных характеристик замкнутых систем. Алгебраическая сумма положительных и отрицательных электрических зарядов — чистый суммарный заряд системы — не изменяется ни при каких обстоятельствах, какие бы процессы в системе ни происходили. В частности, при химических реакциях, отрицательно заряженные валентные электроны могут каким угодно образом перераспределяться между внешними оболочками образующих химические связи атомов различных веществ — ни совокупный отрицательный заряд электронов, ни совокупный положительный заряд протонов в ядре в замкнутой химической системе не изменится. И это лишь самый простой пример, поскольку при химических реакциях не происходит трансмутаций самих протонов и электронов, в результате чего число положительных и отрицательных зарядов в системе можно просто подсчитать.

При более высоких энергиях, однако, электрически заряженные элементарные частицы начинают вступать во взаимодействия друг с другом, и проследить за соблюдением закона сохранения электрического заряда становится значительно сложнее, однако он выполняется и в этом случае. Например, при реакции спонтанного распада изолированного нейтрона происходит процесс, который можно описать следующей формулой:

где p — положительно заряженный протон, n — нейтрально заряженный нейтрон, e — отрицательно заряженный электрон, а v — нейтральная частица, называемая нейтрино. Нетрудно увидеть, что и в исходном материале, и в продукте реакции суммарный электрический заряд равен нулю (0 = (+1) + (-1) + 0), однако в этом случае налицо изменение общего числа положительно и отрицательно заряженных частиц в системе. Это — одна из реакций радиоактивного распада , в которых закон сохранения алгебраической суммы электрических зарядов выполняется, несмотря на образование новых заряженных частиц. Такие процессы характерны для взаимодействий между элементарными частицами, при которых из частиц с одними электрическими зарядами рождаются частицы с другими электрическими зарядами. Суммарный электрический заряд замкнутой системы, в любом случае, остается неизменным.