Применение хлора 2. Важнейшие соединения хлора

Он широко применяется в промышленности, сельском хозяйстве, для лекарственных и бытовых нужд. Ежегодное производство хлора в мире составляет 55,5 млн. т.: в силу столь широкого распространения этого вещества аварии, связанные с его утечкой, довольно часты (они происходят как на промышленных объектах, так и при транспортировке хлора).

Зачастую происходит не только поражение промышленного объекта, но и местности за его пределами (из-за физико-химических свойств хлора: он в 2,5 раза тяжелее воздуха, поэтому скапливается в низинах, заражению подвергаются источники воды, так как хлор очень хорошо растворим в воде).

Поэтому сегодня особенно актуально знание объектов экономики, которые производят или используют хлор, симптомов отравления хлором, умения оказания первой помощи, а также знание СИЗ, используемых в зоне заражения.

Перед тем, как исследовать хлор как АХОВ, выделить симптомы отравления этим химическим веществом и определить, в чём заключается доврачебная и первая медицинская помощь, необходимо познакомиться с его общей характеристикой и областями использования.

Хлор (от греч. – «зелёный»). Химическая формула – Cl2 (молекулярная масса – 70,91). Соединение с хлором (газообразный хлороводород) было впервые получено Д. Пристли в 1772 году. Хлор в «чистом виде» был получен два года спустя К. В. Шееле.

Плотность жидкого хлора – 1560 кг/м3. Он негорюч и реактивен: на свету при повышенных температурах (к примеру, в случае пожара) взаимодействует с водородом (взрыв), в результате может образоваться более опасный газ – фосген.

Хлор применяется во многих сферах промышленности, науки и, зачастую, в быту. Перечислим области использования хлора в промышленности:

– он применяется при производстве поливинилхлорида, синтетического каучука, пластикатов (эти материалы служат для изготовления линолеума, одежды, обуви, изоляции для проводов и др.);

– в целлюлозно-бумажной промышленности хлор используют для отбеливания бумаги и картона (он также используется для отбеливания тканей);

– он задействован в производстве хлорорганических инсектицидов (эти вещества, уничтожающие вредных насекомых на посевах, используются в сельском хозяйстве);

– он используется в процессе обеззараживания («хлорирования») питьевой воды и очистки сточных вод;

– он широко применяется в химическом производстве бертолетовой соли, лекарств, хлорной извести, ядов, соляной кислоты, хлоридов металлов;

– в металлургии его задействуют для производства чистых металлов;

– это вещество используют как индикатор солнечных нейтрино.

Хлор хранится в цилиндрических резервуарах (10…250 м3) и шаровых(600…2 000 м3) резервуарах под давлением собственных паров (до 1,8 МПа). Сжижается под давлением при обычной температуре. Перевозится в контейнерах, баллонах, цистернах, выступающих временными хранилищами.

Впервые хлор был получен в 1772 г. Шееле, описавшим его выделение при взаимодействии пиролюзита с соляной кислотой в своём трактате о пиролюзите: 4HCl + MnO 2 = Cl 2 + MnCl 2 + 2H 2 O
Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать с золотом и киноварью, а также его отбеливающие свойства. Однако Шееле, в соответствии с господствовавшей в химии того времени теории флогистона, предположил, что хлор представляет собой дефлогистированную соляную кислоту, то есть оксид соляной кислоты.
Бертолле и Лавуазье предположили, что хлор является оксидом элемента мурия, однако попытки его выделения оставались безуспешными вплоть до работ Дэви, которому электролизом удалось разложить поваренную соль на натрий и хлор.
Название элемента происходит от греческого clwroz - "зелёный".

Нахождение в природе, получение:

Природный хлор представляет собой смесь двух изотопов 35 Cl и 37 Cl. В земной коре хлор - самый распространённый галоген. Поскольку хлор очень активен, в природе он встречается только в виде соединений в составе минералов: галита NaCl, сильвина KCl, сильвинита KCl · NaCl, бишофита MgCl 2 ·6H 2 O, карналлита KCl·MgCl 2 ·6Н 2 O, каинита KCl·MgSO 4 ·3Н 2 О. Самые большие запасы хлора содержатся в составе солей вод морей и океанов.
В промышленных масштабах хлор получают вместе с гидроксидом натрия и водородом при электролизе раствора поваренной соли:
2NaCl + 2H 2 О => H 2 + Cl 2 + 2NaOH
Для рекуперации хлора из хлороводорода, являющегося побочным продуктом при промышленном хлорировании органических соединений используется процесс Дикона (каталитическое окисление хлороводорода кислородом воздуха):
4HCl + O 2 = 2H 2 O + 2Cl 2
В лабораториях обычно используют процессы, основанные на окислении хлороводорода сильными окислителями (например, оксидом марганца (IV), перманганатом калия, дихроматом калия):
2KMnO 4 + 16HCl = 5Cl 2 + 2MnCl 2 + 2KCl +8H 2 O
K 2 Cr 2 O 7 + 14HCl = 3Cl 2 + 2CrCl 3 + 2KCl + 7H 2 O

Физические свойства:

При нормальных условиях хлор - жёлто-зелёный газ с удушающим запахом. Хлор заметно растворяется в воде ("хлорная вода"). При 20°C в одном объеме воды растворяется 2,3 объема хлора. Температура кипения = -34°C; температура плавления = -101°C, плотность (газ, н.у.) = 3,214 г/л.

Химические свойства:

Хлор очень активен - он непосредственно соединяется почти со всеми элементами периодической системы, металлами и неметаллами (кроме углерода, азота, кислорода и инертных газов). Хлор очень сильный окислитель, вытесняет менее активные неметаллы (бром, иод) из их соединений с водородом и металлами:
Cl 2 + 2HBr = Br 2 + 2HCl; Cl 2 + 2NaI = I 2 + 2NaCl
При растворении в воде или щелочах, хлор дисмутирует, образуя хлорноватистую (а при нагревании хлорную) и соляную кислоты, либо их соли.
Cl 2 + H 2 O HClO + HCl;
Хлор взаимодействует со многими органическими соединениями, вступая в реакции замещения или присоединения:
CH 3 -CH 3 + xCl 2 => C 2 H 6-x Cl x + xHCl
CH 2 =CH 2 + Cl 2 => Cl-CH 2 -CH 2 -Cl
C 6 H 6 + Cl 2 => C 6 H 6 Cl + HCl
Хлор имеет семь степеней окисления: -1, 0, +1, +3, +4, +5, +7.

Важнейшие соединения:

Хлороводород HCl - бесцветный газ, на воздухе дымит вследствие образования с парами воды капелек тумана. Обладает резким запахом, сильно раздражает дыхательные пути. Содержится в вулканических газах и водах, в желудочном соке. Химические свойства зависят от того, в каком состоянии он находится (может быть в газообразном, жидком состоянии или в растворе). Раствор HCl называется соляной (хлороводородной) кислотой . Это сильная кислота, вытесняет более слабые кислоты из их солей. Соли - хлориды - твёрдые кристаллические вещества с высокими температурами плавления.
Ковалентные хлориды - соединения хлора с неметаллами, газы, жидкости или легкоплавкие твёрдые вещества, имеющие характерные кислотные свойства, как правило легко гидролизующиеся водой с образованием соляной кислоты:
PCl 5 + 4H 2 O = H 3 PO 4 + 5HCl;
Оксид хлора(I) Cl 2 O. , газ буровато-желтого цвета с резким запахом. Поражает дыхательные органы. Легко растворяется в воде, образуя хлорноватистую кислоту.
Хлорноватистая кислота HClO . Существует только в растворах. Это слабая и неустойчивая кислота. Легко разлагается на соляную кислоту и кислород. Сильный окислитель. Образуется при растворении хлора в воде. Соли - гипохлориты , малоустойчивы (NaClO*H 2 O при 70 °C разлагается со взрывом), сильные окислители. Широко используется для отбеливания и дезинфекции хлорная известь , смешанная соль Ca(Cl)OCl
Хлористая кислота HClO 2 , в свободном виде неустойчива, даже в разбавленном водном растворе она быстро разлагается. Кислота средней силы, соли - хлориты , как правило, бесцветны и хорошо растворимы в воде. В отличие от гипохлоритов, хлориты проявляют выраженные окислительные свойства только в кислой среде. Наибольшее применение (для отбелки тканей и бумажной массы) имеет хлорит натрия NaClO 2 .
Оксид хлора(IV) ClO 2 , - зеленовато-желтый газ с неприятным (резким) запахом, ...
Хлорноватая кислота , HClO 3 - в свободном виде нестабильна: диспропорционирует на ClO 2 и HClO 4 . Соли - хлораты ; из них наибольшее значение имеют хлораты натрия, калия, кальция и магния. Это сильные окислители, в смеси с восстановителями взрывоопасны. Хлорат калия (бертолетова соль ) - KClO 3 , использовалась для получения кислорода в лаборатории, но из-за высокой опасности её перестали применять. Растворы хлората калия применялись в качестве слабого антисептика, наружного лекарственного средства для полоскания горла.
Хлорная кислота HClO 4 , в водных растворах хлорная кислота - самая устойчивая из всех кислородсодержащих кислот хлора. Безводная хлорная кислота, которую получают при помощи концентрированной серной кислоты из 72%-ной HСlO 4 мало устойчива. Это самая сильная одноосновная кислота (в водном растворе). Соли - перхлораты , применяются как окислители (твердотопливные ракетные двигатели).

Применение:

Хлор применяют во многих отраслях промышленности, науки и бытовых нужд:
- В производстве поливинилхлорида, пластикатов, синтетического каучука;
- Для отбеливания ткани и бумаги;
- Производство хлорорганических инсектицидов - веществ, убивающих вредных для посевов насекомых, но безопасных для растений;
- Для обеззараживания воды - "хлорирования";
- В пищевой промышленности зарегистрирован в качестве пищевой добавки E925;
- В химическом производстве соляной кислоты, хлорной извести, бертолетовой соли, хлоридов металлов, ядов, лекарств, удобрений;
- В металлургии для производства чистых металлов: титана, олова, тантала, ниобия.

Биологическая роль и токсичность:

Хлор относится к важнейшим биогенным элементам и входит в состав всех живых организмов. У животных и человека, ионы хлора участвуют в поддержании осмотического равновесия, хлорид-ион имеет оптимальный радиус для проникновения через мембрану клеток. Ионы хлора жизненно необходимы растениям, участвуя в энергетическом обмене у растений, активируя окислительное фосфорилирование.
Хлор в виде простого вещества ядовит, при попадании в лёгкие вызывает ожог лёгочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л (т.е. в два раза выше порога восприятия запаха хлора). Хлор был одним из первых химических отравляющих веществ, использованных Германией в Первую Мировую войну.

Короткова Ю., Швецова И.
ХФ ТюмГУ, 571 группа.

Источники: Википедия: http://ru.wikipedia.org/wiki/Cl и др.,
Сайт РХТУ им. Д.И.Менделеева:

15.1. Общая характеристика галогенов и халькогенов

Галогены ("рождающие соли") – элементы VIIA группы. К ним относятся фтор, хлор, бром и йод. В эту же группу входит и неустойчивый, а потому не встречающийся в природе астат. Иногда к этой группе относят и водород.
Халькогены ("рождающие медь") – элементы VIA группы. К ним относятся кислород, сера, селен, теллур и практически не встречающийся в природе полоний.
Из восьми существующих в природе атомов элементов этих двух групп наиболее распространены атомы кислорода (w = 49,5 %), за ним по распространенности следуют атомы хлора (w = 0,19 %), далее – серы (w = 0,048 %), затем – фтора (w = 0,028 %). Атомов остальных элементов в сотни и тысячи раз меньше. Кислород вы уже изучали в восьмом классе (гл. 10), из остальных элементов наиболее важными являются хлор и сера – с ними вы и познакомитесь в этой главе.
Орбитальные радиусы атомов галогенов и халькогенов невелики и лишь у четвертых атомов каждой группы приближаются к одному ангстрему. Это приводит к тому, что все эти элементы, представляют собой элементы, образующие неметаллы и только теллур и йод проявляют некоторые признаки амфотерности.
Общая валентная электронная формула галогенов – ns 2 np 5 , а халькогенов – ns 2 np 4 . Маленькие размеры атомов не позволяют им отдавать электроны, напротив, атомы этих элементов склонны их принимать, образуя однозарядные (у галогенов) и двухзарядные (у халькогенов) анионы. Соединяясь с небольшими атомами, атомы этих элементов образуют ковалентные связи. Семь валентных электронов дают возможность атомам галогенов (кроме фтора) образовывать до семи ковалентных связей, а шесть валентных электронов атомов халькогенов – до шести ковалентных связей.
В соединениях фтора – самого электроотрицательного элемента – возможна только одна степень окисления, а именно –I. У кислорода, как вы знаете, максимальная степень окисления +II. У атомов остальных элементов высшая степень окисления равна номеру группы.

Простые вещества элементов VIIA группы однотипны по строению. Они состоят из двухатомных молекул. При обычных условиях фтор и хлор – газы, бром – жидкость, а йод – твердое вещество. По химическим свойствам эти вещества сильные окислители. Из-за роста размеров атомов с увеличением порядкового номера их окислительная активность снижается.
Из простых веществ элементов VIA группы при обычных условиях газообразны только кислород и озон, состоящие из двухатомных и трехатомных молекул, соответственно; остальные – твердые вещества. Сера состоит из восьмиатомных циклических молекул S 8 , селен и теллур из полимерных молекул Se n и Te n . По своей окислительной активности халькогены уступают галогенам: сильным окислителем из них является только кислород, остальные же проявляют окислительные свойства в значительно меньшей степени.

Состав водородных соединений галогенов (НЭ) полностью отвечает общему правилу, а халькогены, кроме обычных водородных соединений состава H 2 Э, могут образовывать и более сложные водородные соединения состава Н 2 Э n цепочечного строения. В водных растворах и галогеноводороды, и остальные халькогеноводороды проявляют кислотные свойства. Их молекулы – частицы-кислоты. Из них сильными кислотами являются только HCl, HBr и HI.
Для галогенов образование оксидов нехарактерно, большинство из них неустойчиво, однако высшие оксиды состава Э 2 О 7 известны для всех галогенов (кроме фтора, кислородные соединения которого не являются оксидами). Все оксиды галогенов – молекулярные вещества, по химическим свойствам – кислотные оксиды.
В соответствии со своими валентными возможностями халькогены образуют два ряда оксидов: ЭО 2 и ЭО 3 . Все эти оксиды кислотные.

Гидроксиды галогенов и халькогенов представляют собой оксокислоты.

Составьте сокращенные электронные формулы и энергетические диаграммы атомов элементов VIA и VIIA групп. Укажите внешние и валентные электроны.

Хлор самый распространенный, а потому и важнейший из галогенов.
В земной коре хлор встречается в составе минералов: галита (каменной соли) NaCl, сильвина KCl, карналлита KCl·MgCl 2 ·6H 2 O и многих других. Основной промышленный способ получения – электролиз хлоридов натрия или калия.

Простое вещество хлор – газ зеленоватого цвета с едким удушающим запахом. При –101 °С конденсируется в желто-зеленую жидкость. Хлор весьма ядовит, во время первой мировой войны его даже пытались использовать в качестве боевого отравляющего вещества.
Хлор – один из самых сильных окислителей. Он реагирует с большинством простых веществ (исключение: благородные газы, кислород, азот, графит, алмаз и некоторые другие). В результате образуются галогениды:
Cl 2 + H 2 = 2HCl (при нагревании или на свету);
5Cl 2 + 2P = 2PCl 5 (при сжигании в избытке хлора);
Cl 2 + 2Na = 2NaCl (при комнатной температуре);
3Cl 2 + 2Sb = 2SbCl 3 (при комнатной температуре);
3Cl 2 + 2Fe = 2FeCl 3 (при нагревании).
Кроме того хлор может окислять и многие сложные вещества, например:
Cl 2 + 2HBr = Br 2 + 2HCl (в газовой фазе и в растворе);
Cl 2 + 2HI = I 2 + 2HCl (в газовой фазе и в растворе);
Cl 2 + H 2 S = 2HCl + S (в растворе);
Cl 2 + 2KBr = Br 2 + 2KCl (в растворе);
Cl 2 + 3H 2 O 2 = 2HCl + 2H 2 O + O 2 (в концентрированном растворе);
Cl 2 + CO = CCl 2 O (в газовой фазе);
Cl 2 + C 2 H 4 = C 2 H 4 Cl 2 (в газовой фазе).
В воде хлор частично растворяется (физически), а частично обратимо реагирует с ней (см. § 11.4 в). С холодным раствором гидроксида калия (и любой другой щелочи) аналогичная реакция протекает необратимо:

Cl 2 + 2OH = Cl + ClO + H 2 O.

В результате образуется раствор хлорида и гипохлорита калия. В случае реакции с гидроксидом кальция образуется смесь CaCl 2 и Ca(ClO) 2 , называемая хлорной известью.

С горячими концентрированными растворами щелочей реакция протекает иначе:

3Cl 2 + 6OH = 5Cl + ClO 3 + 3H 2 O.

В случае реакции с KOH так получают хлорат калия, называемый бертолетовой солью.
Хлороводород – единственное водородное соединение хлора. Этот бесцветный газ с удушающим запахом хорошо растворим в воде (нацело реагирует с ней, образуя ионы оксония и хлорид-ионы (см. § 11.4). Его раствор в воде называют соляной или хлороводородной кислотой. Это один из важнейших продуктов химической технологии, так как расходуется соляная кислота во многих отраслях промышленности. Огромное значение она имеет и для человека, в частности потому, что содержится в желудочном соке, способствуя перевариванию пищи.
Хлороводород раньше получали в промышленности, сжигая хлор в водороде. В настоящее время потребность в соляной кислоте почти полностью удовлетворяется за счет использования хлороводорода, образующегося в качестве побочного продукта при хлорировании различных органических веществ, например, метана:

CH 4 + Cl 2 = CH 3 + HCl

И лаборатории хлороводород получают из хлорида натрия, обрабатывая его концентрированной серной кислотой:
NaCl + H 2 SO 4 = HCl + NaHSO 4 (при комнатной температуре);
2NaCl + 2H 2 SO 4 = 2HCl + Na 2 S 2 O 7 + H 2 O (при нагревании).
Высший оксид хлора Cl 2 O 7 – бесцветная маслянистая жидкость, молекулярное вещество, кислотный оксид. В результате реакции с водой образует хлорную кислоту HClO 4 , единственную оксокислоту хлора, существующую как индивидуальное вещество; остальные оксокислоты хлора известны только в водных растворах. Сведения об этих кислотах хлора приведены в таблице 35.

Таблица 35.Кислоты хлора и их соли

С/O
хлора

Формула
кислоты

Название
кислоты

Сила
кислоты

Название
солей

хлороводородная

хлорноватистая

гипохлориты

хлористая

хлорноватая

перхлораты

Большинство хлоридов растворимо в воде. Исключение составляют AgCl, PbCl 2 , TlCl и Hg 2 Cl 2 . Образование бесцветного осадка хлорида серебра при добавлении к исследуемому раствору раствора нитрата серебра – качественная реакция на хлорид-ион:

Ag + Cl = AgCl

Из хлоридов натрия или калия в лаборатории можно получить хлор:

2NaCl + 3H 2 SO 4 + MnO 2 = 2NaHSO 4 + MnSO 4 + 2H 2 O + Cl 2

В качестве окислителя при получении хлора по этому способу можно использовать не только диоксид марганца, но и KMnO 4 , K 2 Cr 2 O 7 , KClO 3 .
Гипохлориты натрия и калия входят в состав различных бытовых и промышленных отбеливателей. Хлорная известь также используется как отбеливатель, кроме того ее используют как дезинфицирующее средство.
Хлорат калия используют в производстве спичек, взрывчатых веществ и пиротехнических составов. При нагревании он разлагается:
4KClO 3 = KCl + 3KClO 4 ;
2KClO 3 = 2KCl + O 2 (в присутствии MnO 2).
Перхлорат калия тоже разлагается, но при более высокой температуре: KClO 4 = KCl + 2O 2 .

1.Составьте молекулярные уравнения реакций, для которых в тексте параграфа приведены ионные уравнения.
2.Составьте уравнения реакций, данных в тексте параграфа описательно.
3.Составьте уравнения реакций, характеризующих химические свойства а) хлора, б) хлороводорода (и соляной кислоты), в) хлорида калия и г) хлорида бария.
Химические свойства соединений хлора

В различны условиях устойчивы различные аллотропные модификации элемента сера. При обычных условиях простое вещество сера представляет собой желтое хрупкое кристаллическое вещество, состоящее из восьмиатомных молекул:

Это так называемая ромбическая сера (или -сера) S 8 .(Название происходит от кристаллографического термина, характеризующего симметрию кристаллов этого вещества). При нагревании она плавится (113 °С), превращаясь в подвижную желтую жидкость, состоящую из таких же молекул. При дальнейшем нагревании происходит разрыв циклов и образование очень длинных полимерных молекул – расплав темнеет и становится очень вязким. Это так называемая -сера S n . Кипит сера (445 °С) в виде двухатомных молекул S 2 , аналогичных по строению молекулам кислорода. Строение этих молекул также, как и молекул кислорода, не может быть описано в рамках модели ковалентной связи. Кроме того существуют и другие аллотропные модификации серы.
В природе встречаются месторождения самородной серы, из которых ее и добывают. Большая часть добываемой серы используется для производства серной кислоты. Часть серы используют в сельском хозяйстве для защиты растений. Очищенная сера применяется в медицине для лечения кожных заболеваний.
Из водородных соединений серы наибольшее значение имеет сероводород (моносульфан) H 2 S. Это бесцветный ядовитый газ с запахом тухлых яиц. В воде он малорастворим. Растворение физичекое. В незначительной степени в водном растворе происходит протолиз молекул сероводорода и в еще меньшей степени – образующихся при этом гидросульфид-ионов (см. приложение 13). Тем не менее, раствор сероводорода в воде называют сероводородной кислотой (или сероводородной водой).

На воздухе сероводород сгорает:

2H 2 S + 3O 2 = 2H 2 O + SO 2 (при избытке кислорода).

Качественной реакцией на присутствие сероводорода в воздухе служит образование черного сульфида свинца (почернение фильтровальной бумажки, смоченной раствором нитрата свинца:

H 2 S + Pb 2 + 2H 2 O = PbS + 2H 3O

Реакция протекает в этом направлении из-за очень малой растворимости сульфида свинца.

Кроме сероводорода, сера образует и другие сульфаны H 2 S n , например, дисульфан H 2 S 2 , аналогичный по строению пероксиду водорода. Это тоже очень слабая кислота; ее солью является пирит FeS 2 .

В соответствии с валентными возможностями своих атомов сера образует два оксида : SO 2 и SO 3 . Диоксид серы (тривиальное название – сернистый газ) – бесцветный газ с резким запахом, вызывающим кашель. Триоксид серы (старое название – серный ангидрид) – твердое крайне гигроскопичное немолекулярное вещество, при нагревании переходящее в молекулярное. Оба оксида кислотные. При реакции с водой образуют соответственно сернистую и серную кислоты .
В разбавленных растворах серная кислота – типичная сильная кислота со всеми характерными для них свойствами.
Чистая серная кислота, а также ее концентрированные растворы – очень сильные окислители, причем атомами-окислителями здесь являются не атомы водорода, а атомы серы, переходящие из степени окисления +VI в степень окисления +IV. В результате при ОВР с концентрированной серной кислотой обычно образуется диоксид серы, например:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O;
2KBr + 3H 2 SO 4 = 2KHSO 4 + Br 2 + SO 2 + 2H 2 O.

Таким образом, с концентрированной серной кислотой реагируют даже металлы, стоящие в ряду напряжений правее водорода (Cu, Ag, Hg). Вместе с тем с концентрированной серной кислотой не реагируют некоторые довольно активные металлы (Fe, Cr, Al и др.), это связано с тем, что на поверхности таких металлов под действием серной кислоты образуется плотная защитная пленка, препятствующая дальнейшему окислению. Это явление называется пассивацией .
Будучи двухосновной кислотой, серная кислота образует два ряда солей : средние и кислые. Кислые соли выделены только для щелочных элементов и аммония, существование других кислых солей вызывает сомнение.
Большинство средних сульфатов растворимо в воде и, так как сульфат-ион практически не является анионным основанием, не подвергаются гидролизу по аниону.
Современные промышленные методы производства серной кислоты основаны на получении диоксида серы (1-й этап), окислении его в триоксид (2-й этап) и взаимодействии триоксида серы с водой (3-й) этап.

Диоксид серы получают сжигая в кислороде серу или различные сульфиды:

S + O 2 = SO 2 ;
4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Процесс обжига сульфидных руд в цветной металлургии всегда сопровождается образованием диоксида серы, который и идет на производство серной кислоты.
В обычных условиях окислить кислородом диоксид серы невозможно. Окисление проводят при нагревании в присутствии катализатора – оксида ванадия(V) или платины. Несмотря на то, что реакция

2SO 2 + O 2 2SO 3 + Q

обратима, выход достигает 99 %.
Если пропускать образующуюся газовую смесь триоксида серы с воздухом через чистую воду, большая часть триоксида серы не поглощается. Чтобы предотвратить потери, газовую смесь пропускают через серную кислоту или ее концентрированные растворы. При этом образуется дисерная кислота:

SO 3 + H 2 SO 4 = H 2 S 2 O 7 .

Раствор дисерной кислоты в серной называют олеумом и часто представляют как раствор триоксида серы в серной кислоте.
Разбавляя олеум водой, можно получить как чистую серную кислоту, так и ее растворы.

1.Cоставьте структурные формулы
а) диоксида серы, б) триоксида серы,
в) серной кислоты, г) дисерной кислоты.

Элемент VII подгруппы Периодической таблицы Д.И.Менделеева. На внешнем уровне - 7 электронов, поэтому при взаимодействии с восстановителями, хлор показывает свои окислительные свойства, притягивая к себе электрон металла.

Физические свойства хлора.

Хлор представляет собой желтый газ. Имеет резкий запах.

Химические свойства хлора.

Свободный хлор очень активен. Он реагирует со всеми простыми веществами, кроме кислорода, азота и благородных газов:

Si + 2 Cl 2 = SiCl 4 + Q .

При взаимодействии с водородом при комнатной температуре реакции практически нет, но как только освещение выступает в качестве внешнего воздействия, возникает цепная реакция, которая нашла свое применение в органической химии.

При нагреве хлор способен вытеснить йод или бром из их кислот:

Cl 2 + 2 HBr = 2 HCl + Br 2 .

С водой хлор реагирует, частично растворяясь в ней. Эту смесь называют хлорной водой.

Реагирует с щелочами:

Cl 2 + 2NaOH = NaCl + NaClO + H 2 O (холод ),

Cl 2 + 6KOH = 5KCl + KClO 3 + 3 H 2 O (нагрев ).

Получение хлора.

1. Электролиз расплава хлорида натрия, который протекает по следующей схеме:

2. Лабораторный способ получения хлора:

MnO 2 + 4HCl = MnCl 2 + Cl 2 + 2H 2 O.

Хлор (лат. Chlorum), Cl, химический элемент VII группы периодической системы Менделеева, атомный номер 17, атомная масса 35,453; относится к семейству галогенов. При нормальных условиях (0°С, 0,1 Мн/м 2 , или 1 кгс/см 2) желто-зеленый газ с резким раздражающим запахом. Природный Хлор состоит из двух стабильных изотопов: 35 Сl (75,77%) и 37 Cl (24,23%). Искусственно получены радиоактивные изотопы с массовыми числами 31-47, в частности: 32, 33, 34, 36, 38, 39, 40 с периодами полураспада (T ½) соответственно 0,31; 2,5; 1,56 сек; 3,1·10 5 лет; 37,3, 55,5 и 1,4 мин. 36 Cl и 38 Cl используются как изотопные индикаторы.

Историческая справка. Хлор получен впервые в 1774 году К. Шееле взаимодействием соляной кислоты с пиролюзитом MnО 2 . Однако только в 1810 году Г. Дэви установил, что хлор - элемент и назвал его chlorine (от греч. chloros - желто-зеленый). В 1813 году Ж. Л. Гей-Люссак предложил для этого элемента название Хлор.

Распространение Хлора в природе. Хлор встречается в природе только в виде соединений. Среднее содержание Хлора в земной коре (кларк) 1,7·10 -2 % по массе, в кислых изверженных породах- гранитах и других 2,4·10 -2 , в основных и ультраосновных 5·10 -3 . Основную роль в истории Хлора в земной коре играет водная миграция. В виде иона Cl - он содержится в Мировом океане (1,93%), подземных рассолах и соляных озерах. Число собственных минералов (преимущественно природных хлоридов) 97, главный из них галит NaCl (Каменная соль). Известны также крупные месторождения хлоридов калия и магния и смешанных хлоридов: сильвин КCl, сильвинит (Na,K)Cl, карналит KCl·MgCl 2 · 6H 2 O, каинит KCl·MgSO 4 ·3H 2 O, бишофит MgCl 2 ·6H 2 O. В истории Земли большое значение имело поступление содержащегося в вулканических газах НCl в верхние части земной коры.

Физические свойства Хлора. Хлор имеет t кип -34,05°С, t пл -101°С. Плотность газообразного Хлора при нормальных условиях 3,214 г/л; насыщенного пара при 0°С 12,21 г/л; жидкого Хлора при температуре кипения 1,557 г/см 3 ; твердого Хлора при - 102°С 1,9 г/см 3 . Давление насыщенных паров Хлора при 0°С 0,369; при 25°С 0,772; при 100°С 3,814 Мн/м 2 или соответственно 3,69; 7,72; 38,14 кгс/см 2 . Теплота плавления 90,3 кдж/кг (21,5 кал/г); теплота испарения 288 кдж/кг (68,8 кал/г); теплоемкость газа при постоянном давлении 0,48 кдж/(кг·К) . Критические константы Хлора: температура 144°С, давление 7,72 Мн/м 2 (77,2 кгс/см 2), плотность 573 г/л, удельный объем 1,745·10 -3 л/г. Растворимость (в г/л) Хлора при парциальном давлении 0,1 Мн/м 2 , или 1 кгс/см 2 , в воде 14,8 (0°С), 5,8 (30°С), 2,8 (70°С); в растворе 300 г/л NaCl 1,42 (30°С), 0,64 (70°С). Ниже 9,6°С в водных растворах образуются гидраты Хлора переменного состава Cl 2 ·nН 2 О (где n = 6-8); это желтые кристаллы кубической сингонии, разлагающиеся при повышении температуры на Хлор и воду. Хлор хорошо растворяется в TiCl 4 , SiCl 4 , SnCl 4 и некоторых органических растворителях (особенно в гексане С 6 H 14 и четыреххлористом углероде CCl 4). Молекула Хлора двухатомна (Cl 2). Степень термической диссоциации Cl 2 + 243кдж = 2Cl при 1000 К равна 2,07·10 -4 %, при 2500 К 0,909%.

Химические свойства Хлора. Внешняя электронная конфигурация атома Cl 3s 2 Зр 5 . В соответствии с этим Хлор в соединениях проявляет степени окисления -1,+1, +3, +4, +5, +6 и +7. Ковалентный радиус атома 0,99Å, ионный радиус Cl - 1.82Å, сродство атома Хлора к электрону 3,65 эв, энергия ионизации 12,97 эв.

Химически Хлор очень активен, непосредственно соединяется почти со всеми металлами (с некоторыми только в присутствии влаги или при нагревании) и с неметаллами (кроме углерода, азота, кислорода, инертных газов), образуя соответствующие хлориды, вступает в реакцию со многими соединениями, замещает водород в предельных углеводородах и присоединяется к ненасыщенным соединениям. Хлор вытесняет бром и иод из их соединений с водородом и металлами; из соединений Хлора с этими элементами он вытесняется фтором. Щелочные металлы в присутствии следов влаги взаимодействуют с Хлором с воспламенением, большинство металлов реагирует с сухим Хлором только при нагревании. Сталь, а также некоторые металлы стойки в атмосфере сухого Хлора в условиях невысоких температур, поэтому их используют для изготовления аппаратуры и хранилищ для сухого Хлора. Фосфор воспламеняется в атмосфере Хлора, образуя РCl 3 , а при дальнейшем хлорировании - РСl 5 ; сера с Хлором при нагревании дает S 2 Cl 2 , SCl 2 и другие S n Cl m . Мышьяк, сурьма, висмут, стронций, теллур энергично взаимодействуют с Хлором. Смесь Хлора с водородом горит бесцветным или желто-зеленым пламенем с образованием хлористого водорода (это цепная реакция).

Максимальная температура водородно-хлорного пламени 2200°С. Смеси Хлора с водородом, содержащие от 5,8 до 88,5% Н 2 , взрывоопасны.

С кислородом Хлор образует оксиды: Cl 2 О, СlO 2 , Cl 2 О 6 , Сl 2 О 7 , Cl 2 О 8 , а также гипохлориты (соли хлорноватистой кислоты), хлориты, хлораты и перхлораты. Все кислородные соединения хлора образуют взрывоопасные смеси с легко окисляющимися веществами. Оксиды Хлора малостойки и могут самопроизвольно взрываться, гипохлориты при хранении медленно разлагаются, хлораты и перхлораты могут взрываться под влиянием инициаторов.

Хлор в воде гидролизуется, образуя хлорноватистую и соляную кислоты: Cl 2 + Н 2 О = НClО + НCl. При хлорировании водных растворов щелочей на холоду образуются гипохлориты и хлориды: 2NaOH + Cl 2 = NaClO + NaCl + Н 2 О, а при нагревании - хлораты. Хлорированием сухого гидрооксида кальция получают хлорную известь.

При взаимодействии аммиака с Хлором образуется треххлористый азот. При хлорировании органических соединений Хлор либо замещает водород, либо присоединяется по кратным связям, образуя различные хлорсодержащие органических соединения.

Хлор образует с других галогенами межгалогенные соединения. Фториды ClF, ClF 3 , ClF 3 очень реакционноспособны; например, в атмосфере ClF 3 стеклянная вата самовоспламеняется. Известны соединения хлора с кислородом и фтором - оксифториды Хлора: ClO 3 F, ClO 2 F 3 , ClOF, ClOF 3 и перхлорат фтора FClO 4 .

Получение Хлора. Хлор начали производить в промышленности в 1785 году взаимодействием соляной кислоты с оксидом марганца (II) или пиролюзитом. В 1867 году английский химик Г. Дикон разработал способ получения Хлора окислением НСl кислородом воздуха в присутствии катализатора. С конца 19 - начала 20 века Хлор получают электролизом водных растворов хлоридов щелочных металлов. По этим методам производится 90-95% Хлора в мире. Небольшие количества Хлора получаются попутно при производстве магния, кальция, натрия и лития электролизом расплавленных хлоридов. Применяются два основные метода электролиза водных растворов NaCl: 1) в электролизерах с твердым катодом и пористой фильтрующей диафрагмой; 2) в электролизерах с ртутным катодом. По обоим методам на графитовом или окисном титано-рутениевом аноде выделяется газообразный Хлор. По первому методу на катоде выделяется водород и образуется раствор NaOH и NaCl, из которого последующей переработкой выделяют товарную каустическую соду. По второму методу на катоде образуется амальгама натрия, при ее разложении чистой водой в отдельном аппарате получаются раствор NaOH, водород и чистая ртуть, которая вновь идет в производство. Оба метода дают на 1 т Хлора 1,125 т NaOH.

Электролиз с диафрагмой требует меньших капиталовложений для организации производства Хлора, дает более дешевый NaOH. Метод с ртутным катодом позволяет получать очень чистый NaOH, но потери ртути загрязняют окружающую среду.

Применение Хлора. Одной из важных отраслей химические промышленности является хлорная промышленность. Основные количества Хлора перерабатываются на месте его производства в хлорсодержащие соединения. Хранят и перевозят Хлор в жидком виде в баллонах, бочках, железнодорожных цистернах или в специально оборудованных судах. Для индустриальных стран характерно следующее примерное потребление Хлор: на производство хлорсодержащих органических соединений - 60-75%; неорганических соединений, содержащих Хлор, -10-20%; на отбелку целлюлозы и тканей- 5-15%; на санитарные нужды и хлорирование воды - 2-6% от общей выработки.

Хлор применяется также для хлорирования некоторых руд с целью извлечения титана, ниобия, циркония и других

Хлор в организме. Хлор - один из биогенных элементов, постоянный компонент тканей растений и животных. Содержание Хлора в растениях (много Хлора в галофитах) - от тысячных долей процента до целых процентов, у животных - десятые и сотые доли процента. Суточная потребность взрослого человека в Хлоре (2-4 г) покрывается за счет пищевых продуктов. С пищей Хлор поступает обычно в избытке в виде хлорида натрия и хлорида калия. Особенно богаты Хлором хлеб, мясные и молочные продукты. В организме животных Хлор - основное осмотически активное вещество плазмы крови, лимфы, спинномозговой жидкости и некоторых тканей. Играет роль в водно-солевом обмене, способствуя удержанию тканями воды. Регуляция кислотно-щелочного равновесия в тканях осуществляется наряду с других процессами путем изменения в распределении Хлора между кровью и других тканями. Хлор участвует в энергетическом обмене у растений, активируя как окислительное фосфорилирование, так и фотофосфорилирование. Хлор положительно влияет на поглощение корнями кислорода. Хлор необходим для образования кислорода в процессе фотосинтеза изолированными хлоропластами. В состав большинства питательных сред для искусственного культивирования растений Хлор не входит. Возможно, для развития растений достаточны весьма малые концентрации Хлора.

Отравления Хлором возможны в химической, целлюлозно-бумажной, текстильной, фармацевтической промышленности и других. Хлор раздражает слизистые оболочки глаз и дыхательных путей. К первичным воспалительным изменениям обычно присоединяется вторичная инфекция. Острое отравление развивается почти немедленно. При вдыхании средних и низких концентраций Хлор отмечаются стеснение и боль в груди, сухой кашель, учащенное дыхание, резь в глазах, слезотечение, повышение содержания лейкоцитов в крови, температуры тела и т. п. Возможны бронхопневмония, токсический отек легких, депрессивные состояния, судороги. В легких случаях выздоровление наступает через 3-7 суток. Как отдаленные последствия наблюдаются катары верхних дыхательных путей, рецидивирующий бронхит, пневмосклероз и других; возможна активизация туберкулеза легких. При длительном вдыхании небольших концентраций Хлора наблюдаются аналогичные, но медленно развивающиеся формы заболевания. Профилактика отравлений: герметизация производств, оборудования, эффективная вентиляция, при необходимости использование противогаза. Производство Хлора, хлорной извести и других хлорсодержащих соединений относится к производствам с вредными условиями труда.