Присоединение водорода к веществу называется. Большая энциклопедия нефти и газа

По какому механизму идут реакции присоединения к алкенам?

1. За счет электронов π-связи в молекулах алкенов имеется область повышенной электронной плотности (облако π-электронов над и под плоскостью молекулы):

Поэтому двойная связь склонна подвергаться атаке электрофильным (электронодефицитным) реагентом. В этом случае будет происходить гетеролический разрыв π-связи и реакция пойдет по ионному механизму как электрофильное присоединение.

2. С другой стороны, углерод-углеродная π-связь, являясь неполярной, может разрываться гомолитически, и тогда реакция будет идти по радикальному механизму.

Механизм присоединения зависит от условий проведения реакции.

Кроме того, алкенам свойственны реакцииизомеризации и окисления (в том числе реакция горения , характерная для всех углеводородов).

Реакции присоединения к алкенам.

Гидрирование (присоединение водорода)

Алкены взаимодействуют с водородом при нагревании и повышенном давлении в присутствии катализаторов (Pt, Pd, Ni и др.) с образованием алканов:

Гидрирование алкенов – реакция, обратная дегидрированию алканов. Согласно принципу Ле Шателье, гидрированию благоприятствует повышенное давление, т.к. эта реакция сопровождается уменьшением объёма системы.

Присоединение водорода к атомам углерода в алкенах приводит к понижению степени их окисления:

Поэтому гидрирование алкенов относят к реакциям восстановления. Эта реакция используется в промышленности для получения высокооктанового топлива.

Галогенирование (присоединение галогенов)

Присоединение галогенов по двойной связи С=С происходит легко в обычных условиях (при комнатной температуре, без катализатора). Например, быстрое обесцвечивание красно-бурой окраски раствора брома в воде (бромной воды) служит качественной реакцией на наличие двойной связи:

Еще легче происходит присоединение хлора:

Эти реакции протекают по механизму электрофильного присоединения с гетеролитическим разрывом связей в молекуле галогена.

При нагревании до 500 °С возможно радикальное замещение атома водорода при соседнем к двойной связи атоме углерода:

Гидрогалогенирование (присоединение галогеноводородов)

Реакция идет по механизму электрофильного присоединения с гетеролитическим разрывом связей.
CH 2 =CH 2 + HCl CH 3 -CH 2 Cl
Направление реакции присоединения галогеноводородов к алкенам несимметричного строения (например, к пропилену CH 2 =CH–СН 3 ) определяется правилом Марковникова:

В реакциях присоединения полярных молекул типа НХ к несимметричным алкенам водород присоединяется к более гидрогенизированному атому углерода при двойной связи (т.е. атому углерода, связанному с наибольшим числом атомов водорода).

Так, в реакции HCl c пропиленом из двух возможных структурных изомеров 1-хлорпропана и 2-хлорпропана, образуется последний:

Следует отметить, что правило Марковникова в его классической формулировке соблюдается только для электрофильных реакций самих алкенов. В случае некоторых производных алкенов или при изменении механизма реакции идут против правила Марковникова.

Гидратация (присоединение воды)

Гидратация происходит в присутствии минеральных кислот по механизму электрофильного присоединения:

В реакциях несимметричных алкенов соблюдается правило Марковникова.

Полимеризация – реакция образования высокомолекулярного соединения (полимера) путем последовательного присоединения молекул низкомолекулярного вещества (мономера) по схеме:

n M M n

Число n в формуле полимера (M n ) называется степенью полимеризации. Реакции полимеризации алкенов идут за счёт присоединения по кратным связям:

Получение алкенов

В природе алкены встречаются в значительно меньшей степени, чем предельные углеводороды, по-видимому, вследствие своей высокой реакционной способности. Поэтому их получают с использованием различных реакций.

I. Крекинг алканов:

Например:

II. Отщепление (элиминирование) двух атомов или групп атомов от соседних атомов углерода с образованием между ними -связи.

    Дегидрогалогенирование галогеналканов при действии спиртового раствора щелочи

    Дегидратация спиртов при повышенной температуре (выше 140 C) в присутствии водоотнимающих реагентов

Реакции элиминирования идут в соответствии с правилом Зайцева :
Отщепление атома водорода в реакциях дегидрогалогенирования и дегидратации происходит преимущественно от наименее гидрогенизированного атома углерода.

Современная формулировка: реакции отщепления идут с образованием более замещенных при двойной связи алкенов.
Такие алкены обладают более низкой энергией.

    Дегалогенирование дигалогеналканов, имеющих атомы галогена у соседних атомов углерода, при действии активных металлов:

    Дегидрирование алканов при 500С:

Применение алкенов

Алкены применяются в качестве исходных продуктов в производстве полимерных материалов (пластмасс, каучуков, пленок) и других органических веществ.

Этилен (этен) Н 2 С=СН 2 используется для получения полиэтилена, политетрафторэтилена (тефлона), этилового спирта, уксусного альдегида, галогенопроизводных и многих других органических соединений.

Применяется как средство для ускоренного созревания фруктов.

Пропилен (пропен) Н 2 С=СН 2 –СН 3 и бутилены (бутен-1 и бутен-2) используются для получения спиртов и полимеров.

Изобутилен (2-метилпропен) Н 2 С=С(СН 3) 2 применяется в производстве синтетического каучука.

    Какие углеводороды называются алкенами?

    Какова общая формула алкенов?

    Какой вид гибридизации у алкенов?

    Какие химические свойства характерны для алкенов?

    Почему алкены используются как исходный продукт для производства ВМС?

    В чем состоит суть правила Марковникова?

    Какие способы получения алкенов вы знаете?

    По какому механизму идет реакция присоединения у алкенов?

    Как изменяются физические свойства в гомологическом ряду у алкенов?

    Где применяются алкены?

Лекция № 17: Алкадиены. Строение. Свойства. Каучук.

Алкадиены (диены) – непредельные алифатические углеводороды, молекулы которых содержат две двойные связи.
Общая формула алкадиенов С n H 2n-2 .

Свойства алкадиенов в значительной степени зависят от взаимного расположения двойных связей в их молекулах. По этому признаку различают три типа двойных связей в диенах.

1.Изолированные двойные связи разделены в цепи двумя или более σ-связями:

СН 2 =СН–СН 2 –СН=СН 2

Разделенные sp 3 -атомами углерода, такие двойные связи не оказывают друг на друга взаимного влияния и вступают в те же реакции, что и двойная связь в алкенах. Таким образом, алкадиены этого типа проявляют химические свойства, характерные для алкенов.

2. Кумулированные двойные связи расположены у одного атома углерода:

СН 2 =С=СН 2 (аллен)

Подобные диены (аллены) относятся к довольно редкому типу соединений.

3.Сопряженные двойные связи разделены одной σ-связью:

СН 2 =СН–СН=СН 2

Сопряженные диены представляют наибольший интерес. Они отличаются характерными свойствами, обусловленными электронным строением молекул, а именно, непрерывной последовательностью 4-х sp 2 -атомов углерода.

Отдельные представители этих диенов широко используются в производстве синтетических каучуков и различных органических веществ.

По правилам IUPAC главная цепь молекулы алкадиена должна включать обе двойные связи. Нумерация атомов углерода в цепи проводится так, чтобы двойные связи получили наименьшие номера. Названия алкадиенов производят от названий соответствующих алканов (с тем же числом атомов углерода), в которых последняя буква заменяется окончанием –диен .

Местоположение двойных связей указывается в конце названия, а заместителей – в начале названия.

Например:

Название "дивинил" происходит от названия радикала –СН=СН 2 "винил".

Изомерия сопряженных диенов

Структурная изомерия

1. Изомерия положения сопряженных двойных связей:

2. Изомерия углеродного скелета:

3. Межклассовая изомерия с алкинами и циклоалкенами.

Например, формуле С 4 Н 6 соответствуют следующие соединения:

Пространственная изомерия

Диены, имеющие различные заместители при углеродных атомах у двойных связей, подобно алкенам, проявляют цис-транс-изомерию.

Кроме того, возможен поворот по σ-связи, разделяющей двойные связи, приводящий к поворотным изомерам. Некоторые химические реакции сопряженных диенов идут избирательно только с определенным поворотным изомером.

Свойства сопряженных алкадиенов

Наибольшее практическое значение имеют дивинил или бутадиен-1,3 (легко сжижающийся газ, т.кип = – 4,5 C) и изопрен или 2-метилбутадиен-1,3 (жидкость с т.кип = 34 С).

По химическим свойствам диеновые углеводороды подобны алкенам. Они легко окисляются и вступают в реакции присоединения. Однако сопряженные диены отличаются некоторыми особенностями, которые обусловлены делокализацией (рассредоточением) π-электронов.

Молекула бутадиена-1,3 СН 2 =СН-СН=СН 2 содержит четыре атома углерода в sp 2 -гибридизованном состоянии и имеет плоское строение.

π-Электроны двойных связей образуют единое π-электронное облако (сопряженную систему) и делокализованы между всеми атомами углерода.

Порядок связей (число общих электронных пар) между атомами углерода имеет промежуточное значение между 1 и 2, т.е. нет чисто одинарной и чисто двойных связей. Строение бутадиена более точно отражает формула с делокализованными связями.

Аналогично построены молекулы изопрена:

Образование единого π-электронного облака, охватывающего 4 атома углерода:

приводит к возможности присоединения реагента по концам этой системы, т.е. к атомам С 1 и С 4 . Поэтому дивинил и изопрен наряду с присоединением 1 моля реагента по одной из двойных связей (1,2- или 3,4-) вступают в реакции 1,4-присоединения. Соотношение продуктов 1,2- и 1,4- присоединения зависит от условий реакции (с повышением температуры обычно увеличивается вероятность 1,4-присоединения).

Полимеризация сопряженных диенов. Каучуки

Дивинил и изопрен вступают в полимеризацию и сополимеризацию (т.е. совместную полимеризацию) с другими непредельными соединениями, образуя каучуки. Каучуки – это эластичные высокомолекулярные материалы (эластомеры), из которых методом вулканизации (нагреванием с серой) получают резину.

Натуральный каучук – природный высокомолекулярный непредельный углеводород состава (С 5 Н 8) n , где n составляет 1000-3000 единиц. Установлено, что этот полимер состоит из повторяющихся звеньев 1,4-цис-изопрена и имеет стереорегулярное строение:

В природных условиях натуральный каучук образуется не путем полимеризации изопрена, а другим, более сложным способом.

Полимеризация 1,3-диенов может протекать либо по типу 1,4-присоединения, либо по смешанному типу 1,2- и 1,4-присоединения. Направление присоединения зависит от условий проведения реакции.

Первый синтетический каучук, полученный по методу С.В. Лебедева при полимеризации дивинила под действием металлического натрия, представлял собой полимер нерегулярного строения со смешанным типом звеньев 1,2- и 1,4-присоединения:

В присутствии органических пероксидов (радикальная полимеризация) также образуется полимер нерегулярного строения со звеньями 1,2- и 1,4- присоединения. Каучуки нерегулярного строения характеризуются невысоким качеством при эксплуатации. Избирательное 1,4-присоединение происходит при использовании металлорганических катализаторов (например, бутиллития C 4 H 9 Li, который не только инициирует полимеризацию, но и определенным образом координирует в пространстве присоединяющиеся молекулы диена):

Таким способом получен стереорегулярный 1,4-цис-полиизопрен – синтетический аналог натурального каучука. Данный процесс идет как ионная полимеризация.

Для практического использования каучуки превращают в резину. Резина – это вулканизованный каучук с наполнителем (сажа). Суть процесса вулканизации заключается в том, что нагревание смеси каучука и серы приводит к образованию трехмерной сетчатой структуры из линейных макромолекул каучука, придавая ему повышенную прочность. Атомы серы присоединяются по двойным связям макромолекул и образуют между ними сшивающие дисульфидные мостики:

Сетчатый полимер более прочен и проявляет повышенную упругость – высокоэластичность (способность к высоким обратимым деформациям).

В зависимости от количества сшивающего агента (серы) можно получать сетки с различной частотой сшивки. Предельно сшитый натуральный каучук – эбонит – не обладает эластичностью и представляет собой твердый материал.

Получение алкадиенов

Общие способы получения диенов аналогичны способам получения алкенов.

1. Каталитическое двухстадийное дегидрирование алканов (через стадию образования алкенов). Этим путем получают в промышленности дивинил из бутана, содержащегося в газах нефтепереработки и в попутных газах:

Каталитическим дегидрированием изопентана (2-метилбутана) получают изопрен:

2. Синтез дивинила по Лебедеву:

3. Дегидратация гликолей (двухатомных спиртов, или алкандиолов):

4. Действие спиртового раствора щелочи на дигалогеналканы (дегидрогалогенирование):

Вопросы для закрепления темы:

    Какие углеводороды называются диеновыми?

    Какие виды изомерии наблюдаются у алкадиенов?

    Какие химические свойства свойственны диеновым углеводородам?

    Какими способами можно получить алкадиены?

    Какой вид гибридизации характерен для алкадиенов?

    Что представляет собой каучук?

    Что представляет собой резина?

    От чего зависят физические свойства алкадиенами?

    С какими веществами сходны химические свойства алкадиенов?

Лекция № 18: Алкины. Строение, свойства, применение.

Алкины (ацетиленовые углеводороды) – непредельные алифатические углеводороды, молекулы которых содержат тройную связь C≡C.

Общая формула алкинов с одной тройной связью С n H 2n-2 .

Тройную связь C≡C осуществляют 6 общих электронов:

В образовании такой связи участвуют атомы углерода в sp -гибридизованном состоянии. Каждый из них имеет по две sp -гибридных орбитали, направленных друг к другу под углом 180, и две негибридных р -орбитали, расположенных под углом 90 по отношению друг к другу и к sp -гибридным орбиталям:

Строение тройной связи C≡C

Тройная связь является комбинацией из одной σ- и двух π-связей, образуемых двумя sp -гибридизованными атомами. σ-Связь возникает при осевом перекрывании sp -гибридных орбиталей соседних атомов углерода; одна из π-связей образуется при боковом перекрывании р y -орбиталей, другая – при боковом перекрывании р z -орбиталей. Образование связей на примере молекулы ацетилена H–C≡C–H можно изобразить в виде схемы:

C≡C σ-связь (перекрывание 2sp -2sp );
π-связь (2р y -2р y);
π-связь (2р z -2р z);
С–Н σ-связь (перекрывание 2sp -АО углерода и 1s -АО водорода).

π-Cвязи располагаются во взаимно перпендикулярных плоскостях:

σ-Cвязи, образуемые sp –гибридными орбиталями углерода, располагаются на одной прямой (под углом 180 друг к другу). Поэтому молекула ацетилена имеет линейное строение:

Номенклатура алкинов

По систематической номенклатуре названия ацетиленовых углеводородов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса –ан на –ин :

2 атома С → этан → этин ; 3 атома С → пропан → пропин и т.д.

Главная цепь выбирается таким образом, чтобы она обязательно включала в себя тройную связь (т.е. она может быть не самой длинной).

Нумерацию углеродных атомов начинают с ближнего к тройной связи конца цепи. Цифра, обозначающая положение тройной связи, ставится обычно после суффикса –ин . Например:

Для простейших алкенов применяются также исторически сложившиеся названия: ацетилен (этин), аллилен (пропин), кротонилен (бутин-1), валерилен (пентин-1).

В номенклатуре различных классов органических соединений наиболее часто используются следующие одновалентные радикалы алкинов:

Изомерия алкинов

Структурная изомерия

    Изомерия положения тройной связи (начиная с С 4 Н 6):

    Изомерия углеродного скелета (начиная с С 5 Н 8):

    Межклассовая изомерия с алкадиенами и циклоалкенами, начиная с С 4 Н 6:

Пространственная изомерия относительно тройной связи в алкинах не проявляется, т.к. заместители могут располагаться только одним способом – вдоль линии связи.

Свойства алкинов

Физические свойства. Температуры кипения и плавления ацетиленовых углеводородов увеличиваются с ростом их молекулярной массы. При обычных условиях алкины С 2 Н 2 -С 4 Н 6 – газы, С 5 Н 8 -С 16 Н 30 – жидкости, с С 17 Н 32 – твердые вещества. Температуры кипения и плавления алкинов выше, чем у соответствующих алкенов.

Физические свойства алкинов и алкенов

Алкины плохо растворимы в воде, лучше – в органических растворителях.

Химические свойства.

Реакции присоединения к алкинам

1. Гидрирование

В присутствии металлических катализаторов (Pt, Ni) алкины присоединяют водород с образованием алкенов (разрывается первая π-связь), а затем алканов (разрывается вторая π-связь):

При использовании менее активного катализатора гидрирование останавливается на стадии образования алкенов.

2. Галогенирование

Электрофильное присоединение галогенов к алкинам протекает медленнее, чем для алкенов (первая π-связь разрывается труднее, чем вторая):

Алкины обесцвечивают бромную воду (качественная реакция).

  • Пояснительная записка (6)

    Пояснительная записка

    Пояснительная записка Настоящая программа предназначена для обучения...

  • Пояснительная записка (7)

    Пояснительная записка

    ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Лабораторная работа заключается в том, что...

  • — это не только химический элемент, но и простое вещество, являющееся частью самых разнообразных соединений. Соединения водорода — это сложные вещества, которые содержат атомы водорода. Разнообразие подобных соединений очень велико. Они могут быть как естественными, природными, так и искусственно полученными человеком. И в том и другом случае, соединения водорода имеют колоссальное значение.

    Соединения водорода

    С хлором соединение водорода происходит с большой скоростью под действием света; кислород с водородом (такое соединение называется — гремучий газ) при обыкновенной температуре совершенно не реагирует, но под действием искры или местного нагревания взрывается с большой силой. При его сгорании грамм-молекулы (2,02 г) водорода выделяется 68,4 больших калорий. При повышенной температуре водород соединяется с целым рядом элементов, например, с серой, фосфором, бромом, щелочными и щелочно-земельными металлами, а при достаточно высокой температуре образует и с углеродом соответствующие водородистые соединения.

    Окислы меди, свинца, железа, никеля и некоторых других металлов при нагревании в струе водорода восстанавливаются в соответствующие металлы. Активность водорода чрезвычайно возрастает в присутствии некоторых катализаторов, а также при повышении давления. При обыкновенной температуре такими катализаторами являются в особенности мелкораздробленные металлы - палладий, платина и никель.

    В присутствии этих катализаторов водород легко присоединяется к ненасыщенным органическим соединениям; на этом именно основан большой ряд процессов, имеющих большое техническое значение, как, например, получение твердых жиров из жидких, содержащих ненасыщенные жирные кислоты, которые, присоединяя в присутствии никеля водород, переходят в насыщенные.

    Реакция соединения водорода с кислородом настолько ускоряется платиной, что губчатая платина, насыщенная водородом, самопроизвольно раскаляется на воздухе (водородное огниво). Весьма вероятно, что действие этих катализаторов основано на их способности растворять водород, причем водород переходит в этом случае в атомарное состояние. Количество водорода, поглощаемое металлом, особенно значительно в случае палладия.

    Целый ряд других важнейших реакций, при которых выполняется присоединение водорода: синтез аммиака по Габеру, получение метилового спирта из окиси углерода, получение синтетической нефти по Фишеру, протекает также только в присутствии соответствующих катализаторов, и осуществление их сделалось возможным только тогда, когда эти катализаторы были найдены и были определены условия их действия.

    Применение водорода

    Высокое давление также чрезвычайно увеличивает активность водорода: так, при высоком давлении водород вытесняет медь и другие металлы из растворов их солей; на применении высоких давлений основан и способ Бергиуса, при котором уголь под действием водорода превращается в смесь жидких углеводородов. Из числа указанных выше каталитических процессов реакции образования аммиака и метилового спирта также требуют применения высоких давлений.

    Технические использование водорода основаны частью на его малом удельном весе (например, наполнение воздушных шаров), частью на высокой температуре, получающейся при горении водорода (например, применение водорода при пайке свинца и при автогенной сварке металлов). Далее идут многочисленные реакции гидрирования и восстановления, в первую очередь - гидрирование жидких жиров и получение синтетического метилового спирта.

    Из других реакций этого рода очень важно еще гидрирование нафталина и получение из уксусного альдегида этилового спирта. Однако, наибольшее количество водорода потребляется в настоящее время заводами, производящими синтетический аммиак по Габеру; огромные количества водорода потребуются также и для изготовления топлива синтетического жидкого, когда способы Бергиуса и Фишера получат техническое осуществление.

    Реакции органических веществ можно формально разделить на четыре основных типа: замещения, присоединения, отщепления (элиминирования) и перегруппировки (изомеризации) . Очевидно, что все многообразие реакций органических соединений невозможно свести к предложенной классификации (например, реакции горения). Однако такая классификация поможет установить аналогии с уже знакомыми вам реакциями, протекающими между неорганическими веществами.

    Как правило, основное органическое соединение, участвующее в реакции, называют субстратом , а другой компонент реакции условно рассматривают как реагент .

    Реакции замещения

    Реакции замещения - это реакции, в результате которых осуществляется замена одного атома или группы атомов в исходной молекуле (субстрате) на другие атомы или группы атомов.

    В реакции замещения вступают предельные и ароматические соединения, такие как алканы, циклоалканы или арены. Приведем примеры таких реакций.

    Под действием света атомы водорода в молекуле метана способны замещаться на атомы галогена, например, на атомы хлора:

    Другим примером замещения водорода на галоген является превращение бензола в бромбензол:

    Уравнение этой реакции может быть записано иначе:

    При этой форме записи реагенты, катализатор, условия проведения реакции записывают над стрелкой, а неорганические продукты реакции - под ней.

    В результате реакций замещения у органических веществ образуются не простое и сложное вещества, как в неорганической химии, а два сложных вещества.

    Реакции присоединения

    Реакции присоединения - это реакции, в результате которых две или более молекул реагирующих веществ соединяются в одну.

    В реакции присоединения вступают ненасыщенные соединения, такие как алкены или алкины. В зависимости от того, какая молекула выступает в качестве реагента, различают гидрирование (или восстановление), галогенирование, гидрогалогенирование, гидратацию и другие реакции присоединения. Каждая из них требует определенных условий.

    1.Гидрирование - реакция присоединения молекулы водорода по кратной связи:

    2. Гидрогалогенирование - реакция присоединения галогенводорода (гидрохлорирование):

    3. Галогенирование - реакция присоединения галогена:

    4.Полимеризация - особый тип реакций присоединения, в ходе которых молекулы вещества с небольшой молекулярной массой соединяются друг с другом с образованием молекул вещества с очень высокой молекулярной массой - макромолекул.

    Реакции полимеризации - это процессы соединения множества молекул низкомолекулярного вещества (мономера) в крупные молекулы (макромолекулы) полимера.

    Примером реакции полимеризации может служить получение полиэтилена из этилена (этена) под действием ультрафиолетового излучения и радикального инициатора полимеразации R.

    Наиболее характерная для органических соединений ковалентная связь образуется при перекрывании атомных орбиталей и образовании общих электронных пар. В результате этого образуется общая для двух атомов орбиталь, на которой находится общая электронная пара. При разрыве связи судьба этих общих электронов может быть разной.

    Типы реакционноспособных частиц

    Орбиталь с неспаренным электроном, принадлежащая одному атому, может перекрываться с орбиталью другого атома, на которой также находится неспаренный электрон. При этом происходит образование ковалентной связи по обменному механизму:

    Обменный механизм образования ковалентной связи реализуется в том случае, если общая электронная пара образуется из неспаренных электронов, принадлежащих разным атомам.

    Процессом, противоположным образованию ковалентной связи по обменному механизму, является разрыв связи, при котором к каждому атому отходит по одному электрону (). В результате этого образуются две незаряженные частицы, имеющие неспаренные электроны:


    Такие частицы называются свободными радикалами.

    Свободные радикалы - атомы или группы атомов, имеющие неспаренные электроны.

    Свободнорадикальные реакции - это реакции, которые протекают под действием и при участии свободных радикалов.

    В курсе неорганической химии это реакции взаимодействия водорода с кислородом, галогенами, реакции горения. Реакции этого типа отличаются высокой скоростью, выделением большого количества тепла.

    Ковалентная связь может образоваться и по донорно-акцепторному механизму. Одна из орбиталей атома (или аниона), на которой находится неподеленная электронная пара, перекрывается с незаполненной орбиталью другого атома (или катиона), имеющего незаполненную орбиталь, при этом формируется ковалентная связь, например:

    Разрыв ковалентной связи приводит к образованию положительно и отрицательно заряженных частиц (); так как в данном случае оба электрона из общей электронной пары остаются при одном из атомов, у другого атома получается незаполненная орбиталь:

    Рассмотрим электролитическую диссоциацию кислот:


    Можно легко догадаться, что частица, имеющая неподеленную электронную пару R: — , т. е. отрицательно заряженный ион, будет притягиваться к положительно заряженным атомам или к атомам, на которых существует по крайней мере частичный или эффективный положительный заряд.
    Частицы с неподеленными электронными парами называют нуклеофильными агентами (nucleus - «ядро», положительно заряженная часть атома), т. е. «друзьями» ядра, положительного заряда.

    Нуклеофилы (Nu ) - анионы или молекулы, имеющие неподеленную пару электронов, взаимодействующие с участками молекул, на которых сосредоточен эффективный положительный заряд.

    Примеры нуклеофилов: Сl — (хлорид-ион), ОН — (гидроксид-анион), СН 3 O — (метоксид-анион), СН 3 СОО — (ацетат-анион).

    Частицы, имеющие незаполненную орбиталь, напротив, будут стремиться заполнить ее и, следовательно, будут притягиваться к участкам молекул, на которых присутствует повышенная электронная плотность, отрицательный заряд, неподеленная электронная пара. Они являются электрофилами, «друзьями» электрона, отрицательного заряда или частиц с повышенной электронной плотностью.

    Электрофилы - катионы или молекулы, имеющие незаполненную электронную орбиталь, стремящиеся к заполнению ее электронами, так как это приводит к более выгодной электронной конфигурации атома.

    Электрофилом с незаполненной орбиталью является не любая частица. Так, например, катионы щелочных металлов имеют конфигурацию инертных газов и не стремятся к приобретению электронов, так как имеют низкое сродство к электрону.
    Из этого можно сделать вывод, что несмотря на наличие у них незаполненной орбитали, подобные частицы не будут являться электрофилами.

    Основные механизмы протекания реакций

    Выделено три основных типа реагирующих частиц - свободные радикалы, электрофилы, нуклеофилы - и три соответствующих им типа механизма реакций:

    • свободнорадикальные;
    • электрофильные;
    • нулеофильные.

    Кроме классификации реакций по типу реагирующих частиц, в органической химии различают четыре вида реакций по принципу изменения состава молекул: присоединения, замещения, отщепления, или элиминирования (от англ. to eliminate - удалять, отщеплять) и перегруппировки. Так как присоединение и замещение могут происходить под действием всех трех типов реакционноспособных частиц, можно выделить несколько основных механизмов протекания реакций.

    Кроме того, рассмотрим реакции отщепления, или элиминирования, которые идут под воздействием нуклеофильных частиц - оснований.
    6. Элиминирование:

    Отличительной чертой алкенов (непредельных углеводородов) является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.

    Гидрогалогенирование (присоединение галоген водорода):

    При присоединении галогенводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному .


    Реакции присоединения.

    1.1. Присоединение

    СН 2 = СН 2 + Н 2 ® СН 3 -СН 3

    Реакция идет в присутствии катализаторов (Pd,Pt,Ni).

    1.2. Присоединение галогенов:

    СН 2 = СН 2 + Br 2 ® СН 2 Br-СН 2 Br

    1.3. Присоединение галогеноводородов:

    СН 2 = СН 2 + НС1 ® СН 3 -СН 2 С1

    Присоединение галогеноводородов к гомологам этилена проис­ходит по правилу В. В. Марковникова: атом водо­рода становится к наиболее гидрогенизованному атому углерода, а атом галогена - к наименее гидрогенизованному, например:

    СН 3 -СН = СН 2 + НВг->СН 3 - СН Br –СНз

    1.4. Присоединение воды (реакция гидрата­ции). Реакция протекает в присутствии катализатора - серной кислоты:

    СН 2 = СН 2 + Н 2 О ® СН 3 - СН 2 ОН

    Это суммарное уравнение реакции. В действительности реакция протекает в две стадии. Сначала происходит присоединение серной кислоты к этилену по месту разрыва двойной связи с образованием этилсерной кислоты:

    СН 2 = СН 2 + Н- О- SO 2 - ОН ® СНз- СН 2 - О- SO 2 -OH

    Затем этилсерная кислота, взаимодействуя с водой, образует спирт и кислоту:

    СН 3 - СН 2 - O-SO 2 - ОН + Н - ОН ® СН 3 - СН 2 ОН + НО- SO 2 - ОН

    В настоящее время реакцию присоединения воды к этилену в присутствии твердых катализаторов используют для промышлен­ного получения этилового спирта из непредельных углеводородов, содержащихся в газах крекинга нефти (попутных газах), а также в коксовых газах.

    2. Важным химическим свойством этилена и его гомологов явля­ется способность легко окисляться уже при обычной температуре. При этом окислению подвергаются оба атома углерода, соединен­ные двойной связью. Если этилен пропускать в водный раствор перманганата калия КМпО 4 , то характерная фиолетовая окраска последнего исчезает - происходит окисление этилена перманганатом калия:

    ЗСН 2 = СН 2 + 2КМп0 4 + 4Н 2 О ® ЗНОН 2 С - СН 2 ОН + 2MnO 2 + 2KOH

    этиленгликоль

    Эта реакция используется для установления непре­дельности органического вещества - наличия в нем двой­ных или тройных связей.

    2.2. Этилен горит светящимся пламенем с образованием оксида уг­лерода (IV) и воды:

    СН 2 = СН 2 + 4 О 2 ® 2СО 2 + 4Н 2 О

    3. Реакции полимеризации.

    Полимеризация - это последовательное соединение одинаковых моле­кул в более крупные.

    Реакции полимеризации особенно характерны для непредель­ных соединений. Так, например, из этилена образуется высокомо­лекулярное вещество - полиэтилен. Соединение молекул этилена

    происходит по месту разрыва двойной связи. Сокращенно уравнение этой реакции записывается так: nCH 2 = СН 2 ® (- CH 2 - СН 2 - ) n

    К концам таких молекул (макромолекул) присоединяются ка­кие-нибудь свободные атомы или радикалы (например, атомы водо­рода из этилена). Продукт реакции полимеризации называется полимером (от греч. поли - много, мерос - часть), а исход­ное вещество, вступающее в реакцию полимеризации, называется мономером.

    Полимер - вещество с очень большой относительной молеку­лярной массой, молекула которого состоит из большого числа по­вторяющихся группировок, имеющих одинаковое строение. Эти группировки называют элементарными звеньями или структурными единицами. Например, элементарным звеном полиэтилена является группировка атомов - СН 2 - СН 2 - .

    Число элементарных звеньев, повторяющихся в макромоле­куле, называется степенью полимеризации (обозна­чается п). В зависимости от степени полимеризации из одних и тех же мономеров можно получать вещества с различными свойст­вами.

    Так, полиэтилен с короткими цепями (п=20) является жид­костью, обладающей смазочными свойствами. Полиэтилен с дли­ной цепи в 1500 – 2000 звеньев представляет собой твердый, но гибкий пластический материал, из которого можно получать плен­ки, изготовлять бутылки и другую посуду, эластичные трубы и т. д. Наконец, полиэтилен с длиной цепи в 5 – 6 тыс. звеньев является твердым веществом, из которого можно готовить литые изделия, жесткие трубы, прочные нити.

    Если в реакции полимеризации принимает участие небольшое число молекул, то образуются низкомолекулярные вещества, на­пример димеры, тримеры и т. д. Условия протекания реакций поли­меризации весьма различные. Иногда необходимы катализаторы и высокое давление. Но главным фактором является строение моле­кулы мономера. В реакцию полимеризации вступают непредельные (ненасыщенные) соединения, за счет разрыва кратных связей.

    Структурные формулы полимеров кратко записывают так: фор­мулу элементарного звена заключают в скобки и справа внизу ста­вят букву п. Например, структурная формула полиэтилена (- СН 2 - СН 2 - ) п. Легко заключить, что название полимера состав­ляется из названия мономера и приставки поли-, например поли­этилен, поливинилхлорид, полистирол и т. д.

    С помощью реакций полимеризации получают высокомолеку­лярные синтетические вещества, например полиэтилен, политетрафторэтилен (тефлон), полистирол, синтетические каучуки и др. Они имеют огромное народнохозяйственное значение.

    Тефлон - продукт полимеризации тетрафторэтилена:

    nCF 2 = CF 2 ->-(-CF 2 - CF 2 -)

    Это самое инертное органическое вещество (на него оказывают воздействие только расплавленные калий и натрий). Обладает высокой морозо- и тепло­устойчивостью.

    Применение. Этилен используют для получения этилового спир­та, полиэтилена. Он ускоряет созревание плодов (помидоров, цит­русовых и др.) при введении небольших количеств его в воздух теплиц. Этилен и его гомологи используют как химическое сырье для синтеза многих органических веществ.