Для чего нужно уравнение шредингера. §217

Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Ψ(х, у, z, t), так как именно она, или, точнее, величина |Ψ| 2 , определяет вероятность пребывания частицы в момент времени t в объеме ΔV, т. е. в области с координатами х и х + dх, у и у + dу, z и z + dz .

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером . Уравнение Шрёдингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы.

Общее уравнение Шредингера имеет вид:

где ? = h / (), m - масса частицы, Δ - оператор Лапласа , i - мнимая единица, U (x, y, z, t ) - потенциальная функция частицы в силовом поле, в котором она движется, Ψ(x, y, z, t ) - искомая волновая функция частицы.

Уравнение (1) справедливо для любой частицы (со спином, равным 0), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью υ «с.

Оно дополняется условиями , накладываемыми на волновую функцию:

1) волновая функция должна быть конечной, однозначной и непрерывной;

2) производные должны быть непрерывны;

3) функция |Ψ| 2 должна быть интегрируема (это условие в простейших случаях сводится к условию нормировки вероятностей).

Уравнение (1) называют уравнением Шредингера, зависящим от времени.

Дли многих физических явлений, происходящих в микромире, уравнение (1) можно упростить, исключив зависимость Ψ от времени, т.е. найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U = U (х, у , z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде

. (2)

Уравнение (2) называется уравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций : вол новые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными.


Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями Ψ. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения, которые соответствуют собственным значениям энергии, называются собственнымифункциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

Частица в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками»

Проведем качественный анализ решений уравнения Шредингера применительно к частице в одномерной прямоугольной «потенциальной яме» с бесконечно высокими «стенками». Такая «яма» описывается потенциальной энергией вида (для простоты принимаем, что частица движется вдоль оси х)

где l — ширина «ямы», а энергия отсчитывается от ее дна (рис. 2).

Уравнение Шредингера для стационарных состояний в случае одномерной задачи запишется в виде:

. (1)

По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = 1) непрерывная волновая функция также должна обращаться в нуль.

Следовательно, граничные условия в данном случае имеют вид:

Ψ (0) = Ψ (l ) = 0. (2)

В пределах «ямы» (0 ≤ х ≤ 0) уравнение Шредингера (1) сведется к уравнению:

или . (3)

где k 2 = 2mE / ? 2 . (4)

Общее решение дифференциального уравнения (3):

Ψ (x ) = A sin kx + B cos kx .

Так как по (2) Ψ (0) = 0, то В = 0. Тогда

Ψ (x ) = A sin kx . (5)

Условие Ψ (l ) = A sin kl = 0 (2) выполняется только при kl = nπ , где n - целые числа, т.е. необходимо, чтобы

k = nπ / l . (6)

Из выражений (4) и (6) следует, что:

(n = 1, 2, 3,…), (7)

т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях Е п, зависящих от целого числа п. Следовательно, энергия Е п частицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т. е. квантуется.

Квантованные значения энергии Е п называются уровнями энергии, а число п, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне Е п, или, как говорят, частица находится в квантовом состоянии п.

Подставив в (5) значение k из (6), найдем собственные функции:

.

Постоянную интегрирования А найдем из условия нормировки, которое для данного случая запишется в виде:

.

В результате интегрирования получим , а собственные функции будут иметь вид:

(n = 1, 2, 3,…). (8)

Графики собственных функций (8), соответствующие уровням энергии (7) при n = 1,2,3, приведены на рис. 3, а. На рис. 3, б изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок» ямы, равная ‌‌‌‌‌‌ Ψ n (x )‌ 2 = Ψ n (x )·Ψ n * (x ) для п = 1, 2 и 3. Из рисунка следует, что, например, в квантовом состоянии с п= 2 частица не может находиться в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траекториях частицы в квантовой механике несостоятельны.

Из выражения (7) вытекает, что энергетический интервал между двумя соседними уровнями равен:

Например, для электрона при размерах ямы l = 10 -1 м (свободные электроны в металле), ΔЕ n ≈ 10 -35 ·n Дж ≈ 10 -1 6 n эВ, т.е. энергетические уровни расположены столь тесно, что спектр практически можно считать непрерывным. Если же размеры ямы соизмеримы с атомными (l ≈ 10 -10 м), то для электрона ΔЕ n ≈ 10 -17 n Дж 10 2 n эВ, т.е. получаются явно дискретные значения энергии (линейчатый спектр).

Таким образом, применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.

Кроме того, квантово-механическое рассмотрение данной задачи приводит к выводу, что частица «в потенциальной яме» с бесконечно высокими «стенками» не может иметь энергию меньшую, чем минимальная энергия, равная π 2 ? 2 /(2т1 2 ). Наличие отличной от нуля минимальной энергии не случайно и вытекает из соотношения неопределенностей. Неопределенность координаты Δх частицы в «яме» шириной l равна Δх = l .

Тогда, согласно соотношению неопределенностей, импульс не может иметь точное, в данном случае нулевое, значение. Неопределенность импульса Δр h / l . Такому разбросу значений импульса соответствует кинетическая энергия Е min ≈ p ) 2 / (2m ) = ? 2 / (2ml 2 ). Все остальные уровни (п > 1) имеют энергию, превышающую это минимальное значение.

Из формул (9) и (7) следует, что при больших квантовых числах (n »1) ΔЕ n / E п ≈ 2/п «1, т. е. соседние уровни расположены тесно: тем теснее, чем больше п. Если п очень велико, то можно говорить о практически непрерывной последовательности уровней и характерная особенность квантовых процессов — дискретность - сглаживается. Этот результат является частным случаем принципа соответствия Бора (1923), согласно которому законы квантовой механики должны при больших значениях квантовых чисел переходить в законы классической физики.

Сделаем рисунок

В нашей задаче функция U(x) имеет особый, разрывный вид: она равна нулю между стенками, а на краях ямы (на стенках) обращается в бесконечность:

Запишем уравнение Шредингера для стационарных состояний частиц в точках расположенных между стенками:

или, если учесть формулу (1.1)

К уравнению (1.3) необходимо добавить граничные условия на стенках ямы. Примем во внимание, что волновая функция связана с вероятностью нахождения частиц. Кроме того, по условиям задачи за пределами стенок частица не может быть обнаружена. Тогда волновая функция на стенках и за их пределами должна обращаться в нуль, и граничные условия задачи принимают простой вид:

Теперь приступим к решению уравнения (1.3) . В частности, можно учесть, что его решением являются волны де-Бройля. Но одна волна де-Бройля как решение, к нашей задаче явно не относится, так как она заведомо описывает свободную частицу, «бегущую» в одном направлении. У нас же частица бегает «туда-сюда» между стенками. В таком случае на основании принципа суперпозиции искомое решение можно попытаться представить в виде двух волн де-Бройля, бегущих друг другу навстречу с импульсами p и -p, то есть в виде:

Постоянные и можно найти из одного из граничных условий и условия нормировки. Последнее говорит о том, что если сложить все вероятности, то есть найти вероятность обнаружения электрона между стенками вообще в (любом месте), то получится единица (вероятность достоверного события равна 1), т.е.:

Согласно первому граничному условию имеем:

Таким образом, получим решение нашей задачи:

Как известно, . Поэтому найденное решение можно переписать в виде:

Постоянная А определяется из условия нормировки. Но здесь не она представляет особый интерес. Осталось неиспользованным второе граничное условие. Какой результат оно позволяет получить? Применительно к найденному решению (1.5) оно приводит к уравнению:

Из него видим, что в нашей задаче импульс p может принимать не любые значения, а только значения

Кстати, n не может равняться нулю, так как волновая функция тогда бы всюду на промежутке (0…l) равнялась нулю! Это означает, что частица между стенками не может находиться в покое! Она обязательно должна двигаться. В аналогичных условиях находятся электроны проводимости в металле. Полученный вывод распространяется и на них: электроны в металле не могут быть неподвижными.

Наименьший возможный импульс движущегося электрона равен

Мы указали, что импульс электрона при отражении от стенок меняет знак. Поэтому на вопрос, каков импульс у электрона, когда он заперт между стенками, определённо ответить нельзя: то ли +p, то ли -p. Импульс неопределённый. Его степень неопределённости, очевидно, определяется так: =p-(-p)=2p. Неопределённость же координаты равна l; если попытаться «поймать» электрон, то он будет обнаружен в пределах между стенками, но где точно — неизвестно. Поскольку наименьшее значение p равно , то получаем:

Мы подтвердили соотношение Гейзенберга в условиях нашей задачи, то есть при условии существования наименьшего значения p. Если же иметь в виду произвольно-возможное значение импульса, то соотношение неопределённости получает следующий вид:

Это означает, что исходный постулат Гейзенберга-Боpа о неопределённости и устанавливает лишь нижнюю границу неопределенностей, возможную при измерениях. Если в начале движения система была наделена минимальными неопределённостями, то с течением времени они могут расти.

Однако формула (1.6) указывает и на другой чрезвычайно интересный вывод: оказывается, импульс системы в квантовой механике не всегда в состоянии изменяться непрерывно (как это всегда имеет место в классической механике). Спектр импульса частицы в нашем примере дискретный, импульс частицы между стенками может изменяться только скачками (квантами). Величина скачка в рассмотренной задаче постоянна и равна .

На рис. 2. наглядно изображён спектр возможных значений импульса частицы. Таким образом, дискретность изменения механических величин, совершенно чуждая классической механике, в квантовой механике вытекает из ее математического аппарата. На вопрос, почему импульс изменяется скачками, наглядного найти нельзя. Таковы законы квантовой механики; наш вывод вытекает из них логически — в этом все объяснение.

Обратимся теперь к энергии частицы. Энергия связана с импульсом формулой (1). Если спектр импульса дискретный, то автоматически получается, что и спектр значений энергии частицы между стенками дискретный. И он находится элементарно. Если возможные значения согласно формуле (1.6) подставить в формулу (1.1), получим:

где n = 1, 2,…, и называется квантовым числом.

Таким образом, мы получили энергетические уровни.

Рис. 3 изображает расположение энергетических уровней, соответствующее условиям нашей задачи. Ясно, что для другой задачи расположение энергетических уровней будет иным. Если частица является заряженной (например, это электрон), то, находясь не на низшем энергетическом уровне, она будет в состоянии спонтанно излучать свет (в виде фотона). При этом она перейдёт на более низкий энергетический уровень в соответствии с условием:

Волновые функции для каждого стационарного состояния в нашей задаче представляют собой синусоиды, нулевые значения которых обязательно попадают на стенки. Две такие волновые функции для n = 1,2 изображены на рис. 1.

Статистическое толкование волн де Бройля и соотношение неопределенностей Гейзенберга привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Y (х , у, z , t ), так как именно она, или, точнее, величина |Y | 2 , определяет вероятность пребывания частицы в момент времени t в объеме dV , т. е. в области с координатами х и x +dx , у и y +dy , z и z +dz . Ta к как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением , подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

где ћ =h /(2p ), т- масса частицы, D -оператор Лапласа i - мнимая единица, U (х, у, z , t ) - потенциальная функция частицы в силовом поле, в котором она движется, Y (х, у, z , t ) - искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v <<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной производные должны быть непрерывны; 3) функция |Y | 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, кото­рой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномер­ный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид , или в комплексной записи . Следовательно, плоская волна де Бройля имеет вид

(217.2)

(учтено, что w = E /ћ, k =p /ћ ). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только |Y | 2 , то это (см. (217.2)) несущественно. Тогда

Используя взаимосвязь между энергией Е и импульсом р (E =p 2 /(2m )) и подставляя выражения (217.3), получим дифференциальное уравнение

которое совпадает с уравнением (217.1) для случая U = 0 (мы рассматривали свободную частицу). Если частица движется в силовом поле, характеризуемом потенциальной энергией U , то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения и используя взаимосвязь между Е и р (для данного случая p 2 /(2m )=E –U ), прядем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к кото­рым оно приводит.

Уравнение (217.1) является общим уравнением Шредингера . Его также называют уравнением Шредингера, зависящим от времени . Для многих физических явлений, происходящих в микромире, уравнение (217.1) можно упростить, исключив зависимость Y от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U =U (x , у, z ) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем , так что

где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя (217.4) в (217.1), получим

откуда после деления на общий множитель и соответствующих преобразований придем к уравнению, определяющему функцию y :

(217.5)

Уравнение (217.5) называется уравнением Шредингера для стационарных состояний . В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями y . Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном , или сплошном , спектре , во втором - о дискретном спектре .

Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т.е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля уже неверно хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.


Чтобы устранить эти трудности, немецкий физик М. Борн в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплиту дой вероятности и обозначаемая ψ(x,y,z,t). Эту величину называют волновой функцией (илиψ-функцией ). Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля:

(|Y| 2 =YY*, Y* - функция, комплексно сопряженная с Y). Таким образом, описание состояния микрообъекта с помощью волновой функции имеетстатистический, вероят­ностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в момент време­ни t в области с координатами х и x+dx, у и y+dy, z и z+dz .

В квантовой механике состояние микрочастиц описывается принципиально по-новому - с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Вероятность нахождения частицы в элементе объемом dV равна

Величина

(квадрат модуля Y-функции) имеет смыслплотности вероятности, т. е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с коор­динатами х, у, z. Таким образом, физический смысл имеет не сама Y-функция, а квадрат ее модуля |Y| 2 , которым задается интенсивность волн де Бройля.

Вероятность найти частицу в момент времени t в конечном объеме V, согласно теореме сложения вероятностей, равна

Так как |Y| 2 dV определяется как вероятность, то необходимо волновую функцию Y нормировать так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве. Следовательно, условие нормировки вероятностей

где данный интеграл вычисляется по всему бесконечному пространству, т. е. по координатам х, у, z от –¥ до ¥.Таким образом, условие говорит об объективном существовании частицы в пространстве.

Чтобы волновая функция являлась объективной характеристикой состояния микро­частиц, она должна удовлетворять ряду ограничительных условий. Функция Y, харак­теризующая вероятность обнаружения действия микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком).

Волновая функция удовлетворяетпринципу суперпозиции: если система может нахо­диться в различных состояниях, описываемых волновыми функциями Y 1 , Y 2 ,..., Y n ,... то она также может находиться в состоянии Y, описываемом линейной комбинацией этих функций:

где С n (n =1, 2, ...)-произвольные, комплексные числа. Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квад­ратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.

Волновая функция Y, являясь основной характеристикой состояния микрообъектов, позволяет в квантовой механике вычислять средние значения физических величин, характеризующих данный микрообъект. Например, среднее расстояние ár ñ электрона от ядра вычисляют по формуле


Уравнение Шредингера для стационарных состояний. Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвел­ла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью резуль­татов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредин­гера имеет вид

где ћ=h/(2p), т-масса частицы, D-оператор Лапласа i - мнимая единица, U (х, у, z, t) - потенциальная функция частицы в силовом поле, в котором она движется, Y(х, у, z, t) - искомая волновая функция частицы.

Уравнение справедливо для любой частицы (со спином «собственный неуничтожимый механический момент импульса электрона» , не связанным с движением электрона в пространстве , равным 0;), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волно­вая функция должна быть конечной, однозначной и непрерывной 2) производные должны быть непрерывны; 3) функция |Y| 2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей.


Уравнение

является общим уравнением Шредингера . Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение его можно упростить, исключив зависимость Y от времени, иными словами, найти уравнение Шредингера для стационарных состояний - состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U=U(x, у, z) не зависит явно от времени и имеет смысл потенциальной энергии. В данном случае решение уравнения Шредингера может быть представлено в виде произведения двух функций, одна из которых есть функция только координат, другая - только времени, причем зависимость от времени выражается множителем , так что

где Е - полная энергия частицы, постоянная в случае стационарного поля. Подставляя в общее уравнение Шредингера получим

откуда после деления на общий множитель и соответствующих преобразований придем к уравнению, определяющему функцию y:

Это уравнение называется уравнением Шредингера для стационарных состояний . В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчис­ленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями y. Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собствен­ными. Решения же, которые соответствуют собственным значениям энергии, называют­ся собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором - о дискретном спектре.

Классическая механика в силу наличия волновых свойств у микрочастиц не может дать правильного описания их поведения. Это возможно сделать с помощью квантовой механики, созданной Шредингером, Гейзенбергом, Дираком и др.

Основным уравнением квантовой механики является уравнение Шредингера. Состояние микрочастиц в квантовой механике описывается волновой функцией или Ψ (пси)-функцией. Эта функция является функцией координат и времени и может быть найдена путем решения уравнения


(уравнение Шредингера),

где m - масса частицы; h = h/2π – постоянная Планка; Ψ – волновая функция или пси-функция, являющаяся функцией координат и времени
- оператор Лапласа;U=U(x,y,z, t) – потенциальная энергия частицы в силовом поле, в котором она движется; i =
- мнимая единица.

Уравнение Шредингера, как и уравнение Ньютона в классической механике, не может быть получено теоретически, а представляет собой обобщение большого числа опытных фактов. Справедливость этого соотношения доказывается тем, что все вытекающие из него следствия самым точным образом согласуются с опытными фактами.

Из уравнения Шредингера следует, что вид волновой функции Ψ определяется потенциальной энергией U, т.е. характером тех сил, которые действуют на частицу. В общем виде потенциальная энергия U есть функция координат и времени. Для стационарного (не меняющегося во времени) силового поля потенциальная энергия U явно от времени не зависит. В этом случае волновая функция Ψ распадается на два множителя, один из которых зависит только от времени, второй – только от координат.

,

где Е – полная энергия частицы.

Подставляя эту функцию в уравнение Шредингера, получим

;
или

Это уравнение Шредингера для стационарных состояний. Оба уравнения справедливы для любой частицы, движущейся с малой (v«c) скоростью. Кроме того, на волновую функцию накладываются дополнительные условия:


В последнее уравнение в качестве параметра входит полная энергия Е частицы. Из теории дифференциальных уравнений подобные уравнения имеют решения (из бесчисленного их множества), отражающие физический смысл, не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Решения, имеющие физический смысл, получают лишь при наложении вышеперечисленных условий. Значения энергии Е, при которых решения уравнения Шредингера имеют физический смысл, называются собственными . Решения, т.е. волновые функции, которые соответствуют собственным значениям энергии, называются собственными функциями.

Волновая функция и ее статистический смысл

Положение частицы в пространстве в данный момент времени в квантовой механике определяется знанием волновой функции Ψ. Вероятность dw того, что частица находится в элементе объема dV, пропорциональна квадрату модуля волновой функции |Ψ| 2 и объему элемента dV

Величина |Ψ| 2 = (квадрат модуля Ψ-функции) имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами x, y, z.

Таким образом, физический смысл имеет не сама Ψ-функция, а квадрат ее модуля |Ψ| 2 . Вероятность найти частицу в момент времени t в конечном объеме V согласно теореме сложения вероятностей, равна

.

Волновую функцию необходимо нормировать таким образом, чтобы вероятность достоверного события обращалась в единицу. Это будет выполняться, если за объем интегрирования V принять бесконечный объем всего пространства. Условия нормировки вероятностей

,

где интеграл вычисляется по всему бесконечному пространству, т.е. по координатам x, y, z от -∞ до +∞.

При этом волновая функция должна удовлетворять трем раннее перечисленным условиям:

1. Должна быть конечной (вероятность не может быть больше 1).

2. Должна быть однозначной (вероятность не может быть неоднозначной величиной).

    Должна быть непрерывной (вероятность не может изменяться скачком).