Разложение кубического трехчлена на множители. Разложение на множители разности степеней

Это один из самых элементарных способов упростить выражение. Для применения этого метода давай вспомним распределительный закон умножения относительно сложения (не пугайся этих слов, ты обязательно знаешь этот закон, просто мог забыть его название).

Закон гласит: чтобы сумму двух чисел умножить на третье число, нужно каждое слагаемое умножить на это число и полученные результаты сложить, иначе говоря, .

Так же можно проделать и обратную операцию, вот именно эта обратная операция нас и интересует. Как видно из образца, общий множитель а, можно вынести за скобку.

Подобную операцию можно проделывать как с переменными, такими как и, например, так и с числами: .

Да, это слишком элементарный пример, так же, как и приведенный ранее пример, с разложением числа, ведь все знают, что числа, и делятся на, а как быть, если вам досталось выражение посложнее:

Как узнать на что, например, делится число, неет, с калькулятором-то любой сможет, а без него слабо? А для этого существуют признаки делимости, эти признаки действительно стоит знать, они помогут быстро понять, можно ли вынести за скобку общий множитель.

Признаки делимости

Запомнить их не так сложно, скорее всего, большинство из них и так тебе были знакомы, а что-то будет новым полезным открытием, подробнее в таблице:

Примечание: В таблице не хватает признака делимости на 4. Если две последние цифры делятся на 4, то и всё число делится на 4.

Ну как тебе табличка? Советую ее запомнить!

Что ж, вернемся к выражению, может вынести за скобку да и хватит с него? Нет, у математиков принято упрощать, так по полной, выносить ВСЕ что выносится!

И так, с игреком все понятно, а что с числовой частью выражения? Оба числа нечетные, так что на разделить не удастся,

Можно воспользоваться признаком делимости на, сумма цифр, и, из которых состоит число, равна, а делится на, значит и делится на.

Зная это, можно смело делить в столбик, в результате деления на получаем (признаки делимости пригодились!). Таким образом, число мы можем вынести за скобку, так же, как y и в результате имеем:

Чтоб удостовериться, что разложили все верно, можно проверить разложение, умножением!

Также общий множитель можно выносить и в степенных выражениях. Вот тут, например, видишь общий множитель?

У всех членов этого выражения есть иксы - выносим, все делятся на - снова выносим, смотрим что получилось: .

2. Формулы сокращенного умножения

Формулы сокращенного умножения уже упоминались в теории, если ты с трудом помнишь что это, то тебе стоит освежить их в памяти .

Ну, а если ты считаешь себя очень умным и тебе лень читать такую тучу информации, то просто читай дальше, глянь на формулы и сразу берись за примеры.

Суть этого разложения в том, что бы заметить в имеющемся перед тобой выражении какую-то определенную формулу, применить ее и получить, таким образом, произведение чего-то и чего-то, вот и все разложение. Дальше приведены формулы:

А теперь попробуй, разложи на множители следующие выражения, используя приведенные выше формулы:

А вот что должно было получиться:

Как ты успел заметить, эти формулы - весьма действенный способ разложения на множители, он подходит не всегда, но может очень пригодиться!

3. Группировка или метод группировки

А вот тебе еще примерчик:

ну и что с ним делать будешь? Вроде бы и на что-то делится и на, а что-то на и на

Но все вместе на что-то одно не разделишь, ну нет тут общего множителя , как не ищи, что, так и оставить, не раскладывая на множители?

Тут надо смекалку проявить, а имя этой смекалке - группировка!

Применяется она как раз, когда общие делители есть не у всех членов. Для группировки необходимо найти группки слагаемых, имеющих общие делители и переставить их так, чтобы из каждой группы можно было получить один и тот же множитель.

Переставлять местами конечно не обязательно, но это дает наглядность, для наглядности же можно взять отдельные части выражения в скобки, их ставить не запрещается сколько угодно, главное со знаками не напутать.

Не очень понятно все это? Объясню на примере:

В многочлене -- ставим член - после члена - получаем

группируем первые два члена вместе в отдельной скобке и так же группируем третий и четвертый члены, вынеся за скобку знак «минус», получаем:

А теперь смотрим по отдельности на каждую из двух "кучек", на которые мы разбили выражение скобками.

Хитрость в том, чтоб разбить на такие кучки, из которых можно будет вынести максимально большой множитель, либо, как в этом примере, постараться сгруппировать члены так, чтобы после вынесения из кучек множителей за скобку у нас внутри скобок оставались одинаковые выражения.

Из обеих скобок выносим за скобки общие множители членов, из первой скобки, а из второй, получаем:

Но это же не разложение!

П осле разложения должно остаться только умножение , а пока у нас многочлен просто поделен на две части...

НО! Этот многочлен имеет общий множитель. Это

за скобку и получаем финальное произведение

Бинго! Как видишь, тут уже произведение и вне скобок нет ни сложения, ни вычитания, разложение завершено, т.к. вынести за скобки нам больше нечего.

Может показаться чудом, что после вынесения множителей за скобки у нас в скобках остались одинаковые выражения, которые опять же мы и вынесли за скобку.

И вовсе это не чудо, дело в том, что примеры в учебниках и в ЕГЭ специально сделаны так, что большинство выражений в заданиях на упрощение или разложение на множители при правильном к ним подходе легко упрощаются и резко схлопываются как зонтик при нажатии на кнопку, вот и ищи в каждом выражении ту самую кнопку.

Что-то я отвлекся, что у нас там с упрощением? Замысловатый многочлен принял более простой вид: .

Согласись, уже не такой громоздкий, как был?

4. Выделение полного квадрата.

Иногда для применения формул сокращенного умножения (повтори тему ) необходимо преобразовать имеющийся многочлен , представив одно из его слагаемых в виде суммы или разности двух членов.

В каком случае приходится это делать, узнаешь из примера:

Многочлен в таком виде не может быть разложен при помощи формул сокращенного умножения, поэтому его необходимо преобразовать. Возможно, поначалу тебе будет не очевидно какой член на какие разбивать, но со временем ты научишься сразу видеть формулы сокращенного умножения, даже если они не присутствуют не целиком, и будете довольно быстро определять, чего здесь не хватает до полной формулы, а пока - учись, студент, точнее школьник.

Для полной формулы квадрата разности здесь нужно вместо. Представим третий член как разность, получим: К выражению в скобках можно применить формулу квадрата разности (не путать с разностью квадратов!!!) , имеем: , к данному выражению можно применить формулу разности квадратов (не путать с квадратом разности!!!) , представив, как, получим: .

Не всегда разложенное на множители выражение выглядит проще и меньше, чем было до разложения, но в таком виде оно становится более подвижным, в том плане, что можно не париться про смену знаков и прочую математическую ерунду. Ну а вот тебе для самостоятельного решения, следующие выражения нужно разложить на множители.

Примеры:

Ответы:​

5. Разложение квадратного трехчлена на множители

О разложении квадратного трехчлена на множители смотри далее в примерах разложения.

Примеры 5 методов разложения многочлена на множители

1. Вынесение общего множителя за скобки. Примеры.

Помнишь, что такое распределительный закон? Это такое правило:

Пример:

Разложить многочлен на множители.

Решение:

Еще пример:

Разложи на множители.

Решение:

Если слагаемое целиком выносится за скобки, в скобках вместо него остается единица!

2. Формулы сокращенного умножения. Примеры.

Чаще всего используем формулы разность квадратов, разность кубов и сумма кубов. Помнишь эти формулы? Если нет, срочно повтори тему !

Пример:

Разложите на множители выражение.

Решение:

В этом выражении несложно узнать разность кубов:

Пример:

Решение:

3. Метод группировки. Примеры

Иногда можно поменять слагаемые местами таким образом, чтобы из каждой пары соседних слагаемых можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен превратится в произведение.

Пример:

Разложите на множители многочлен.

Решение:

Сгруппируем слагаемые следующим образом:
.

В первой группе вынесем за скобку общий множитель, а во второй − :
.

Теперь общий множитель также можно вынести за скобки:
.

4. Метод выделения полного квадрата. Примеры.

Если многочлен удастся представить в виде разности квадратов двух выражений, останется только применить формулу сокращенного умножения (разность квадратов).

Пример:

Разложите на множители многочлен.

Решение: Пример:

\begin{array}{*{35}{l}}
{{x}^{2}}+6{x}-7=\underbrace{{{x}^{2}}+2\cdot 3\cdot x+9}_{квадрат\ суммы\ {{\left(x+3 \right)}^{2}}}-9-7={{\left(x+3 \right)}^{2}}-16= \\
=\left(x+3+4 \right)\left(x+3-4 \right)=\left(x+7 \right)\left(x-1 \right) \\
\end{array}

Разложите на множители многочлен.

Решение:

\begin{array}{*{35}{l}}
{{x}^{4}}-4{{x}^{2}}-1=\underbrace{{{x}^{4}}-2\cdot 2\cdot {{x}^{2}}+4}_{квадрат\ разности{{\left({{x}^{2}}-2 \right)}^{2}}}-4-1={{\left({{x}^{2}}-2 \right)}^{2}}-5= \\
=\left({{x}^{2}}-2+\sqrt{5} \right)\left({{x}^{2}}-2-\sqrt{5} \right) \\
\end{array}

5. Разложение квадратного трехчлена на множители. Пример.

Квадратный трехчлен - многочлен вида, где - неизвестное, - некоторые числа, причем.

Значения переменной, которые обращают квадратный трехчлен в ноль, называются корнями трехчлена. Следовательно, корни трехчлена - это корни квадратного уравнения.

Теорема.

Пример:

Разложим на множители квадратный трехчлен: .

Сначала решим квадратное уравнение:Теперь можно записать разложение данного квадратного трехчлена на множители:

Теперь твое мнение...

Мы расписали подробно как и для чего раскладывать многочлен на множители.

Мы привели массу примеров как это делать на практике, указали на подводные камни, дали решения...

А что скажешь ты?

Как тебе эта статья? Ты пользуешься этими приемами? Понимаешь их суть?

Пиши в комментриях и... готовься к экзамену!

Пока что он самый важный в твоей жизни.

В общем случае эта задача предполагает творческий подход, так как не существует универсального метода ее решения. Но все же попробуем дать несколько наводок.

В подавляющем числе случаев, разложение многочлена на множители основано на следствии из теоремы Безу, то есть находится или подбирается корень и понижается степень многочлена на единицу делением на . У полученного многочлена ищется корень и процесс повторяется до полного разложения.

Если же корень найти не удается, то используются специфические способы разложения: от группировки, до ввода дополнительных взаимоисключающих слагаемых.

Дальнейшее изложение базируется на навыках решения уравнений высших степеней с целыми коэффициентами.

Вынесение за скобки общего множителя.

Начнем с простейшего случая, когда свободный член равен нулю, то есть многочлен имеет вид .

Очевидно, что корнем такого многочлена является , то есть многочлен представим в виде .

Этот способ есть ни что иное как вынесение общего множителя за скобки .

Пример.

Разложить многочлен третьей степени на множители.

Решение.

Очевидно, что является корнем многочлена, то есть х можно вынести за скобки:

Найдем корни квадратного трехчлена

Таким образом,

К началу страницы

Разложение на множители многочлена с рациональными корнями.

Сначала рассмотрим способ разложения многочлена с целыми коэффициентами вида , коэффициент при старшей степени равен единице.

В этом случае, если многочлен имеет целые корни, то они являются делителями свободного члена.

Пример.

Решение.

Проверим, имеются ли целые корни. Для этого выписываем делители числа -18 : . То есть, если многочлен имеет целые корни, то они находятся среди выписанных чисел. Последовательно проверим эти числа по схеме Горнера. Ее удобство еще и в том, что в итоге получим и коэффициенты разложения многочлена:

То есть, х=2 и х=-3 являются корнями исходного многочлена и он представим в виде произведения:

Осталось разложить квадратный трехчлен .

Дискриминант этого трехчлена отрицательный, следовательно, он не имеет действительных корней.

Ответ:

Замечание:

вместо схемы Горнера можно было воспользоваться подбором корня и последующим делением многочлена на многочлен.

Теперь рассмотрим разложение многочлена с целыми коэффициентами вида , причем коэффициент при старшей степени не равен единице.

В этом случае многочлен может иметь дробно рациональные корни.

Пример.

Разложить на множители выражение .

Решение.

Выполнив замену переменной y=2x , перейдем к многочлену с коэффициентом равным единице при старшей степени. Для этого сначала домножим выражение на 4 .

Если полученная функция имеет целые корни, то они находятся среди делителей свободного члена. Запишем их:

Вычислим последовательно значения функции g(y) в этих точках до получения нуля.

То есть, y=-5 является корнем , следовательно, является корнем исходной функции. Проведем деление столбиком (уголком) многочлена на двучлен .

Таким образом,

Проверку оставшихся делителей продолжать нецелесообразно, так как проще разложить на множители полученный квадратный трехчлен

Следовательно,

    Незведені многочлени. Теорема про розклад многочлена у добуток незведених. Канонічний розклад многочлена.

Многочлен представляет собой выражение, состоящее из суммы одночленов. Последние являются произведением константы (числа) и корня (или корней) выражения в степени k. В таком случае говорят о многочлене степени k. Разложение многочлена предполагает трансформацию выражения, при которой на смену слагаемых приходят множители. Рассмотрим основные способы проведения такого рода преобразования.

Метод разложения многочлена путем выделения общего множителя

Данный способ основывается на закономерностях распределительного закона. Так, mn + mk = m * (n + k).

  • Пример: разложите 7y 2 + 2uy и 2m 3 – 12m 2 + 4lm.

7y 2 + 2uy = y * (7y + 2u),

2m 3 – 12m 2 + 4lm = 2m(m 2 – 6m + 2l).

Однако, множитель, присутствующий обязательно в каждом многочлене может найтись не всегда, поэтому данный способ не является универсальным.

Метод разложения многочлена на базе формул сокращенного умножения

Формулы сокращенного умножения справедливы для многочлена любой степени. В общем виде выражение-преобразование выглядит следующим образом:

u k – l k = (u – l)(u k-1 + u k-2 * l + u k-3 *l 2 + … u * l k-2 + l k-1), где k является представителем натуральных чисел.

Наиболее часто на практике применяются формулы для многочленов второго и третьего порядков:

u 2 – l 2 = (u – l)(u + l),

u 3 – l 3 = (u – l)(u 2 + ul + l 2),

u 3 + l 3 = (u + l)(u 2 – ul + l 2).

  • Пример: разложите 25p 2 – 144b 2 и 64m 3 – 8l 3 .

25p 2 – 144b 2 = (5p – 12b)(5p + 12b),

64m 3 – 8l 3 = (4m) 3 – (2l) 3 = (4m – 2l)((4m) 2 + 4m * 2l + (2l) 2) = (4m – 2l)(16m 2 + 8ml + 4l 2).


Метод разложения многочлена – группировка слагаемых выражения

Данный метод некоторым образом перекликается с техникой выведения общего множителя, но имеет некоторые отличия. В частности, перед тем, как выделять общий множитель, следует произвести группировку одночленов. В основе группирования лежат правила сочетательного и переместительного законов.

Все одночлены, представленные в выражении разбиваются на группы, в каждой из которых выносится общее значение такое, что второй множитель будет одинаковым во всех группах. В общем виде подобный способ разложения можно представить в виде выражения:

pl + ks + kl + ps = (pl + ps) + (ks + kl) ⇒ pl + ks + kl + ps = p(l + s) + k(l + s),

pl + ks + kl + ps = (p + k)(l + s).

  • Пример: разложите 14mn + 16ln – 49m – 56l.

14mn + 16ln – 49m – 56l = (14mn – 49m) + (16ln – 56l) = 7m * (2n – 7) + 8l * (2n – 7) = (7m + 8l)(2n – 7).


Метод разложения многочлена – формирование полного квадрата

Данный способ является одним из наиболее эффективных в ходе разложения многочлена. На первоначальном этапе необходимо определить одночлены, которые можно “свернуть” в квадрат разности или суммы. Для этого используется одно из соотношений:

(p – b) 2 = p 2 – 2pb + b 2 ,

  • Пример: разложите выражение u 4 + 4u 2 – 1.

Выделим среди его одночленов слагаемые, которые образуют полный квадрат: u 4 + 4u 2 – 1 = u 4 + 2 * 2u 2 + 4 – 4 – 1 =

= (u 4 + 2 * 2u 2 + 4) – 4 – 1 = (u 4 + 2 * 2u 2 + 4) – 5.

Завершаете преобразование, используя правила сокращенного умножения: (u 2 + 2) 2 – 5 = (u 2 + 2 – √5)(u 2 + 2 + √5).

Т.о. u 4 + 4u 2 – 1 = (u 2 + 2 – √5)(u 2 + 2 + √5).


Данный онлайн-калькулятор предназначен для разложения функции на множители.

Например, разложить на множители: x 2 /3-3x+12 . Запишем как x^2/3-3*x+12 . Также можно использовать и этот сервис , где все выкладки сохраняются в формате Word .

Например, разложить на слагаемые . Запишем как (1-x^2)/(x^3+x) . Чтобы посмотреть ход решения, нажимаем Show steps . Если необходимо получить результат в формате Word используйте этот сервис .

Примечание : число "пи" (π) записывается как pi ; корень квадратный как sqrt , например, sqrt(3) , тангенс tg записывается как tan . Для просмотра ответа см. раздел Alternative .

  1. Если задано простое выражение, например, 8*d+12*c*d , то выражение разложить на множители означает представить выражение в виде сомножителей. Для этого необходимо найти общие множители. Данное выражение запишем как: 4*d*(2+3*c) .
  2. Представить произведение в виде двух двучленов: x 2 + 21yz + 7xz + 3xy . Здесь уже надо найти несколько общих сомножителей: x(x+7z) + 3y(x + 7z). Выносим (x+7z) и получаем: (x+7z)(x + 3y) .

см. также Деление многочленов уголком (показаны все шаги деления столбиком)

Полезным при изучении правил разложения на множители будут формулы сокращенного умножения , с помощью которых будет ясно, как раскрывать скобки с квадратом:

  1. (a+b) 2 = (a+b)(a+b) = a 2 +2ab+b 2
  2. (a-b) 2 = (a-b)(a-b) = a 2 -2ab+b 2
  3. (a+b)(a-b) = a 2 - b 2
  4. a 3 +b 3 = (a+b)(a 2 -ab+b 2)
  5. a 3 -b 3 = (a-b)(a 2 +ab+b 2)
  6. (a+b) 3 = (a+b)(a+b) 2 = a 3 +3a 2 b + 3ab 2 +b 3
  7. (a-b) 3 = (a-b)(a-b) 2 = a 3 -3a 2 b + 3ab 2 -b 3

Методы разложения на множители

Изучив несколько приемов разложение на множители можно составить следующую классификацию решений:
  1. Использование формул сокращенного умножения.
  2. Поиск общего множителя.

WikiHow работает по принципу вики, а это значит, что многие наши статьи написаны несколькими авторами. При создании этой статьи над ее редактированием и улучшением работали, в том числе анонимно, 23 человек(а).

Разложение на множители уравнения – это процесс нахождения таких членов или выражений, которые, будучи перемноженными, приводят к начальному уравнению. Разложение на множители является полезным навыком для решения основных алгебраических задач, и становится практически необходимым при работе с квадратными уравнениями и другими многочленами. Разложение на множители используется для упрощения алгебраических уравнений, чтобы облегчить их решение. Разложение на множители может помочь вам исключить определенные возможные ответы быстрее, чем вы это сделаете, решая уравнение вручную.

Шаги

Разложение на множители чисел и основных алгебраических выражений

  1. Разложение на множители чисел. Концепция разложения на множители проста, но на практике разложение на множители может оказаться непростой задачей (если дано сложное уравнение). Поэтому для начала рассмотрим концепцию разложения на множители на примере чисел, продолжим с простыми уравнениями, а затем перейдем к сложным уравнениям. Множители данного числа – это числа, которые при перемножении дают исходное число. Например, множителями числа 12 являются числа: 1, 12, 2, 6, 3, 4, так как 1*12=12, 2*6=12, 3*4=12.

    • Аналогично, вы можете рассматривать множители числа как его делители, то есть числа, на которые делится данное число.
    • Найдите все множители числа 60. Мы часто используем число 60 (например, 60 минут в часе, 60 секунд в минуте и т.д.) и у этого числа довольно большое количество множителей.
      • Множители 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 и 60.
  2. Запомните: члены выражения, содержащие коэффициент (число) и переменную, также могут быть разложены на множители. Для этого найдите множители коэффициента при переменной. Зная, как разложить на множители члены уравнений, можно легко упростить данное уравнение.

    • Например, член 12x может быть записан в виде произведения 12 и х. Вы также можете записать 12x как 3(4x), 2(6x) и т.д., разложив число 12 на наиболее подходящие вам множители.
      • Вы можете раскладывать 12x несколько раз подряд. Другими словами, вы не должны останавливаться на 3(4x) или 2(6x); продолжите разложение: 3(2(2x)) или 2(3(2x)) (очевидно, что 3(4x)=3(2(2x)) и т.д.)
  3. Примените распределительное свойство умножения для разложения на множители алгебраических уравнений. Зная, как разложить на множители числа и члены выражения (коэффициенты с переменными), вы можете упростить несложные алгебраические уравнения, найдя общий множитель числа и члена выражения. Обычно для упрощения уравнения необходимо найти наибольший общий делитель (НОД). Такое упрощение возможно благодаря распределительному свойству умножения: для любых чисел а, b, с верно равенство a(b+c) = ab+ac.

    • Пример. Разложите на множители уравнение 12х + 6. Во-первых, найдите НОД 12x и 6. 6 является наибольшим числом, которое делит и 12x, и 6, поэтому вы можете разложить данное уравнение на: 6(2x+1).
    • Этот процесс также верен для уравнений, в которых есть отрицательные и дробные члены. Например, х/2+4 может быть разложено на 1/2(х+8); например, -7x+(-21) может быть разложено на -7(х+3).

    Разложение на множители квадратных уравнений

    1. Убедитесь, что уравнение дано в квадратичной форме (ax 2 + bx + c = 0). Квадратные уравнения имеют вид: ax 2 + bx + c = 0, где а, b, с - числовые коэффициенты отличные от 0. Если вам дано уравнение с одной переменной (х) и в этом уравнении есть один или несколько членов с переменной второго порядка, вы можете перенести все члены уравнения на одну сторону уравнения и приравнять его к нулю.

      • Например, дано уравнение: 5x 2 + 7x - 9 = 4x 2 + x – 18. Оно может быть преобразовано в уравнение x 2 + 6x + 9 = 0, которое является квадратным уравнением.
      • Уравнения с переменной х больших порядков, например, x 3 , x 4 и т.д. не являются квадратными уравнениями. Это кубические уравнения, уравнения четвертого порядка и так далее (только если такие уравнения не могут быть упрощены до квадратных уравнений с переменной х в степени 2).
    2. Квадратные уравнения, где а = 1, раскладываются на (x+d)(x+e), где d*е=с и d+е=b. Если данное вам квадратное уравнение имеет вид: x 2 + bx + c = 0 (то есть коэффициент при x 2 равен 1), то такое уравнение можно (но не гарантированно) разложить на вышеуказанные множители. Для этого нужно найти два числа, которые при перемножении дают «с», а при сложении – «b». Как только вы найдете такие два числа (d и е), подставьте их в следующее выражение: (x+d)(x+e), которое при раскрытии скобок приводит к исходному уравнению.

      • Например, дано квадратное уравнение x 2 + 5x + 6 = 0. 3*2=6 и 3+2=5, поэтому вы можете разложить данное уравнение на (х+3)(х+2).
      • В случае отрицательных членов внесите следующие незначительные изменения в процесс разложения на множители:
        • Если квадратное уравнение имеет вид x 2 -bx+c, то оно раскладывается на: (х-_)(х-_).
        • Если квадратное уравнение имеет вид x 2 -bx-c, то оно раскладывается на: (х+_)(х-_).
      • Примечание: пробелы могут быть заменены на дроби или десятичные числа. Например, уравнение x 2 + (21/2)x + 5 = 0 раскладывается на (х+10)(х+1/2).
    3. Разложение на множители методом проб и ошибок. Несложные квадратные уравнения можно разложить на множители, просто подставляя числа в возможные решения до тех пор, пока вы не найдете правильного решения. Если уравнение имеет вид ax 2 +bx+c, где a>1, возможные решения записываются в виде (dx +/- _)(ex +/- _), где d и е - числовые коэффициенты отличные от нуля, которые при перемножении дают а. Либо d, либо e (или оба коэффициента) могут быть равны 1. Если оба коэффициента равны 1, то воспользуйтесь способом, описанным выше.

      • Например, дано уравнение 3x 2 - 8x + 4. Здесь 3 имеет только два множителя (3 и 1), поэтому возможные решения записываются в виде (3x +/- _)(х +/- _). В этом случае, подставив вместо пробелов -2, вы найдете правильный ответ: -2*3x=-6x и -2*х=-2x; - 6x+(-2x)=-8x и -2*-2=4, то есть такое разложение при раскрытии скобок приведет к членам исходного уравнения.
    4. Полный квадрат. В некоторых случаях квадратные уравнения могут быть быстро и легко разложены на множители с помощью специальной алгебраической идентичности. Любое квадратное уравнение вида x 2 + 2xh + h 2 = (x + h) 2 . То есть, если в вашем уравнении коэффициент b равен удвоенному квадратному корню из коэффициента c, то ваше уравнение можно разложить на (x + (кВ.корень(c))) 2 .

      • Например, дано уравнение x 2 + 6x + 9. Здесь 3 2 =9 и 3*2=6. Поэтому это уравнение раскладывается на (х+3)(х+3) или (x + 3) 2 .
    5. Используйте разложение на множители для решения квадратных уравнений. Разложив уравнение на множители, вы можете приравнять каждый множитель к нулю и вычислить значение х (под решением уравнения подразумевается нахождение значений х, при которых уравнение рано нулю).

      • Вернемся к уравнению x 2 + 5x + 6 = 0. Это уравнение раскладывается на множители (х+3)(х+2)=0. Если один из множителей равен 0, то все уравнение равно 0. Поэтому запишем: (х+3)=0 и (х+2)=0 и найдем х=-3 и х=-2 (соответственно).
    6. Проверьте ответ (некоторые ответы могут быть неправильными). Для этого подставьте найденные значения х в исходное уравнение. Иногда при подстановке найденных значений исходное уравнение не равно нулю; это значит, что такие значения х неверные.

      • Например, подставьте х=-2 и х=-3 в x 2 + 5x + 6 = 0. Сначала подставим х=-2:
        • (-2) 2 + 5(-2) + 6 = 0
        • 4 + -10 + 6 = 0
        • 0 = 0. То есть х=-2 - правильный ответ.
      • Теперь подставьте х=-3:
        • (-3) 2 + 5(-3) + 6 = 0
        • 9 + -15 + 6 = 0
        • 0 = 0. То есть х=-3 - правильный ответ.