Значение алгебраического выражения. Числовые и алгебраические выражения


На уроках алгебры в школе мы сталкиваемся с выражениями различного вида. По мере изучения нового материала записи выражений становятся все разнообразнее и сложнее. Например, познакомились со степенями – в составе выражений появились степени, изучили дроби – появились дробные выражения и т.д.

Для удобства описания материала, выражениям, состоящим из схожих элементов, дали определенные названия, чтобы выделить их из всего разнообразия выражений. В этой статье мы ознакомимся с ними, то есть, дадим обзор основных выражений, изучаемых на уроках алгебры в школе.

Навигация по странице.

Одночлены и многочлены

Начнем с выражений, имеющих название одночлены и многочлены . На момент написания этой статьи разговор про одночлены и многочлены начинается на уроках алгебры в 7 классе. Там даются следующие определения.

Определение.

Одночленами называются числа, переменные, их степени с натуральным показателем, а также любые произведения, составленные из них.

Определение.

Многочлены – это сумма одночленов.

Например, число 5 , переменная x , степень z 7 , произведения 5·x и 7·x·2·7·z 7 – это все одночлены. Если же взять сумму одночленов, например, 5+x или z 7 +7+7·x·2·7·z 7 , то получим многочлен.

Работа с одночленами и многочленами часто подразумевает выполнение действий с ними. Так на множестве одночленов определено умножение одночленов и возведение одночлена в степень , в том смысле, что в результате их выполнения получается одночлен.

На множестве многочленов определено сложение, вычитание, умножение, возведение в степень. Как определяются эти действия, и по каким правилам они выполняются, мы поговорим в статье действия с многочленами .

Если говорить про многочлены с единственной переменной, то при работе с ними значительную практическую значимость имеет деление многочлена на многочлен , а также часто такие многочлены приходится представлять в виде произведения, это действие имеет название разложение многочлена на множители .

Рациональные (алгебраические) дроби

В 8 классе начинается изучение выражений, содержащих деление на выражение с переменными. И первыми такими выражениями выступают рациональные дроби , которые некоторые авторы называют алгебраическими дробями .

Определение.

Рациональная (алгебраическая) дробь это дробь, числителем и знаменателем которой являются многочлены, в частности, одночлены и числа.

Приведем несколько примеров рациональных дробей: и . К слову, любая обыкновенная дробь является рациональной (алгебраической) дробью.

На множестве алгебраических дробей вводятся сложение, вычитание, умножение, деление и возведение в степень. Как это делается объяснено в статье действия с алгебраическими дробями .

Часто приходится выполнять и преобразование алгебраических дробей , наиболее распространенными из них являются сокращение и приведение к новому знаменателю.

Рациональные выражения

Определение.

Выражения со степенями (степенные выражения) – это выражения, содержащие степени в своей записи.

Приведем несколько примеров выражений со степенями. Они могут не содержать переменных, например, 2 3 , . Также имеют место степенные выражения с переменными: и т.п.

Не помешает ознакомиться с тем, как выполняется преобразование выражений со степенями .

Иррациональные выражения, выражения с корнями

Определение.

Выражения, содержащие логарифмы называют логарифмическими выражениями .

Примерами логарифмических выражений являются log 3 9+lne , log 2 (4·a·b) , .

Очень часто в выражениях встречаются одновременно и степени и логарифмы, что и понятно, так как по определению логарифм есть показатель степени. В результате естественно выглядят выражения подобного вида: .

В продолжение темы обращайтесь к материалу преобразование логарифмических выражений .

Дроби

В этом пункте мы рассмотрим выражения особого вида - дроби.

Дробь расширяет понятие . Дроби также имеют числитель и знаменатель, находящиеся соответственно сверху и снизу горизонтальной дробной черты (слева и справа наклонной дробной черты). Только в отличие от обыкновенных дробей, в числителе и знаменателе могут быть не только натуральные числа, но и любые другие числа, а также любые выражения.

Итак, дадим определение дроби.

Определение.

Дробь – это выражение, состоящее из разделенных дробной чертой числителя и знаменателя, которые представляют собой некоторые числовые или буквенные выражения или числа.

Данное определение позволяет привести примеры дробей.

Начнем с примеров дробей, числителями и знаменателями которых являются числа: 1/4 , , (−15)/(−2) . В числителе и знаменателе дроби могут быть и выражения, как числовые, так и буквенные. Вот примеры таких дробей: (a+1)/3 , (a+b+c)/(a 2 +b 2) , .

А вот выражения 2/5−3/7 , дробями не являются, хотя и содержат дроби в своих записях.

Выражения общего вида

В старших классах, особенно в задачах повышенной трудности и задачах группы С в ЕГЭ по математике, будут попадаться выражения сложного вида, содержащие в своей записи одновременно и корни, и степени, и логарифмы, и тригонометрические функции, и т.п. Например, или . Они по виду подходят под несколько типов перечисленных выше выражений. Но их обычно не относят ни к одному из них. Их считают выражениями общего вида , а при описании говорят просто выражение, не добавляя дополнительных уточнений.

Завершая статью, хочется сказать, что если данное выражение громоздкое, и если Вы не совсем уверены, к какому виду оно относится, то лучше назвать его просто выражением, чем назвать его таким выражением, каким оно не является.

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Алгебраические выражения начинают изучать в 7 классе. Они обладают рядом свойств и используются в решении задач. Изучим эту тему подробнее и рассмотрим пример решения задачи.

Определение понятия

Какие выражения называют алгебраическими? Это математическая запись, составленная из цифр, букв и знаков арифметических действий. Наличие букв – это основное отличие числовых и алгебраических выражений. Примеры:

  • 4а+5;
  • 6b-8;
  • 5с:6*(8+5).

Буква в алгебраических выражений обозначает какое-либо число. Поэтому она называется переменной – в первом примере это буква а, во втором – b, а в третьем – с. Само алгебраическое выражение еще называют выражением с переменной .

Значение выражения

Значение алгебраического выражения – это число, получаемое в результате выполнения всех арифметических действий, которые указаны в этом выражении. Но, чтобы его получить, буквы необходимо заменить числами. Поэтому в примерах всегда указывают, какое число соответствует букве. Рассмотрим, как найти значение выражения 8а-14*(5-а), если а=3.

Подставим вместо буквы а цифру 3. Получаем следующую запись: 8*3-14*(5-3).

Как и в числовых выражениях, решение алгебраического выражения проводится по правилам выполнения арифметических действий. Решим все по порядку.

  • 5-3=2.
  • 8*3=24.
  • 14*2=28.
  • 24-28=-4.

Таким образом, значение выражения 8а-14*(5-а) при а=3 равно -4.

Значение переменной называют допустимым, если при нем выражение имеет смысл, то есть возможно найти его решение.

Пример допустимой переменной для выражения 5:2а – это цифра 1. Подставив ее в выражение, получаем 5:2*1=2,5.

Недопустимая переменная для данного выражения – это 0. Если подставить ноль в выражение, получаем 5:2*0, то есть 5:0. На ноль делить нельзя, значит, выражение не имеет смысла.

Тождественные выражения

Если два выражения при любых значениях входящих в их состав переменных оказываются равны, их называют тождественными .
Пример тождественных выражений :
4(а+с) и 4а+4с.
Какие бы значения ни принимали буквы а и с, выражения всегда окажутся равны. Любое выражение можно заменить другим, тождественным ему. Этот процесс называют тождественным преобразованием.

Пример тождественного преобразования .
4*(5а+14с) – данное выражение можно заменить тождественным, применив математический закон умножения. Чтобы умножить число на сумму двух чисел, нужно это число умножить на каждое слагаемое и сложить полученные результаты.

  • 4*5а=20а.
  • 4*14с=64с.
  • 20а+64с.

Таким образом, выражению 4*(5а+14с) является тождественным 20а+64с.

Число, стоящее в алгебраическом выражении перед буквенной переменной, называется коэффициентом. Коэффициент и переменная – это множители.

Решение задач

Алгебраические выражения используют для решения задач и уравнений.
Рассмотрим задачу. Петя придумал число. Для того, чтобы его отгадал одноклассник Саша, Петя сказал ему: сначала я прибавил к числу 7, затем вычел из него 5 и умножил на 2. В результате я получил число 28. Какое число я загадал?

Для решения задачи нужно загаданное число обозначить буквой а, а затем произвести все указанные действия с ним.

  • (а+7)-5.
  • ((а+7)-5)*2=28.

Теперь решим полученное уравнение.

Петя загадал число 12.

Что мы узнали?

Алгебраическое выражение – запись, составленная из букв, цифр и знаков арифметических действий. Каждое выражение имеет значение, которое находят путем выполнения всех арифметических действий в выражении. Буква в алгебраическом выражении называется переменной, а число перед ней – коэффициентом. Алгебраические выражения используют для решения задач.

Решим задачу.

Ученик купил тетрадей по 2 коп. за тетрадь и учебник за 8 коп. Сколько заплатил он за всю покупку?

Чтобы узнать стоимость всех тетрадей, надо цену одной тетради умножить на число тетрадей. Значит, стоимость тетрадей будет равна копейкам.

Стоимость же всей покупки будет равна

Заметим, что перед множителем, выраженным буквой, знак умножения принято опускать, он просто подразумевается. Поэтому предыдущую запись можно представить в таком виде:

Получили формулу решения задачи. Она показывает, что для решения задачи надо цену тетради умножить на число купленных тетрадей и к произведению прибавить стоимость учебника.

Вместо слова «формула» для подобных записей употребляют также название «алгебраическое выражение».

Алгебраическим выражением называется запись, состоящая из чисел, обозначенных цифрами или буквами и соединённых знаками действий.

Для краткости вместо «алгебраическое выражение» говорят иногда просто «выражение».

Приведём ещё примеры алгебраических выражений:

Из этих примеров видим, что алгебраическое выражение может состоять только из одной буквы, а может совсем не содержать чисел, обозначенных буквами (два последних примера). В этом последнем случае выражение называется также арифметическим выражением.

Дадим в полученном нами алгебраическом выражении букве значение 5 (значит, ученик купил 5 тетрадей). Подставив вместо число 5, получим:

что равно 18 (то есть 18 коп.).

Число 18 является значением данного алгебраического выражения при

Значением алгебраического выражения называется число, которое получится, если в это выражение подставить вместо букв данные их значения и произвести над числами указанные действия.

Например, мы можем сказать: значение выражения при равно 12 (12 коп.).

Значение етого же выражения при равно 14 (14 коп.) и т. д.

Мы видим, что значение алгебраического выражения вависит от того, какие значения мы дадим входящим в него буквам. Правда, иногда бывает, что значение выражения не вависит от вначений входящих в него букв. Например, выражение равно 6 при любых значениях а.

Найдём в виде примера числовые значения выражения при различных значениях букв a и b.

Подставим в данное выражение вместо а число 4, а вместо 6 число 2 и вычислим полученное выражение:

Итак, при значение выражения За равно 16.

Таким же образом найдём, что при значение выражения равно 29, при и оно равно 2 и т. д.

Результаты вычислений можно записать в виде таблицы, которая наглядно покажет, как изменяется значение выражения в зависимости от изменения значений входящих в него букв.

Составим таблицу из трёх строк. В первой строке будем записывать значения а, во второй - значения 6 и

в третьей - значения выражения Получим такую таблицу.

I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n; 3· (2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

Решение .

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Примеры.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

Решение . Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

7) 4 · х · (-2,5); 8) -3,5 · · (-1); 9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).

Свойства степеней:

(1) a m ⋅ a n = a m + n

Пример:

$${a^2} \cdot {a^5} = {a^7}$$ (2) a m a n = a m − n

Пример:

$$\frac{{{a^4}}}{{{a^3}}} = {a^{4 — 3}} = {a^1} = a$$ (3) (a ⋅ b) n = a n ⋅ b n

Пример:

$${(a \cdot b)^3} = {a^3} \cdot {b^3}$$ (4) (a b) n = a n b n

Пример:

$${\left({\frac{a}{b}} \right)^8} = \frac{{{a^8}}}{{{b^8}}}$$ (5) (a m) n = a m ⋅ n

Пример:

$${({a^2})^5} = {a^{2 \cdot 5}} = {a^{10}}$$ (6) a − n = 1 a n

Примеры:

$${a^{ — 2}} = \frac{1}{{{a^2}}};\;\;\;\;{a^{ — 1}} = \frac{1}{{{a^1}}} = \frac{1}{a}.$$

Свойства квадратного корня:

(1) a b = a ⋅ b , при a ≥ 0 , b ≥ 0

Пример:

18 = 9 ⋅ 2 = 9 ⋅ 2 = 3 2

(2) a b = a b , при a ≥ 0 , b > 0

Пример:

4 81 = 4 81 = 2 9

(3) (a) 2 = a , при a ≥ 0

Пример:

(4) a 2 = | a | при любом a

Примеры:

(− 3) 2 = | − 3 | = 3 , 4 2 = | 4 | = 4 .

Рациональные и иррациональные числа

Рациональные числа – числа, которые можно представить в виде обыкновенной дроби m n где m — целое число (ℤ = 0, ± 1, ± 2, ± 3 …), n — натуральное (ℕ = 1,   2,   3,   4 …).

Примеры рациональных чисел:

1 2 ;   − 9 4 ;   0,3333 … = 1 3 ;   8 ;   − 1236.

Иррациональные числа – числа, которые невозможно представить в виде обыкновенной дроби m n , это бесконечные непериодические десятичные дроби.

Примеры иррациональных чисел:

e = 2,71828182845…

π = 3,1415926…

2 = 1,414213562…

3 = 1,7320508075…

Проще говоря, иррациональные числа – это числа, содержащие в своей записи знак квадратного корня. Но не всё так просто. Некоторые рациональные числа маскируются под иррациональные, например, число 4 содержит в своей записи знак квадратного корня, но мы прекрасно понимаем, что можно упростить форму записи 4 = 2 . Это означает, что число 4 есть число рациональное.

Аналогично, число 4 81 = 4 81 = 2 9 есть число рациональное.

В некоторых задачах требуется определить, какие из чисел являются рациональными, а какие иррациональными. Задание сводится к тому, чтобы понять, какие числа иррациональные, а какие под них маскируются. Для этого нужно уметь совершать операции вынесения множителя из-под знака квадратного корня и внесения множителя под знак корня.

Внесение и вынесение множителя за знак квадратного корня

При помощи вынесения множителя за знак квадратного корня можно ощутимо упростить некоторые математические выражения.

Пример:

Упростить выражение 2 8 2 .

1 способ (вынесение множителя из-под знака корня): 2 8 2 = 2 4 ⋅ 2 2 = 2 4 ⋅ 2 2 = 2 ⋅ 2 = 4

2 способ (внесение множителя под знак корня): 2 8 2 = 2 2 8 2 = 4 ⋅ 8 2 = 4 ⋅ 8 2 = 16 = 4

Формулы сокращенного умножения (ФСУ)

Квадрат суммы

(1) (a + b) 2 = a 2 + 2 a b + b 2

Пример:

(3 x + 4 y) 2 = (3 x) 2 + 2 ⋅ 3 x ⋅ 4 y + (4 y) 2 = 9 x 2 + 24 x y + 16 y 2

Квадрат разности

(2) (a − b) 2 = a 2 − 2 a b + b 2

Пример:

(5 x − 2 y) 2 = (5 x) 2 − 2 ⋅ 5 x ⋅ 2 y + (2 y) 2 = 25 x 2 − 20 x y + 4 y 2

Сумма квадратов не раскладывается на множители

a 2 + b 2 ≠

Разность квадратов

(3) a 2 − b 2 = (a − b) (a + b)

Пример:

25 x 2 − 4 y 2 = (5 x) 2 − (2 y) 2 = (5 x − 2 y) (5 x + 2 y)

Куб суммы

(4) (a + b) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3

Пример:

(x + 3 y) 3 = (x) 3 + 3 ⋅ (x) 2 ⋅ (3 y) + 3 ⋅ (x) ⋅ (3 y) 2 + (3 y) 3 = x 3 + 3 ⋅ x 2 ⋅ 3 y + 3 ⋅ x ⋅ 9 y 2 + 27 y 3 = x 3 + 9 x 2 y + 27 x y 2 + 27 y 3

Куб разности

(5) (a − b) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3

Пример:

(x 2 − 2 y) 3 = (x 2) 3 − 3 ⋅ (x 2) 2 ⋅ (2 y) + 3 ⋅ (x 2) ⋅ (2 y) 2 − (2 y) 3 = x 2 ⋅ 3 − 3 ⋅ x 2 ⋅ 2 ⋅ 2 y + 3 ⋅ x 2 ⋅ 4 y 2 − 8 y 3 = x 6 − 6 x 4 y + 12 x 2 y 2 − 8 y 3

Сумма кубов

(6) a 3 + b 3 = (a + b) (a 2 − a b + b 2)

Пример:

8 + x 3 = 2 3 + x 3 = (2 + x) (2 2 − 2 ⋅ x + x 2) = (x + 2) (4 − 2 x + x 2)

Разность кубов

(7) a 3 − b 3 = (a − b) (a 2 + a b + b 2)

Пример:

x 6 − 27 y 3 = (x 2) 3 − (3 y) 3 = (x 2 − 3 y) ((x 2) 2 + (x 2) (3 y) + (3 y) 2) = (x 2 − 3 y) (x 4 + 3 x 2 y + 9 y 2)

Стандартный вид числа

Для того, чтобы понять, как приводить произвольное рациональное число к стандартному виду, надо знать, что такое первая значащая цифра числа.

Первой значащей цифрой числа называют его первую слева отличную от нуля цифру.

Примеры:
2 5 ; 3 , 05 ; 0 , 1 43 ; 0 , 00 1 2 . Красным цветом выделена первая значащая цифра.

Для того, чтобы привести число к стандартному виду, надо:

  1. Сдвинуть запятую так, чтобы она была сразу за первой значащей цифрой.
  2. Полученное число умножить на 10 n , где n — число, которое определяется следующим образом:
  3. n > 0 , если запятая сдвигалась влево (умножение на 10 n , указывает, что на самом деле запятая должна стоять правее);
  4. n < 0 , если запятая сдвигалась вправо (умножение на 10 n , указывает, что на самом деле запятая должна стоять левее);
  5. абсолютная величина числа n равна количеству разрядов, на которое была сдвинута запятая.

Примеры:

25 = 2 , 5 ← ​ , = 2,5 ⋅ 10 1

Запятая сдвинулась влево на 1 разряд. Так как сдвиг запятой осуществляется влево, степень положительная.

Уже приведено к стандартному виду, делать ничего с ним не нужно. Можно записать, как 3,05 ⋅ 10 0 , но поскольку 10 0 = 1 , оставляем число в первоначальном виде.

0,143 = 0, 1 → , 43 = 1,43 ⋅ 10 − 1

Запятая сдвинулась вправо на 1 разряд. Так как сдвиг запятой осуществляется вправо, степень отрицательная.

− 0,0012 = − 0, 0 → 0 → 1 → , 2 = − 1,2 ⋅ 10 − 3

Запятая сдвинулась вправо на три разряда. Так как сдвиг запятой осуществляется вправо, степень отрицательная.