Цепь переноса электронов в митохондриях. Митохондриальная дыхательная цепь и окислительное фосфорилирование Цепь переноса электронов в митохондрии нужна для

14.1.1. В пируватдегидрогеназной реакции и в цикле Кребса происходит дегидрирование (окисление) субстратов (пируват, изоцитрат, α-кетоглутарат, сукцинат, малат). В результате этих реакций образуются НАДН и ФАДН2 . Эти восстановленные формы коферментов окисляются в митохондриальной дыхательной цепи. Окисление НАДН и ФАДН2 , протекающее сопряжённо с синтезом АТФ из АДФ и Н3 РО4 называется окислительным фосфорилированием .

Схема строения митохондрии показана на рисунке 14.1. Митохондрии представляют собой внутриклеточные органеллы, имеющие две мембраны: наружную (1) и внутреннюю (2). Внутренняя митохондриальная мембрана образует многочисленные складки - кристы (3). Пространство, ограниченное внутренней митохондриальной мембраной, носит название матрикс (4), пространство, ограниченное наружной и внутренней мембранами, - межмембранное пространство (5).

Рисунок 14.1. Схема строения митохондрии.

14.1.2. Дыхательная цепь - последовательная цепь ферментов, осуществляющая перенос ионов водорода и электронов от окисляемых субстратов к молекулярному кислороду - конечному акцептору водорода. В ходе этих реакций выделение энергии происходит постепенно, небольшими порциями, и она может быть аккумулирована в форме АТФ. Локализация ферментов дыхательной цепи - внутренняя митохондриальная мембрана.

Дыхательная цепь включает четыре мультиферментных комплекса (рисунок 14.2).

Рисунок 14.2. Ферментные комплексы дыхательной цепи (обозначены участки сопряжения окисления и фосфорилирования):

I. НАДН-KoQ-редуктаза (содержит промежуточные акцепторы водорода: флавинмононуклеотид и железосерные белки). II. Сукцинат-KoQ-редуктаза (содержит промежуточные акцепторы водорода: ФАД и железосерные белки). III. KoQН2 -цитохром с-редуктаза (содержит акцепторы электронов: цитохромы b и с1 , железосерные белки). IV. Цитохром с-оксидаза (содержит акцепторы электронов: цитохромы а и а3 , ионы меди Cu2+ ).

14.1.3. В качестве промежуточных переносчиков электронов выступают убихинон (коэнзим Q) и цитохром с.

Убихинон (KoQ) - жирорастворимое витаминоподобное вещество, способен легко диффундировать в гидрофобной фазе внутренней мембраны митохондрий. Биологическая роль коэнзима Q - перенос электронов в дыхательной цепи от флавопротеинов (комплексы I и II) к цитохромам (комплекс III).

Цитохром с - сложный белок, хромопротеин, простетическая группа которого - гем - содержит железо с переменной валентностью (Fe3+ в окисленной форме и Fe2+ в восстановленной форме). Цитохром с является водорастворимым соединением и располагается на периферии внутренней митохондриальной мембраны в гидрофильной фазе. Биологическая роль цитохрома с - перенос электронов в дыхательной цепи от комплекса III к комплексу IV.

14.1.4. Промежуточные переносчики электронов в дыхательной цепи расположены в соответствии с их окислительно-восстановительными потенциалами. В этой последовательности способность отдавать электроны (окисляться) убывает, а способность присоединять электроны (восстанавливаться) возрастает. Наибольшей способности отдавать электроны обладает НАДН, наибольшей способностью присоединять электроны - молекулярный кислород.

На рисунке 14.3 представлено строение реакционноспособного участка некоторых промежуточных переносчиков протонов и электронов в окисленной и восстановленной форме и их взаимопревращение.



Рисунок 14.3. Взаимопревращения окисленных и восстановленных форм промежуточных переносчиков электронов и протонов.

14.1.5. Механизм синтеза АТФ описывает хемиосмотическая теория (автор - П. Митчелл). Согласно этой теории, компоненты дыхательной цепи, расположенные во внутренней митохондриальной мембране, в ходе переноса электронов могут «захватывать» протоны из матрикса митохондрий и передавать их в межмембранное пространство. При этом наружная поверхность внутренней мембраны приобретает положительный заряд, а внутренняя - отрицательный, т.е. создаётся градиент концентрации протонов с более кислым значением рН снаружи. Так возникает трансмембранный потенциал (ΔµН+ ). Существует три участка дыхательной цепи, на которых он образуется. Эти участки соответствуют I, III и IV комплексам цепи переноса электронов (рисунок 14.4).


Рисунок 14.4. Расположение ферментов дыхательной цепи и АТФ-синтетазы во внутренней мембране митохондрий.

Протоны, выведенные в межмембранное пространство за счёт энергии переноса электронов, снова переходят в митохондриальный матрикс. Этот процесс осуществляется ферментом Н+ -зависимой АТФ-синтетазой (Н+ -АТФ-азой). Фермент состоит из двух частей (см. рисунок 10.4): водорастворимой каталитической части (F1 ) и погружённого в мембрану протонного канала (F0 ). Переход ионов Н+ из области с более высокой в область с более низкой их концентрацией сопровождается выделением свободной энергии, за счёт которой синтезируется АТФ.

14.1.6. Энергия, аккумулированная в форме АТФ, используется в организме для обеспечения разнообразных биохимических и физиологических процессов. Запомните основные примеры использования энергии АТФ:

1) синтез сложных химических веществ из более простых (реакции анаболизма); 2) сокращение мышц (механическая работа); 3) образование трансмембранных биопотенциалов; 4) активный транспорт веществ через биологические мембраны.

У эукариот - на внутренней мембране митохондрий . Переносчики расположены по своему окислительно-восстановительному потенциалу , транспорт электрона на всём протяжении цепи протекает самопроизвольно.

Протонный потенциал преобразуется АТФ-синтазой в энергию химических связей АТФ . Сопряжённая работа ЭТЦ и АТФ-синтазы носит название окислительного фосфорилирования .

Цепь переноса электронов митохондрий

  • Комплекс I (НАДН-дегидрогеназный комплекс) окисляет НАД-Н , отбирая у него два электрона и перенося их на растворимый в липидах убихинон , который внутри мембраны диффундирует к комплексу III. Вместе с этим, комплекс I перекачивает 2 протона и 2 электрона из матрикса в межмембранное пространство митохондрии .
  • Комплекс II (Сукцинатдегидрогеназа) не перекачивает протоны , но обеспечивает вход в цепь дополнительных электронов за счёт окисления сукцината .
  • Комплекс III (Цитохром-bc 1 -комплекс) переносит электроны с убихинона на два водорастворимых цитохрома с , расположенных на внутренней мембране митохондрии . Убихинон передаёт 2 электрона , а цитохромы за один цикл переносят по одному электрону . При этом туда также переходят 2 протона убихинона и перекачиваются комплексом.
  • Комплекс IV (Цитохром c оксидаза) катализирует перенос 4 электронов с 4 молекул цитохрома на O 2 и перекачивает при этом 4 протона в межмембранное пространство. Комплекс состоит из цитохромов a и a3, которые, помимо гема , содержат ионы меди .

Влияние окислительного потенциала

Восстановитель Окислитель Ео´, В
Н2 2 + - 0,42
НАД Н + Н+ НАД + - 0,32
НАДФ Н + Н+ НАДФ + - 0,32
Флавопротеин (восстановл.) Флавопротеин (окисл.) - 0,12
Кофермент Q Н2 Кофермент Q + 0,04
Цитохром B (Fe2+) Цитохром B (Fe3+) + 0,07
Цитохром C 1 (Fe2+) Цитохром C 1 (Fe3+) + 0,23
Цитохромы A (Fe2+) Цитохромы A(Fe3+) + 0,29
Цитохромы A3 (Fe2+) Цитохромы A3 (Fe3+) +0,55
H2O ½ О2 + 0,82

Ингибиторы дыхательной цепи

Некоторые вещества блокируют перенос электронов через комплексы I, II, III, IV .

  • Ингибиторы I комплекса - барбитураты , ротенон , пиерицидин
  • Ингибитор II комплекса - малонат .
  • Ингибитор III комплекса - антимицин А , миксотиазол , стигматтелин
  • Ингибиторы IV комплекса - сероводород , цианиды , угарный газ , оксид азота, азид натрия

Электронтранспортные цепи бактерий

Бактерии, в отличие от митохондрий, используют большой набор доноров и акцепторов электронов, а также разные пути переноса электрона между ними. Эти пути могут осуществляться одновременно, например, E. coli при выращивании на среде, содержащей глюкозу в качестве основного источника органического вещества, использует две НАДН дегидрогеназы и две хинолоксидазы, что означает наличие 4 путей транспорта электрона. Большинство ферментов ЭТЦ индуцибельны и синтезируются только в случае, если путь, в который они входят, востребован.

Донором электрона помимо органического вещества у бактерий могут выступать молекулярный водород , угарный газ , аммоний , нитрит , сера , сульфид , двухвалентное железо . Вместо НАДН и сукцинатдегидрогеназы могут присутствовать формиат -, лактат -, глицеральдегид-3-фосфатдегидрогеназа, гидрогеназа и т. д. Вместо оксидазы, использующейся в аэробных условиях, в отсутствие кислорода бактерии могут использовать редуктазы, восстанавливающие различные конечные акцепторы электрона: фумаратредуктазу , нитрат- и нитритредуктазу и т. д.

См. также

Напишите отзыв о статье "Дыхательная цепь переноса электронов"

Примечания

Отрывок, характеризующий Дыхательная цепь переноса электронов

Наконец-то всё вокруг пришло в движение, и вся эта великолепно разодетая толпа, как по мановению волшебной палочки, разделилась на две части, образуя ровно посередине очень широкий, «бальный» проход. А по этому проходу медленно двигалась совершенно потрясающая женщина... Вернее, двигалась пара, но мужчина рядом с ней был таким простодушным и невзрачным, что, несмотря на его великолепную одежду, весь его облик просто стушёвывался рядом с его потрясающей партнёршей.
Красавица дама была похожа на весну – её голубое платье было сплошь вышито причудливыми райскими птицами и изумительными, серебристо-розовыми цветами, а целые гирлянды настоящих живых цветов хрупким розовым облачком покоились на её шелковистых, замысловато уложенных, пепельных волосах. Множество ниток нежного жемчуга обвивали её длинную шею, и буквально светились, оттенённые необычайной белизной её изумительной кожи. Огромные сверкающие голубые глаза приветливо смотрели на окружающих её людей. Она счастливо улыбалась и была потрясающе красивой....

Французская королева Мария-Антуанетта

Тут же, стоящий от всех в стороне, Аксель буквально преобразился!.. Скучающий молодой человек куда-то, в мгновение ока, исчез, а вместо него... стояло живое воплощение самых прекрасных на земле чувств, которое пылающим взглядом буквально «пожирало» приближающуюся к нему красавицу даму...
– О-о-ой... какая же она краси-ивая!.. – восторженно выдохнула Стелла. – Она всегда такая красивая!..
– А что, ты её видела много раз? – заинтересованно спросила я.
– О да! Я хожу смотреть на неё очень часто. Она, как весна, правда же?
– И ты её знаешь?.. Знаешь, кто она?
– Конечно же!.. Она очень несчастная королева, – чуть погрустнела малышка.
– Почему же несчастная? По мне так очень даже счастливая, – удивилась я.
– Это только сейчас... А потом она умрёт... Очень страшно умрёт – ей отрубят голову... Но это я смотреть не люблю, – печально прошептала Стелла.
Тем временем красавица дама поравнялась с нашим молодым Акселем и, увидев его, от неожиданности на мгновение застыла, а потом, очаровательно покраснев, очень мило ему улыбнулась. Почему-то у меня было такое впечатление, что вокруг этих двоих людей мир на мгновение застыл... Как будто на какой-то очень короткий миг для них не существовало ничего и никого вокруг, кроме них двоих... Но вот дама двинулась дальше, и волшебный миг распался на тысячи коротеньких мгновений, которые сплелись между этими двумя людьми в крепкую сверкающую нить, чтобы не отпускать их уже никогда...
Аксель стоял совершенно оглушённый и, опять никого не замечая вокруг, провожал взглядом свою прекрасную даму, а его покорённое сердце медленно уходило вместе с ней... Он не замечал, какими взглядами смотрели на него проходящие молодые красавицы, и не отвечал на их сияющие, зовущие улыбки.

Граф Аксель Ферсен Мария-Антуанетта

Человеком Аксель и в правду был, как говорится, «и внутри, и снаружи» очень привлекательным. Он был высоким и изящным, с огромными серьёзными серыми глазами, всегда любезным, сдержанным и скромным, чем одинаково привлекал, как женщин, так и мужчин. Его правильное, серьёзное лицо редко озарялось улыбкой, но если уж это случалось, то в такой момент Аксель становился просто неотразим... Поэтому, было совершенно естественным усиленное к нему внимание очаровательной женской половины, но, к их общему сожалению, Акселя интересовало только лишь одно на всём белом свете существо – его неотразимая, прекрасная королева...
– А они будут вместе? – не выдержала я. – Они оба такие красивые!..
Стелла только грустно улыбнулась, и сразу же «окунула» нас в следующий «эпизод» этой необычной, и чем-то очень трогательной истории...
Мы очутились в очень уютном, благоухающем цветами, маленьком летнем саду. Вокруг, сколько охватывал взгляд, зеленел великолепно ухоженный, украшенный множеством статуй, роскошный парк, а вдалеке виднелся ошеломляюще огромный, похожий на маленький город, каменный дворец. И среди всего этого «грандиозного», немного давящего, окружающего величия, лишь этот, полностью защищённый от постороннего взгляда сад, создавал ощущение настоящего уюта и какой-то тёплой, «домашней» красоты...
Усиленные теплом летнего вечера, в воздухе витали головокружительно-сладкие запахи цветущих акаций, роз и чего-то ещё, что я никак не могла определить. Над чистой поверхностью маленького пруда, как в зеркале, отражались огромные чашечки нежно-розовых водяных лилий, и снежно-белые «шубы» ленивых, уже готовых ко сну, царственных лебедей. По маленькой, узенькой тропинке, вокруг пруда гуляла красивая молодая пара. Где-то вдали слышалась музыка, колокольчиками переливался весёлый женский смех, звучали радостные голоса множества людей, и только для этих двоих мир остановился именно здесь, в этом маленьком уголке земли, где в этот миг только для них звучали нежные голоса птиц; только для них шелестел в лепестках роз шаловливый, лёгкий ветерок; и только для них на какой-то миг услужливо остановилось время, давая возможность им побыть вдвоём – просто мужчиной и женщиной, которые пришли сюда, чтобы проститься, даже не зная, не будет ли это навсегда...
Дама была прелестной и какой-то «воздушной» в своём скромном, белом, вышитом мелкими зелёными цветочками, летнем платье. Её чудесные пепельные волосы были схвачены сзади зелёной лентой, что делало её похожей на прелестную лесную фею. Она выглядела настолько юной, чистой и скромной, что я не сразу узнала в ней ту величественную и блистательную красавицу королеву, которую видела всего лишь несколько минут назад во всей её великолепной «парадной» красоте.

Ферменты цепи переноса электронов фиксированы в митохондриальной мембране таким образом, что их действие векторно, т. е. характеризуется не только величиной скорости реакции, но и пространственной направленностью, подобно действию транспортных АТФаз. Основным проявлением векторности в дыхательной цепи является перенос ионов водорода с внутренней стороны мембраны (со стороны матрикса) на наружную (в межмебранное простраство).

В дыхательной цепи есть три пункта, связанные с перекачкой протонов: комплексы I, III и IV.
Кофермент Q при участии НАДН-дегидрогеназы (комплекс I) присоединяет электроны (а также протоны) от компонентов дыхательной цепи с матриксной стороны мембраны, а освобождаются электроны и протоны на противоположной стороне мембраны, причем электроны акцептируются очередным компонентом дыхательной цепи, а протоны уходят в межмембранное пространство. Такой механизм называют Q-циклом. Сходным образом действует и цитохром-с-редуктаза (комплекс III). В области цитохромоксидазы (комплекс IV) в перекачке протонов, возможно, участвуют ионы Си2+.
Перенос двух электронов через каждый комплекс обеспечивает перекачку четырех протонов. Таким образом, цепь переноса электронов работает как протонный насос, перекачивая ионы водорода из матрикса на наружную сторону мембраны.
В результате по сторонам мембраны возникает разность концентраций протонов и одновременно разность электрических потенциалов со знаком «плюс» на наружной поверхности. Иначе говоря, энергия разности окислительно-восстановительных потенциалов веществ трансформируется в энергию протонного электрохимического потенциала АрН+.
Электрохимический потенциал понуждает протоны двигаться в обратном направлении - с наружной поверхности внутрь. АТФ-синтетаза - очень крупный олигомерный белок, в котором выделяют три части: выступающую в матрикс митохондрии часть (F1), построенную из трех пар димеров сф; трансмембранную часть (F0), образующую гидрофильный канал, и промежуточную область FA. Субъединица F1 содержит активные центры, синтезирующие АТФ. Протоны движутся через канал АТФ-синтазы, и энергия этого движения используется для образования АТФ. Конкретные механизмы сопряжения, т. е. трансформации электрохимического потенциала в энергию макроэргической связи АТФ, все еще не вполне ясны.
Образующаяся АТФ при участии АДФ-АТФ-транслоказы транспортируется из матрикса на наружную сторону мембраны и попадает в цитозоль. Одновременно та же транслоказа переносит АДФ в обратном направлении, из цитозоля в матрикс митохондрии.
В искусственных условиях, в опытах in vitro можно создать избыток АТФ со стороны внутренней поверхности внутренней мембраны. В этом случае реакция идет справа налево, т. е. фермент работает как транспортная АТФаза, переносящая протоны (Н+-АТФаза). Мембрана при этом энергизуется: АрН+ возникает за счет энергии гидролиза АТФ.

Окислительное фосфорилирование

Впервые механизм окислительного фосфорилирования был предложен Питером Митчеллом. Согласно этой гипотезе перенос электронов, происходящий на внутренней митохондриальной мембране, вызывает выкачивание ионов Н + из матрикса митохондрий в межмембранное пространство. Это создает градиент концентрации ионов Н + между цитозолем и замкнутым внутримитохондриальным пространством. Ионы водорода в норме способны возвращаться в матрикс митохондрий только одним способом - через специальный фермент, образующий АТФ - АТФ-синтазу.

По современным представлениям внутренняя митохондриальная мембрана содержит ряд мультиферментных комплексов, включающих множество ферментов. Эти ферменты называют дыхательными ферментами, а последовательность их расположения в мембране - дыхательной цепью (англ. electron transport chain).

Общий принцип окислительного фосфорилирования


В целом работа дыхательной цепи заключается в следующем:

  1. Образующиеся в реакциях катаболизма НАДН и ФАДН 2 передают атомы водорода (то есть протоны водорода и электроны) на ферменты дыхательной цепи.
  2. Электроны движутся по ферментам дыхательной цепи и теряют энергию.
  3. Эта энергия используется на выкачивание протонов Н + из матрикса в межмембранное пространство.
  4. В конце дыхательной цепи электроны попадают на кислород и восстанавливают его до воды.
  5. Протоны Н + стремятся обратно в матрикс и проходят через АТФ-синтазу.
  6. При этом они теряют энергию, которая используется для синтеза АТФ.

Таким образом, восстановленные формы НАД и ФАД окисляются ферментами дыхательной цепи, благодаря этому происходит присоединение фосфата к АДФ, то есть фосфорилирование. Поэтому весь процесс целиком получил название окислительное фосфорилирование.