Построить линию пересечения плоскостей заданных. Построение линии пересечения поверхностей

Задача на пересечение плоскостей в силу своей важности носит у ряда авторов наименование «позиционная задача № 2».

Из стереометрии известно, что линией пересечения двух плоскостей служит прямая. В предыдущих предварительных задачах, где речь шла о частных случаях пересечения плоскостей, мы исходили из этого определения.

Как известно, чтобы построить ту или иную прямую, в простейшем случае требуется отыскать две точки, принадлежащие этой прямой. В случае задания плоскости следами в качестве этих двух точек выступают точки пересечения одноименных следов пересекающихся плоскостей.

Примеры для самостоятельной работы

Упражнение 5.1

Построить линии пересечения плоскостей, заданных следами (рис. 72):

  • а) горизонтально проецирующей I и фронтально проецирующей А;
  • б) горизонтально проецирующей Z и плоскости общего положения Q;
  • в) двух плоскостей общего положения I и 0.

Рис. 72

На рис. 73 приведены ответы к этому упражнению.

Для случаев задания плоскостей локальными плоскими фигурами уместно использование по крайней мере двух различных путей решения.


Рис. 73

Первый путь решения - использование трехступенного алгоритма нахождения точки встречи прямой общего положения с плоскостью общего положения. Для нахождения линии пересечения двух треугольников один из треугольников оставляют без изменения, а второй мысленно расчленяют на отдельные отрезки, представляя их в качестве прямых общего положения. Сначала находят точку пересечения одной из прямых общего положения с плоскостью треугольника. Затем находят еще одну недостающую точку, принадлежащую искомой линии. Это делается аналогичным путем, повторяя всю описанную последовательность действий.

Упражнение 5.2

По заданным координатам вершин двух треугольников ЛВС и DEK построить эпюр последних и найти линию их пересечения. Указать видимость элементов обоих треугольников на эпюре: А (0, 9, 2); ?(10, 1, 16); С (23, 14, 9); D (3, 17, 18); ?(22, 11, 17); ?(12,0, 2). Для нахождения линий пересечения треугольников рекомендуется сначала найти точку встречи прямой KD с треугольником АВС, а затем точку встречи прямой СВ с треугольником EDK.

Общий вид полученного эпюра приведен на рис. 74.

Второй путь решения - использование двух вспомогательных секущих плоскостей уровня.

Заданные пересекающиеся плоские фигуры следует дважды пересечь вспомогательными плоскостями уровня (одноименными либо разноименными - безразлично), например двумя горизонтальными плоскостями уровня.

Нетрудно понять, что одноразовое рассечение позволяет отыскать две пересекающиеся прямые h l и И 2 , дающие одну точку А, принадлежащую искомой линии пересечения (рис. 75). Проводя еще одну аналогичную вспомогательную плоскость на некотором расстоянии

Рис. 74


Рис. 75

от первой, получают аналогичное построение и еще одну точку. Соединяя одноименные проекции двух полученных точек, находят искомую линию пересечения двух плоскостей.

Упражнение 5.3

По заданным координатам точек двух треугольных фигур построить эпюр последних, на котором построить с использованием вспомогательных плоскостей линию пересечения треугольников. Указать видимость элементов обоих треугольников на эпюре:

к АВС. А (16, 5, 17); Я (10, 19,

A DEF: D (24, 12, 14); ? (4, 18,

Общий вид решенной задачи изображен на рис. 76.

Упражнение 5.4

Для закрепления навыков нахождения линии пересечения двух плоскостей приводится задача, решение которой дается в динамике построений в соответствии со ступенями алгоритма.

Найти линию пересечения двух плоскостей общего положе- р ис jq

ния, заданных двумя треугольниками АВС и DEF, и определить видимость их взаимопроникновения (рис. 77).

Решение примера сводится к отысканию точек пересечения сторонами (прямыми) ААВС с плоскостью общего положения, заданной ADEF. Алгоритм решения этого примера известен.

Заключаем сторону (прямую) АС ЬЛВС во вспомогательную фронтально проецирующую плоскость т _1_ П 2 (рис. 78).

Фронтальный след этой вспомогательной плоскости пересекает проекции сторон D 2 E 2 глЕ 2 - 1 2 и D 2 F 2 пт 2 = 2 2 в точках 1 2 и 2 2 . Проекционные линии связи позволяют на горизонтальной плоскости проекций определить линию пересечения (1 !~2 2) = n AD X E X F { . Тогда точка К 1 и ее проекция К 2 определяют точку пересечения прямой АС с ADEF.

Повторяем алгоритм нахождения точки пересечения стороны ААВС прямой ВС с ADEF. Заключаем ВС во вспомогательную фронтально проецирующую плоскость р _L П 2 (рис. 79).

Находим проекции точек 3 и 4 и на горизонтальной плоскости проекций определяем проекцию точки пересечения прямой В 1 С [ с линией пересечения (3,-4,):

Проекционная линия связи позволяет найти ее фронтальную проекцию точку М 2 .

Соединяем найденные точки Ки Ми находим линию пересечения двух плоскостей общего положения AABC n ADEF= АЖ (рис. 80).

Видимость сторон ААВС относительно ADEF определяется с помощью конкурирующих точек. Сначала определяем видимость геометрических фигур на плоскости проекций П 2 . Для этого через конкурирующие точки 5 и 6 (5 2 = 6 2) проводим проекционную линию связи, перпендикулярную оси проекций х п (рис. 81).

По горизонтальным проекциям 5 У и 6 { точек 5 и 6, в которых линия проекционной связи соответственно пересекает скрещивающиеся прямые АС 4 DF, выясняется, что точка 6 более удалена от плоскости проекций П 2 , чем точка 5. Поэтому точка 6 и прямая DF, которой она принадлежит, видимы относительно плоскости проекций П 2 . Отсюда следует, что отрезок (К 2 -6 2) будет невидимым. Аналогично определяем видимость сторон АЛВС и ADEF - ВС и DF, т.е. отрезок (Ж 2 -8 2) будет невидимым.

Видимость ААВС и ADEF относительно плоскости проекций П j, устанавливается аналогично. Для определения видимости скрещивающихся прямых АС * DF и ВС ±DF относительно плоскости проекций П] через конкурирующие точки 9 1 = 10 1 и11 1 = 12 1 проводим проекционные линии связи перпендикулярно х п. По фронтальным проекциям этих конкурирующих точек устанавливаем, что проекции точек 10 2 и 12 2 более удалены от плоскости проекций П { . Следовательно, отрезки (А^-ЮД и (М г 2 1) будут невидимыми. Отсюда видимость ААВС и ADEF наглядно представлена на рис. 82.

Прямая в пространстве может быть определена как линия пересечения двух непараллельных плоскостей и, то есть как множество точек, удовлетворяющих системе двух линейных уравнений

(V.5)

Справедливо и обратное утверждение: система двух независимых линейных уравнений вида (V.5) определяет прямую как линию пересечения плоскостей (если они не параллельны). Уравнения системы (V.5) называются общим уравнением прямой в пространстве
.

Пример V .12 . Составить каноническое уравнение прямой, заданной общими уравнениями плоскостей

Решение . Чтобы написать каноническое уравнение прямой или, что тоже самое, уравнение прямой, проходящей через две данные точки, нужно найти координаты каких-либо двух точек прямой. Ими могут служить точки пересечения прямой с какими-нибудь двумя координатными плоскостями, например Oyz и Oxz .

Точка пересечения прямой с плоскостью Oyz имеет абсциссу
. Поэтому, полагая в данной системе уравнений
, получим систему с двумя переменными:

Ее решение
,
вместе с
определяет точку
искомой прямой. Полагая в данной системе уравнений
, получим систему

решение которой
,
вместе с
определяет точку
пересечения прямой с плоскостьюOxz .

Теперь запишем уравнения прямой, проходящей через точки
и
:
или
, где
будет направляющим векто-ром этой прямой.

Пример V .13. Прямая задана каноническим уравнением
. Составить общее уравнение этой прямой.

Решение. Каноническое уравнение прямой можно записать в виде системы двух независимых уравнений:


Получили общее уравнение прямой, которая теперь задана пересечением двух плоскостей, одна из которых
параллельна осиOz (
), а другая
– осиОу (
).

Данную прямую можно представить в виде линии пересечения двух других плоскостей, записав ее каноническое уравнение в виде другой пары независимых уравнений:


Замечание . Одна и та же прямая может быть задана различными системами двух линейных уравнений (то есть пересечением различных плоскостей, так как через одну прямую можно провести бесчисленное множество плоскостей), а также различными каноническими уравнениями (в зависимости от выбора точки на прямой и ее направляющего вектора).

Ненулевой вектор, параллельный прямой линии, будем называть ее направляющим вектором .

Пусть в трехмерном пространстве задана прямая l , проходящая через точку
, и ее направляющий вектор
.

Любой вектор
, где
, лежащий на прямой, коллинеарен с вектором, поэтому их координаты пропорциональны, то есть

. (V.6)

Это уравнение называется каноническим уравнением прямой. В частном случае, когда ﻉ есть плоскость, получаем уравнение прямой на плоскости

. (V.7)

Пример V .14. Найти уравнение прямой, проходящей через две точки
,
.

,

где
,
,
.

Удобно уравнение (V.6) записать в параметрической форме. Так как координаты направляющих векторов параллельных прямых пропорциональны, то, полагая

,

где t – параметр,
.

Расстояние от точки до прямой

Рассмотри двухмерное евклидовое пространство ﻉ с декартовой системой координат. Пусть точка
ﻉ и l ﻉ. Найдем расстояние от этой точки до прямой. Положим
, и прямая l задается уравнением
(рис.V.8).

Расстояние
, вектор
, где
– нормальный вектор прямой l ,
и – коллинеарны, поэтому их координаты пропорциональны, то есть
, следовательно,
,
.

Отсюда
или умножая эти уравнения наA и B соответственно и складывая их, находим
, отсюда

.

(V.8)

определяет расстояние от точки
до прямой
.

Пример V .15. Найти уравнение прямой, проходящей через точку
перпендикулярно прямойl :
и найти расстояние от
до прямойl .

Из рис. V.8 имеем
, а нормальный вектор прямойl
. Из условия перпендикулярности имеем

Так как
, то

. (V.9)

Это и есть уравнение прямой, проходящей через точку
,перпендикулярно прямой
.

Пусть имеем уравнение прямой (V.9), проходящей через точку
, перпендикулярна прямойl :
. Найдем расстояние от точки
до прямойl , используя формулу (V.8).

Для нахождения искомого расстояния достаточно найти уравнение прямой, проходящей через две точки
и точку
, лежащую на прямой в основании перпендикуляра. Пусть
, тогда

Так как
, а вектор
, то

. (V.11)

Поскольку точка
лежит на прямойl , то имеем еще одно равенство
или

Приведем систему к виду, удобному для применения метода Крамера

Ее решение имеет вид

,

. (V.12)

Подставляя (V.12) в (V.10), получаем исходное расстояние.

Пример V .16. В двухмерном пространстве задана точка
и прямая
. Найти расстояние от точки
до прямой; записать уравнение прямой, проходящей через точку
перпендикулярно заданной прямой и найти расстояние от точки
до основания перпендикуляра к исходной прямой.

По формуле (V.8) имеем

Уравнение прямой, содержащей перпендикуляр, найдем как прямую, проходящую через две точки
и
, воспользовавшись формулой (V.11). Так как
, то, с учетом того, что
, а
, имеем

.

Для нахождения координат
имеем систему с учетом того, что точка
лежит на исходной прямой

Следовательно,
,
, отсюда.

Рассмотрим трехмерное евклидовое пространство ﻉ. Пусть точка
ﻉ и плоскость ﻉ. Найдем расстояние от этой точки
до плоскости, заданной уравнением (рис.V.9).

Аналогично двухмерному пространству имеем
и вектор
, а, отсюда

. (V.13)

Уравнение прямой, содержащей перпендикуляр к плоскости , запишем как уравнение прямой, проходящей через две точки
и
, лежащую в плоскости:

. (V.14)

Для нахождения координат точки
к двум любым равенствам формулы (V.14) добавим уравнение

Решая систему трех уравнений (V.14), (V.15), найдем ,,– координаты точки
. Тогда уравнение перпендикуляра запишется в виде

.

Для нахождения расстояния от точки
до плоскости вместо формулой (V.13) воспользуемся

Построение точки пересечения прямой с проецирующей плоскостью сводится к построе­нию второй проекции точки на эпюре, так как одна проекция точки всегда лежит на следе проецирующей плоскости, потому что все, что находится в проецирующей плоскости, проецируется на один из следов плоскости. На рис. 224, а показано построение точки пересе­чения прямой EF с фронтально-проецирующей плоскостью треугольника ABC (перпендику­лярной плоскости V) На плоскость V тре­угольник ABC проецируется в отрезок а"с" пря­мой линии, и точка к" будет также лежать на этой прямой и находиться в точке пересечения e"f с а"с". Горизонтальную проекцию строят с помощью линии проекционной связи. Види­мость прямой относительно плоскости тре­угольника АВС определяют по взаимному рас­положению проекций треугольника ABC и пря­мой EF на плоскости V. Направление взгляда на рис. 224, а указано стрелкой. Тот участок прямой, фронтальная проекция которого нахо­дится выше проекции треугольника, будет ви­димым. Левее точки к" проекция прямой нахо­дится над проекцией треугольника, следова­тельно, на плоскости Н этот участок види­мый.

На рис. 224, б прямая EF пересекает гори­зонтальную плоскость Р. Фронтальная проек­ция к" точки К - точки пересечения прямой EF с плоскостью Р - будет находиться в точке пересечения проекции е"f "со следом плоскости P v , так как горизонтальная плоскость является фронтально-проецирующей плоскостью. Гори­зонтальную проекцию k точки К находят с по­мощью линии проекционной связи.

Построение линии пересечения двух пло­скостей сводится к нахождению двух точек, общих для этих двух плоскостей. Для построе­ния линии пересечения этого достаточно, так как линия пересечения - прямая, а прямая задается двумя точками. При пересечении проецирующей плоскости с плоскостью общего положения одна из проекций линии пересече­ния совпадает со следом плоскости, находя­щимся в той плоскости проекций, к которой перпендикулярна проецирующая плоскость. На рис. 225, а фронтальная проекция т"п" линии пересечения MN совпадает со следом P v фрон­тально-проецирующей плоскости Р, а на рис. 225, б горизонтальная проекция kl совпа­дает со следом горизонтально-проецирующей плоскости R. Другие проекции линии пересе­чения строятся с помощью линий проекцион­ной связи.

Построение точки пересечения прямой с пло­скостью общего положения (рис. 226, а) вы­полняют с помощью вспомогательной проеци­рующей плоскости R, которую проводят через данную прямую EF. Строят линию пересечения 12 вспомогательной плоскости R . с заданной плоскостью треугольника ABC, получают в плоскости R две прямые: EF - заданная пря­мая и 12 - построенная линия пересечения, которые пересекаются в точке K .


Нахождение проекций точки К показано на рис. 226, б. Построения выполняют в следую­щей последовательности.

Через прямую EF проводят вспомогательную горизонтально-проецирующую плоскость R. Ее след совпадает с горизонтальной проекцией ef прямой EF.

Строят фронтальную проекцию 1׳2" линии пересечения 12 плоскости R с заданной пло­скостью треугольника ABC с помощью линий проекционной связи, так как горизонтальная проекция линии пересечения известна. Она совпадает с горизонтальным следом R H пло­скости R.

Определяют фронтальную проекцию к" иско­мой точки К, которая находится в пересечении фронтальной проекции данной прямой с проек­цией 1"2" линии пересечения. Горизонтальная проекция точки строится с помощью линии проекционной связи.

Видимость прямой относительно плоскости треугольника ABC определяется способом кон­курирующих точек. Для определения види­мости прямой на фронтальной плоскости про­екций (рис. 226, б) сравним координаты Y точек 3 и 4, фронтальные проекции которых совпадают. Координата Y точки 3, лежащей на прямой ВС, меньше координаты Y точки 4, лежащей на прямой EF. Следовательно, точка 4 находится ближе к наблюдателю (направле­ние взгляда указано стрелкой) и проекция прямой изображается на плоскости V видимой. Прямая проходит перед треугольником. Левее точки К׳ прямая закрыта плоскостью треугольника ABC. Видимость на горизонтальной плоскости проекций показывают, сравнив координаты Z точек 1 и 5. Так как Z 1 > Z 5 , точка 1 видимая. Следова­тельно, правее точки 1 (до точки К) прямая EF невидимая.

Для построения линии пересечения двух плоскостей общего положения применяют вспо­могательные секущие плоскости. Это показано на рис. 227, а. Одна плоскость задана тре­угольником ABC, другая - параллельными прямыми EF и MN. Заданные плоскости (рис. 227, а) пересекают третьей вспомогатель­ной плоскостью. Для простоты построений в качестве вспомогательных плоскостей берут горизонтальные или фронтальные плоскости. В данном случае вспомогательная плоскость R является горизонтальной плоскостью. Она пе­ресекает заданные плоскости по прямым лини­ям 12 и 34, которые в пересечении дают точ­ку К , принадлежащую всем трем плоскостям, а следовательно, и двум заданным, т. е. лежа­щую на линии пересечения заданных плоскос­тей. Вторую точку находят с помощью второй вспомогательной плоскости Q . Найденные две точки К и L определяют линию пересечения двух плоскостей.

На рис. 227, б вспомогательная плоскость R задана фронтальным следом. Фронтальные проекции линий пересечения 1"2" и 3"4" пло­скости R с заданными плоскостями совпадают с фронтальным следом R v плоскости R, так как плоскость R перпендикулярна плоскости V, и все, что в ней находится (в том числе и ли­нии пересечения) проецируется на ее фрон­тальный след R v . Горизонтальные проекции этих линий построены с помощью линий про­екционной связи, проведенных от фронтальных проекций точек 1", 2", 3", 4" до пересечения с горизонтальными проекциями соответствую­щих прямых в точках 1, 2, 3, 4. Построенные горизонтальные проекции линий пересечения продлевают до пересечения друг с другом в точке k, которая является горизонтальной проекцией точки K , принадлежащей линии пе­ресечения двух плоскостей. Фронтальная проек­ция этой точки находится на следе R v .


Рисунок 1.3.25 – Пересечение двух плоскостей общего положения

Пример построения линии пересечения двух плоскостей способом секущих плоскостей посредников представлен на рисунке 1.3.25. Плоскость S определяется пересекающимися прямыми а и b , а плоскость Q – параллельными прямыми с и d .

Для нахождения линии l пересечения плоскостей S и Q проведём две фронтально проецирующие плоскости W (W 2 ) и (W¢ 2 ), являющиеся посредниками. Плоскость W пересекает данные плоскости S и Q по прямым линиям 1-2 (1 2 -2 2 , 1 1 -2 1 ) и 3-4 (3 2 -4 2 , 3 1 -4 1 ). Точку пересечения этих прямых обозначим через К (К 1 , К 2 ). Точка К принадлежит одновременно трём плоскостям S, Q, W. Следовательно, точка К S и Q. Плоскость пересекает плоскости S и Q по прямым линиям 5-6 (5 1 -6 1 , 5 2 -6 2 ) и 7-8 (7 1 -8 1 , 7 2 -8 2 ). Точкой пересечения этих линий является точка К¢ . Она, как и точка К принадлежит линии пересечения плоскостей S и Q . Следовательно, прямая l , проходящая через точки К и К¢ , есть искомая прямая пересечения данных плоскостей S и Q .


Рисунок 1.3.26 – Пересечение двух плоскостей общего положения

На рисунке 1.3.26 представлен пример построения линии пересечения двух плоскостей способом пересечения прямой линии с плоскостью. Плоскости заданы треугольниками АВС и EGF . Вспомогательные секущие плоскости S (S 2 ) и (S 2 ) проведены через стороны EG и ВС треугольников. Плоскость S (S 2 ) пересекает треугольник АВС по прямой 1-2 . Точка К EG и 1-2 . Плоскость (S¢ 2 ) пересекает треугольник EGF по прямой 3-4 . Точка К¢ является результатом пересечения прямых ВС и 3-4 . Точки К и К¢ ограничивают отрезок искомой линии пересечения, находящийся в пределах обоих треугольников.

Относительная видимость треугольников определена на фронтальной проекции с помощью конкурирующих точек 2 и 4 , из которых точка 4 стороны EG закрывает собой точку 2 стороны ВС . Видимость на горизонтальной плоскости проекций определена с помощью конкурирующих точек 5 и 6 , из которых точка 6 стороны EG закрывает собой точку 5 стороны АС .

Кривые линии

Кривую линию можно рассматривать как след движущейся точки. Эта точка может быть отдельной точкой или точкой, принадлежащей движущейся в пространстве линии или поверхности.

Кривые линии могут быть образованы пересечением кривой поверхности плоскостью (в общем случае), взаимным пересечением двух поверхностей, из которых хотя бы одна является кривой.

Законом образования кривой линии называется совокупность условий, определяющих эту линию. Точка, линия, поверхность перемещаются в пространстве, подчиняясь разным условиям. Плоскость может пересекать разнообразные кривые поверхности по самым различным направлениям. Взаимно пересекаться могут самые разнообразные поверхности при различном положении их относительно друг друга. Отсюда следует, что образование кривой линии может подчиняться бесчисленному множеству условий и может быть образовано бесчисленное множество кривых линий. Кроме того, одна и та же кривая линия может быть образована различными способами.

Например, эллипс может быть образован движением точки в плоскости, при котором в каждый данный момент сумма расстояний от этой точки до двух других неподвижных точек – фокусов эллипса – постоянна и равна большой оси эллипса. Но эллипс может быть образован и пересечением кругового цилиндра с плоскостью, расположенной произвольно по отношению к его оси или полным пересечением поверхностей двух круговых цилиндров одинакового диаметра.

Все кривые линии по положению их точек в пространстве делятся на два вида: плоские кривые – кривые, все точки которых лежат в одной плоскости (например, окружность, эллипс, парабола и т.д.) и пространственные кривые – кривые, точки которых не лежат в одной плоскости, например, винтовая линия

Две плоскости пересекаются друг с другом по прямой линии. Чтобы её построить, необходимо определить две точки, принадлежащие одновременно каждой из заданных плоскостей. Рассмотрим, как это делается, на следующих примерах.

Найдем линию пересечения плоскостей общего положения α и β для случая, когда пл. α задана проекциями треугольника ABC, а пл. β – параллельными прямыми d и e. Решение этой задачи осуществляется путем построения точек L 1 и L 2 , принадлежащих линии пересечения.

Решение

  1. Вводим вспомогательную горизонтальную плоскость γ 1 . Она пересекает α и β по прямым. Фронтальные проекции этих прямых, 1""C"" и 2""3"", совпадают с фронтальным следом пл. γ 1 . Он обозначен на рисунке как f 0 γ 1 и расположен параллельно оси x.
  2. Определяем горизонтальные проекции 1"C" и 2"3" по линиям связи.
  3. Находим горизонтальную проекцию точки L 1 на пересечении прямых 1"C" и 2"3". Фронтальная проекция точки L 1 лежит на фронтальном следе плоскости γ.
  4. Вводим вспомогательную горизонтальную плоскость γ 2 . С помощью построений, аналогичных описанным в пунктах 1, 2, 3, находим проекции точки L 2 .
  5. Через L 1 и L 2 проводим искомую прямую l.

Стоит отметить, что в качестве пл. γ удобно использовать как плоскости уровня, так и проецирующие плоскости.

Найдем линию пересечения плоскостей α и β, заданных следами. Эта задача значительно проще предыдущей. Она не требует введения вспомогательных плоскостей. Их роль выполняют плоскости проекций П 1 и П 2 .

Алгоритм построения

  1. Находим точку L" 1 , расположенную на пересечении горизонтальных следов h 0 α и h 0 β . Точка L"" 1 лежит на оси x. Её положение определяется при помощи линии связи, проведенной из L" 1 .
  2. Находим точку L"" 2 на пересечении фронтальных следов пл. α и β. Точка L" 2 лежит на оси x. Её положение определяется по линии связи, проведенной из L"" 2 .
  3. Проводим прямые l" и l"" через соответствующие проекции точек L 1 и L 2 , как это показано на рисунке.

Таким образом, прямая l, проходящая через точки пересечения следов плоскостей, является искомой.

Пересечение плоскостей треугольников

Рассмотрим построение линии пересечения плоскостей, заданных треугольниками ABC и DEF, и определение их видимости методом конкурирующих точек.

Алгоритм построения

  1. Через прямую DE проводим фронтально-проецирующую плоскость σ: на чертеже обозначен ее след f 0σ . Плоскость σ пересекает треугольник ABC по прямой 35. Отметив точки 3""=A""B""∩f 0σ и 5""=A""С""∩f 0σ , определяем положение (∙)3" и (∙)5" по линиям связи на ΔA"B"C".
  2. Находим горизонтальную проекцию N"=D"E"∩3"5" точки N пересечения прямых DE и 35, которые лежат во вспомогательной плоскости σ. Проекция N"" расположена на фронтальном следе f 0σ на одной линии связи с N".
  3. Через прямую BC проводим фронтально-проецирующую плоскость τ: на чертеже обозначен ее след f 0τ . С помощью построений, аналогичных тем, что описаны в пунктах 1 и 2 алгоритма, находим проекции точки K.

  4. Через N и K проводим искомую прямую NK – линию пересечения ΔABC и ΔDEF.

Определение видимости

Фронтально-конкурирующие точки 4 и 5, принадлежащие ΔDEF и ΔABC соответственно, находятся на одной фронтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π 2 . Так как (∙)5" находится ближе к наблюдателю, чем (∙)4", то отсек ΔABC с принадлежащей ему (∙)5 является видимым в проекции на пл. π 2 . С противоположной стороны от линии N""K"" видимость треугольников меняется.

Горизонтально-конкурирующие точки 6 и 7, принадлежащие ΔABC и ΔDEF соответственно, находятся на одной горизонтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π 1 . Так как (∙)6"" находится выше, чем (∙)7"", то отсек ΔABC с принадлежащей ему (∙)6 является видимым в проекции на пл. π 1 . С противоположной стороны от линии N"K" видимость треугольников меняется.