Слау определение. Система линейных алгебраических уравнений

Система линейных уравнений - это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Решение системы уравнений - это последовательность чисел (k 1 , k 2 , ..., k n ), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1 , x 2 , ..., x n дает верное числовое равенство.

Соответственно, решить систему уравнений - значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

  1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.
  2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.
  3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» - надо описать, как устроено это множество.

Переменная x i называется разрешенной, если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной x i должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1 , x 3 и x 4 . Впрочем, с тем же успехом можно утверждать, что вторая система - разрешенная относительно x 1 , x 3 и x 5 . Достаточно переписать самое последнее уравнение в виде x 5 = x 4 .

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

  1. Число разрешенных переменных r равно общему числу переменных k : r = k . Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x 1 = b 1 , x 2 = b 2 , ..., x k = b k ;
  2. Число разрешенных переменных r меньше общего числа переменных k : r < k . Остальные (k − r ) переменных называются свободными - они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2 , x 5 , x 6 (для первой системы) и x 2 , x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Обратите внимание: это очень важный момент! В зависимости от того, как вы запишете итоговую систему, одна и та же переменная может быть как разрешенной, так и свободной. Большинство репетиторов по высшей математике рекомендуют выписывать переменные в лексикографическом порядке, т.е. по возрастанию индекса. Однако вы совершенно не обязаны следовать этому совету.

Теорема. Если в системе из n уравнений переменные x 1 , x 2 , ..., x r - разрешенные, а x r + 1 , x r + 2 , ..., x k - свободные, то:

  1. Если задать значения свободным переменным (x r + 1 = t r + 1 , x r + 2 = t r + 2 , ..., x k = t k ), а затем найти значения x 1 , x 2 , ..., x r , получим одно из решений.
  2. Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все - таким образом можно получить все решения системы. Других решений не существует.

Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше - неопределенной.

И все бы хорошо, но возникает вопрос: как из исходной системы уравнений получить разрешенную? Для этого существует

Курсовая: Определители и системы линейных уравнений

1. Определители второго и третьего порядков и их свойства

1.1. Понятие матрицы и определителя второго порядка

Прямоугольную таблицу из чисел,

матрицей. Для обозначения матрицы используют либо сдвоенные вертикальные

черточки, либо круглые скобки. Например:

1 7 9.2 1 7 9.2

28 20 18 28 20 18

6 11 2 -6 11 2

Если число строк матрицы совпадает с числом ее столбцов, то матрица называется

квадратной. Числа, входящие в состав матрицы, называют ее элементами .

Рассмотрим квадратную матрицу, состоящую из четырех элементов:

Определителем второго порядка, соответствующим матрице (3.1), называется число,

и обозначаемое символом

Итак, по определению

Элементы, составляющие матрицу данного определителя, обычно называют

элементами этого определителя.

Справедливо следующее утверждение: для того чтобы определитель второго

порядка был равен нулю, необходимо и достаточно, чтобы элементы его строк (или

соответственно его столбцов) были пропорциональны .

Для доказательства этого утверждения достаточно заметить, что каждая из

пропорций /

эквивалентна равенству

А последнее равенство в силу (3.2) эквивалентно обращению в нуль определителя.

1.2. Система двух линейных уравнений с двумя неизвестными

Покажем, как применяются определители второго порядка для исследования и

отыскания решений системы двух линейных уравнений с двумя неизвестными

(коэффициенты ,

и свободные члены ,

считаются при этом заданными). Напомним, что пара чисел

Называется

решением системы (3.3), если подстановка этих чисел на место

и в данную систему

обращает оба уравнения (3.3) в тождества.

Умножая первое уравнение системы (3.3) на -

А второе - на -и

затем складывая полученные при этом равенства, получим

Аналогично путем умножения уравнений (3.3) на -исоответственно получим:

Введем следующие обозначения:

С помощью этих обозначений и выражения для определителя второго порядка

уравнения (3.4) и (3.5) могут быть переписаны в виде:

Определитель ,

составленный из коэффициентов при неизвестных системы (3.3), принято называть

определителем этой системы . Заметим, что определители

и получаются из

определителя системы

посредством замены его первого или соответственно второго столбца свободными

Могут представиться два случая: 1) определитель системы

отличен от нуля; 2) этот определитель равен нулю.

Рассмотрим сначала случай

0. Из уравнений (3.7) мы сразу же получаем формулы для неизвестных,

называемые формулами Крамера :

Полученные формулы Крамера (3.8) дают решение системы (3.7) и потому доказывают

единственность решения исходной системы (3.3). В самом деле, система (3.7)

является следствием системы (3.3), поэтому всякое решение системы (3.3) (в

случае, если оно существует!) должно являться решением и системы (3.7). Итак,

пока доказано, что если у исходной системы (3.3) существует при

0 решение, то это решение однозначно определяется формулами Крамера (3.8).

Легко убедиться и в существовании решения, т. е. в том. что при

0 два числа и

Определяемые формулами Крамера (3.8). будучи поставлены на место неизвестных в

уравнения (3.3), обращают эти уравнения в тождества. (Предоставляем читателю

самому расписать выражения для определителей

И убедиться в справедливости указанных тождеств.)

Мы приходим к следующему выводу: если определитель

системы (3.3) отличен от нуля, то существует, и притом единственное решение этой

системы, определяемое формулами Крамера (3.8).

Рассмотрим теперь случай, когда определитель

системы равен нулю . Могут представиться два подслучая : а) хотя

бы один из определителей

или , отличен от

нуля; б) оба определителя

и равны нулю. (если

определитель и

один из двух определителей

и равны нулю, то и

другой из указанных двух определителей равен нулю. В самом деле, пусть,

например = 0

Тогда из этих пропорций получим, что

В подслучае а) оказывается невозможным хотя бы одно из равенств (3.7), т. е.

система (3.7) не имеет решений, а поэтому не имеет решений и исходная система

(3.3) (следствием которой является система (3.7)).

В подслучае б) исходная система (3.3) имеет бесчисленное множество решений. В

самом деле, из равенств

0 и из утверждения в конце разд. 1.1 заключаем, что второе уравнение системы

(3.3) является следствием первого и его можно отбросить. Но одно уравнение с

двумя неизвестными

имеет бесконечно много решений (хотя бы один из коэффициентов

Или отличен от

нуля, и стоящее при нем неизвестное может быть определено из уравнения (3.9)

через произвольно заданное значение другого неизвестного).

Таким образом, если определитель

системы (3.3) равен нулю, то система (3.3) либо вовсе не имеет решений (в

случае, если хотя бы один из определителей

или отличен от

нуля), либо имеет бесчисленное множество решений (в случае, когда

0). В последнем

случае два уравнения (3.3) можно заменить одним и при решении его одно

неизвестное задавать произвольно.

Замечание . В случае, когда свободные члены

и равны нулю,

линейная система (3.3) называется однородной . Отметим, что однородная

система всегда имеет так называемое тривиальное решение:

0, = 0 (эти два

числа обращают оба однородных уравнения в тождества).

Если определитель однородной системы

отличен от нуля, то эта система имеет только тривиальное решение. Если же

= 0, то однородная система имеет бесчисленное множество решений (поскольку

для однородной системы возможность отсутствия решений исключена). Таким

образом, однородная система имеет нетривиальное решение в том и только в

том случае, когда определитель ее равен нулю.

Матричный метод решения систем линейных алгебраических уравнений - вывод формулы.

Пусть для матрицы А порядка n на n существует обратная матрица . Умножим обе части матричного уравнения слева на (порядки матриц A ⋅ X и В позволяют произвести такую операцию, смотрите статью операции над матрицами, свойства операций). Имеем . Так как для операции умножения матриц подходящих порядков характерно свойство ассоциативности, то последнее равенство можно переписать как , а по определению обратной матрицы (E – единичная матрица порядка n на n ), поэтому

Таким образом, решение системы линейных алгебраических уравнений матричным методом определяется по формуле . Другими словами, решение СЛАУ находится с помощью обратной матрицы .

Мы знаем, что квадратная матрица А порядка n на n имеет обратную матрицу только тогда, когда ее определитель не равен нулю. Следовательно, СИСТЕМУ n ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ С n НЕИЗВЕСТНЫМИ МОЖНО РЕШАТЬ МАТРИЧНЫМ МЕТОДОМ ТОЛЬКО ТОГДА, КОГДА ОПРЕДЕЛИТЕЛЬ ОСНОВНОЙ МАТРИЦЫ СИСТЕМЫ ОТЛИЧЕН ОТ НУЛЯ.

К началу страницы

Примеры решения систем линейных алгебраических уравнений матричным методом.

Рассмотрим матричный метод на примерах. В некоторых примерах мы не будем подробно описывать процесс вычисления определителей матриц, при необходимости обращайтесь к статье вычисление определителя матрицы.

Пример.

С помощью обратной матрицы найдите решение системы линейных уравнений .

Решение.

В матричной форме исходная система запишется как , где . Вычислим определитель основной матрицы и убедимся, что он отличен от нуля. В противном случае мы не сможем решить систему матричным методом. Имеем , следовательно, для матрицы А может быть найдена обратная матрица . Таким образом, если мы отыщем обратную матрицу, то искомое решение СЛАУ определим как . Итак, задача свелась к построению обратной матрицы . Найдем ее.

Мы знаем, что для матрицы обратная матрица может быть найдена как , где - алгебраические дополнения элементов .



В нашем случае

Тогда

Выполним проверку полученного решения , подставив его в матричную форму исходной системы уравнений . Это равенство должно обратиться в тождество, в противном случае где-то была допущена ошибка.

Следовательно, решение найдено верно.

Ответ:

или в другой записи .

Пример.

Решите СЛАУ матричным методом.

Решение.

Первое уравнение системы не содержит неизвестной переменной x 2 , второе –x 1 , третье – x 3 . То есть, коэффициенты перед этими неизвестными переменными равны нулю. Перепишем систему уравнений как . От такого вида проще перейти к матричной форме записи СЛАУ . Убедимся в том, что эта система уравнений может быть решена с помощью обратной матрицы. Другими словами, покажем что :

Построим обратную матрицу с помощью матрицы из алгебраических дополнений:

тогда,

Осталось найти решение СЛАУ:

Ответ:

.

При переходе от обычного вида системы линейных алгебраических уравнений к ее матричной форме следует быть внимательным с порядком следования неизвестных переменных в уравнениях системы. К примеру, СЛАУ НЕЛЬЗЯ записать как . Нужно сначала упорядочить все неизвестные переменные во всех уравнениях системы, а потом переходить к матричной записи:

или

Также будьте внимательны с обозначением неизвестных переменных, вместоx 1 , x 2 , …, x n могут быть любые другие буквы. Например, СЛАУ в матричной форме запишется как .

Разберем пример.

Пример.

с помощью обратной матрицы.

Решение.

Упорядочив неизвестные переменные в уравнениях системы, запишем ее в матичной форме
. Вычислим определитель основной матрицы:

Он отличен от нуля, поэтому решение системы уравнений может быть найдено с помощью обратной матрицы как . Найдем обратную матрицу по формуле :

Получим искомое решение:

Ответ:

x = 0, y = -2, z = 3 .

Пример.

Найдите решение системы линейных алгебраических уравнений матричным методом.

Решение.

Определитель основной матрицы системы равен нулю

поэтому, мы не можем применить матричный метод.

Нахождение решения подобных систем описано в разделе решение систем линейных алгебраических уравнений.

Пример.

Решите СЛАУ матричным методом, - некоторое действительное число.

Решение.

Система уравнений в матричной форме имеет вид . Вычислим определитель основной матрицы системы и убедимся в том, что он отличен от нуля:

Квадратных трехчлен не обращается в ноль ни при каких действительных значениях , так как его дискриминант отрицателен , поэтому определитель основной матрицы системы не равен нулю ни при каких действительных . По матричному методу имеем . Построим обратную матрицу по формуле :

Тогда

Ответ:

.К началу страницы

Подведем итог.

Матричный метод подходит для решения СЛАУ, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы отличен от нуля. Если система содержит больше трех уравнений, то нахождение обратной матрицы требует значительных вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса.

Системы линейных уравнений. Лекция 6.

Системы линейных уравнений.

Основные понятия.

Система видa

называется системой - линейных уравнений с неизвестными .

Числа , , называются коэффициентами системы .

Числа , называются свободными членами системы , – переменными системы . Матрица

называется основной матрицей системы , а матрица

расширенной матрицей системы . Матрицы - столбцы

И - соответственно матрицами свободных членов и неизвестных системы . Тогда в матричной форме систему уравнений можно записать в виде . Решением системы называется значений переменных , при подстановке которых, все уравнения системы обращаются в верные числовые равенства. Всякое решение системы можно представить в виде матрицы - столбца . Тогда справедливо матричное равенство .

Система уравнений называется совместной если она имеет хотя бы одно решение и несовместной если не имеет ни одного решения.

Решить систему линейных уравнений это значит выяснить совместна ли она и в случае совместности найти её общее решение.

Система называется однородной если все её свободные члены равны нулю. Однородная система всегда совместна, так как имеет решение

Теорема Кронекера – Копелли.

Ответ на вопрос существования решений линейных систем и их единственности позволяет получить следующий результат, который можно сформулировать в виде следующих утверждений относительно системы линейных уравнений с неизвестными

(1)

Теорема 2 . Система линейных уравнений (1) совместна тогда и только тогда когда ранг основной матрицы равен рангу расширенной (.

Теорема 3 . Если ранг основной матрицы совместной системы линейных уравнений равен числу неизвестных, то система имеет единственное решение.

Теорема 4 . Если ранг основной матрицы совместной системы меньше числа неизвестных, то система имеет бесконечное множество решений.

Правила решения систем.

3. Находят выражение главных переменных через свободные и получают общее решение системы.

4. Придавая свободным переменным произвольные значения получают все значения главных переменных.

Методы решения систем линейных уравнений.

Метод обратной матрицы.

причем , т. е. система имеет единственное решение. Запишем систему в матричном виде

где , , .

Умножим обе части матричного уравнения слева на матрицу

Так как , то получаем , откуда получаем равенство для нахождения неизвестных

Пример 27. Методом обратной матрицы решить систему линейных уравнений

Решение. Обозначим через основную матрицу системы

.

Пусть , тогда решение найдем по формуле .

Вычислим .

Так как , то и система имеет единственное решение. Найдем все алгебраические дополнения

, ,

, ,

, ,

, ,

Таким образом

.

Сделаем проверку

.

Обратная матрица найдена верно. Отсюда по формуле , найдем матрицу переменных .

.

Сравнивая значения матриц, получим ответ: .

Метод Крамера.

Пусть дана система линейных уравнений с неизвестными

причем , т. е. система имеет единственное решение. Запишем решение системы в матричном виде или

Обозначим

. . . . . . . . . . . . . . ,

Таким образом, получаем формулы для нахождения значений неизвестных, которые называются формулами Крамера .

Пример 28. Решить методом Крамера следующую систему линейных уравнений .

Решение. Найдем определитель основной матрицы системы

.

Так как , то , система имеет единственное решение.

Найдем остальные определители для формул Крамера

,

,

.

По формулам Крамера находим значения переменных

Метод Гаусса.

Метод заключается в последовательном исключении переменных.

Пусть дана система линейных уравнений с неизвестными.

Процесс решения по методу Гаусса состоит из двух этапов:

На первом этапе расширенная матрица системы приводится с помощью элементарных преобразований к ступенчатому виду

,

где , которой соответствует система

После этого переменные считаются свободными и в каждом уравнении переносятся в правую часть.

На втором этапе из последнего уравнения выражается переменная , полученное значение подставляется в уравнение. Из этого уравнения

выражается переменная . Этот процесс продолжается до первого уравнения. В результате получается выражение главных переменных через свободные переменные .

Пример 29. Решить методом Гаусса следующую систему

Решение. Выпишем расширенную матрицу системы и приведем ее к ступенчатому виду

.

Так как больше числа неизвестных, то система совместна и имеет бесконечное множество решений. Запишем систему для ступенчатой матрицы

Определитель расширенной матрицы этой системы, составленный из трех первых столбцов не равен нулю, поэтому его считаем базисным. Переменные

Будут базисными а переменная – свободной. Перенесем ее во всех уравнениях в левую часть

Из последнего уравнения выражаем

Подставив это значение в предпоследнее второе уравнение, получим

откуда . Подставив значения переменных и в первое уравнение, найдем . Ответ запишем в следующем виде

Тема 2. Решение систем линейных алгебраических уравнений прямыми методами.

Системами линейных алгебраических уравнений (сокращенно - СЛАУ) называются системы уравнений вида

или, в матричном виде,

A × x = B , (2.2)

A - матрица коэффициентов системы размерности n ´ n

x - вектор неизвестных, состоящий из n компонент

B - вектор правых частей системы, состоящий из n компонент.

A = x = B = (2.3)

Решением СЛАУ является такой набор из n чисел, который будучи подставленным вместо значений x 1 , x 2 , … , x n в систему (2.1) обеспечивает равенство левых частей правым во всех уравнениях.

Каждая СЛАУ в зависимости от значений матриц A и B может иметь

Одно решение

Бесконечно много решений

Ни одного решения.

В данном курсе будем рассматривать только те СЛАУ, которые имеют единственное решение. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A .

Для поиска решений над системами линейных алгебраических уравнений могут проводиться некоторые преобразования, не изменяющие ее решений. Эквивалентными преобразованиями системы линейных уравнений называются такие ее преобразования, которые не изменяют ее решения. К их числу относятся:

Перестановка местами двух любых уравнений системы (следует отиетить, что в некоторых случаях, рассматриваемых ниже, это преробразование использовать нельзя);

Умножение (или деление) какого-либо уравнения системы на число, не равное нулю;

Прибавление к одному уравнению системы другого ее уравнения, умноженного (или разделенного) на некоторое не равное нулю число.

Методы решения СЛАУ делятся на две больших группы, называемые - прямые методы и итерационные методы . Имеется также способ сведения задачи решения СЛАУ к задаче поиска экстремума функции нескольких переменных с последующем решением ее методами поиска экстремума (об этом подробнее - при прохождении соответствующей темы). Прямые методы обеспечивают получение точного решения системы (если оно существует) за один шаг. Итерационные методы (если при этом обеспечена их сходимость) позволяют многократно улучшать некоторое начальное приближение к искомому решению СЛАУ и, вообще говоря, точного решения не дадут никогда. Однако, учитывая то, что прямые методы решения из-за неизбежных ошибок округления на промежуточных этапах расчетов тоже дают не идеально точные решения, итерационные методы могут тоже обеспечить примерно такой же результат.

Прямые методы решения СЛАУ. Наиболее часто используемыми прямыми методами решения СЛАУ являются:

Метод Крамера,

Метод Гаусса (и его модификация - метод Гаусса-Жордана)

Матричный метод (с использованием обращения матрицы A ).

Метод Крамера основан на вычислении определителя основной матрицы A и определителей матриц A 1 , A 2 , …, A n , которые получаются из матрицы A заменой в ней одного (i -го) столбца (i = 1, 2,…, n ) на столбец, содержащий элементы вектора B . После этого решения СЛАУ определяются как частное от деления значений этих определителей. Точнее, расчетные формулы имеют такой вид

(2.4)

Пример 1 . Найдем методом Крамера решение СЛАУ, у которой

A = , B = .

Имеем

A 1 = , A 2 = , A 3 = , A 4 = .

Вычислим значения определителей всех пяти матриц (c использованием функции МОПРЕД среды Excel ). Получим

Так как определитель матрицы A не равен нулю - система имеет единственное решение. Тогда определим его по формуле (2.4). Получим

Метод Гаусса. Решение СЛАУ этим методом предполагает составление расширенной матрицы системы A * . Расширенная матрица системы - это матрица размером в n строк и n +1 столбцов, включающая в себя исходную матрицу A c присоединенным к ней справа столбцом, содержащим вектор B .

A* = (2.4)

Здесь a in+1 =b i (i = 1, 2, …, n ).

Суть метода Гаусса состоит в приведении (посредством эквивалентных преобразований ) расширенной матрицы системы к треугольному виду (так, чтобы ниже ее главной диагонали находились только нулевые элементы).

A * =

Тогда, начиная с последней строки и двигаясь вверх, можно последовательно определить значения всех компонент решения.

Начало преобразований расширенной матрицы системы к необходимому виду заключается в просмотре значений коэффициентов при x 1 и выборе строки, в которой он имеет максимальное по абсолютной величине значение (это необходимо для уменьшения величины вычислительной ошибки при последующих вычислениях). Эту строку расширенной матрицы необходимо поменять местами с первой ее строкой (или же, что лучше, сложить (или вычесть) с первой строкой и результат поместить на место первой строки). После этого все элементы этой новой первой строки (в том числе и в последнем ее столбце) необходимо разделить на этот коэффициент. После этого вновь полученный коэффициент a 11 станет равным единице. Дальше от каждой из оставшихся строк матрицы необходимо вычесть ее первую строку, умноженную на значение коэффициента при x 1 в этой строке (т.е. на величину a i 1 , где i =2, 3, … n ). После этого во всех строках, начиная со второй коэффициенты при x 1 (т.е. все коэффициенты a i 1 (i =2, …, n ) будут равными нулю. Поскольку мы выполняли только эквивалентные преобразования - решение вновь полученной СЛАУ не будет отличаться от исходной системы.

Дальше, оставляя неизменной первую строку матрицы, проделаем все вышеописанные действия с остальными строками матрицы и, в результате, вновь полученный коэффициент a 22 станет равным единице, а все коэффициенты a i 2 (i =3, 4, …, n ) станут равными нулю. Продолжая аналогичные действия, мы в конечном итоге приведем нашу матрицу к виду, в котором все коэффициенты a ii = 1 (i =1, 2, …, n ), а все коэффициенты a ij = 0 (i =2, 3, …, n , j < i ). Если же на каком-то шаге при поиске наибольшего по абсолютной величине коэффициента при x j мы не сможем найти не равного нулю коэффициента - это будет значить, что исходная система не имеет единственного решения. В этом случае процесс решения необходимо прекратить.

Если процесс эквивалентных преобразований закончился успешно, то полученная в результате «треуголиная» расширенная матрица будет соответствовать такой системе линейных уравнений:

Из последнего уравнения этой системы найдем значение x n . Далее, подставляя это значение в предпоследнее уравнение, найдем значение x n -1 . После этого, подставляя оба эти найденных значения в третье снизу уравнение системы, найдем значение x n -2 . Продолжая так далее и продвигаясь по уравнением этой системы снизу вверх, будем последовательно находить значения других корней. И, наконец, подставляя найденные значения x n , x n -1 , x n -2 , x 3 и x 2 в первое уравнение системы найдем значение х 1 . Такая процедура поиска значений корней по найденной треугольной матрице называется обратным ходом. Процесс приведения исходной расширенной матрицы эквивалентными преобразованиями к треугольному виду назавают прямым ходом метода Гаусса..

Достаточно подробный алгоритм решения СЛАУ методом Гаусса приведен на рис. .2.1 и рис. 2.1а.

Пример 2 . Найти методом Гаусса решение той же СЛАУ, которую мы уже решали методом Крамера. Составим сначала ее расширенную матрицу. Получим

A * = .

Сначала переставим местами первую и третью строки этой матрицы (так как в ее первом столбце находится наибольший по абсолютной величине элемент), а затем разделим все элементы этой новой первой строки на значение 3. Получим

A * = .

A * =

Дальше переставим местами вторую и третью строки этой матрицы, разделим вторую строку переставленной матрицы на 2.3333 и, аналогично вышеописаному, обнулим коэффициенты во втором столбце третьей и четвертой строк матрицы. Получим

A * = .

После выполнения подобных действий над третьей и четвертой строками матрицы получим

A * = .

Разделив теперь четвертую строку на -5.3076, закончим проведение расширенной матрицы системы к диагональному виду. Получим




Рис. 2.1. Алгоритм решения систем линейных алгебраических уравнений методом Гаусса



Рис. 2.1а. Макроблок “Расчет значений решения”.

A * = .

Из последней строки сразу получим x 4 = 0.7536. Поднимаясь теперь вверх по строкам матрицы и выполняя расчеты, последовательно получим x 3 = 0.7971, x 2 =- 0.1015 и x 1 = 0.3333. Сравнивая полученное этим методом решение с решением, полученным методом Крамера, нетрудно убедиться в их совпадении.

Метод Гаусса-Жордана. Этот метод решения СЛАУ во многом похож на метод Гаусса. Основным отличием является то, что используя эквивалентные преобразования расширенная матрица системы уравнений приводится не к треугольному виду, а к диагональному виду, на главной диагонали которой находятся единицы, а вне нее (кроме последнего n +1 столбца) - нули. После окончания такого преобразования - последний столбец расширенной матрицы будет содержать решение исходной СЛАУ (т,е. . x i = a i n +1 (i = 1, 2, … , n ) в полученной матрице). Обратный ход (как в методе Гаусса) для окончательных расчетов значений компонент решения - не нужен.

Приведение матрицы к диагональному виду проводится, в основном, также как и в методе Гаусса. Если в строке i коэффициент при x i (i = 1, 2, … , n ) по абсолютной величине мал, то производится поиск строки j , в которой коэффициент при x i будет наибольшим по абсолютной величине эта (j -я) строка прибавляется поэлементно к i - й строке. Затем все элементы i - й строки делятся на значение элемента x i Но, в отличие от метода Гаусса, после этого идет вычитание из каждой строки с номером j строки с номером i ,умноженной на a ji , но условие j > i заменено на другоеВ методе Гаусса-Жордана идет вычитание из каждой строки с номером j , причем j # i , строки с номером i ,умноженной на a ji . Т.е. производится обнуление коэффициентов как ниже, так и выше главной диагонали.

Достаточно подробный алгоритм решения СЛАУ методом Гаусса–Жордана приведен на рис. 2.2.

Пример 3 . Найти методом Гаусса-Жордана решение той же СЛАУ, которую мы уже решали методами Крамера и Гаусса.

Полностью аналогично методу Гаусса составим расширенную матрицу системы. Затем переставим местами первую и третью строки этой матрицы (так как в ее первом столбце находится наибольший по абсолютной величине элемент), а затем разделим все элементы этой новой первой строки на значение 3. Дальше проведем вычитание из каждой строки матрицы (кроме первой) элементов первой строки, умноженных на коэффициент в первом столбце этой строки. Получим то же, что и в методе Гаусса

A * = .

Дальше переставим местами вторую и третью строки этой матрицы, разделим вторую строку переставленной матрицы на 2.3333 и (уже в отличие от метода Гаусса ) обнулим коэффициенты во втором столбце первой, третьей и четвертой строк матрицы. Получим