Комплексный чертеж монжа. Метод Монжа, комплексный чертеж

Эпюра монжа или комплексный чертеж — это чертеж, составленный из двух или более связанных между собой ортогональных проекций геометрической фигуры.

Пользоваться пространственным макетом для отображения ортогональных проекций геометрических фигур неудобно ввиду его громоздкости, а также из-за того, что при его переносе на лист бумаги, на плоскостях H и W происходит искажение формы и размеров проецируемой фигуры.
Поэтому вместо изображения на чертеже пространственного макета используется эпюра Монжа.

Эпюра Монжа получается преобразованием пространственного макета путем совмещения плоскостей H и W с фронтальной плоскостью проекций V:
— для совмещения плоскости H с V поворачиваем ее на 90 градусов вокруг оси x в направлении движения часовой стрелки. На рисунке, для наглядности, плоскость H повернута на угол чуть меньший 90 градусов, при этом ось y , принадлежащая горизонтальной плоскости проекции, после поворота совпадает с осью z ;
— после совмещения горизонтальной плоскости, поворачиваем вокруг оси z также на угол 90 градусов профильную плоскость в направлении противоположном движению часовой стрелки. При этом ось y , принадлежащая профильной плоскости проекции, после поворота совпадает с осью x .

После преобразования пространственный макет примет вид, показанный на рисунке. На этом рисунке указана также последовательность взаимного положения пол плоскостей проекций, так запись V указывает, что в этой части эпюра Монжа (ограниченного положительным направлением осей x и z ) ближе к нам находится верхняя левая пола фронтальной плоскости проекции V , за ней располагается задняя левая пола горизонтальной плоскости проекции H , далее следует верхняя задняя пола профильной плоскости W .

Так как плоскости не имеют границ, то в совмещенном положении (на эпюре) эти границы не показывают, нет необходимости оставлять надписи, указывающие положение пол плоскостей проекций. Излишне также напоминать, где отрицательное направление координатных осей. Тогда, в окончательном виде эпюра Монжа, заменяющая чертеж пространственного макета примет вид, показанный на рисунке.

Эпюра Монжа может быть выполнена с помощью:

— обычных чертежных инструментов и приспособлений:
Чертежные инструменты;
Чертежные принадлежности и приборы;
— Программы для построения (рисования) эпюра Монжа: Выполнение чертежа в графическом редакторе.

В качестве примера оформления эпюра Монжа предлагаем решение задачи на построение равнобедренного прямоугольного треугольника ABC:

— в черном цвете отображается известное по условию задачи;
— в зеленом цвете отображаются все построения которые ведут к решению задачи;
— в красном цвете отображается найденные искомые задачи.
По условию задачи заданы проекции треугольника ABC(A`B`C`, A»B»…»). Для решения задачи необходимо найти недостающую проекцию C».

Методы проецирования, представленные в § 1.1, позволяют строить изображения (проекции) по заданному геометрическому образу (оригиналу), т.е. решать прямую задачу начертательной геометрии. Но в ряде случаев предусматривается решение обратной задачи, которая заключается в построении оригинала в пространстве по его проекциям на плоскости проекций.

Таким образом, приведенные выше проекционные чертежи (см. рис. 3, рис. 6, рис. 7, рис. 9) не позволяют восстановить оригинал, т.е. не обладают свойством «обратимости».

Рассмотрим схему построения обратимого чертежа, используемую в начертательной геометрии.

Ортогональное проецирование является частным случаем параллельного проецирования, когда направление проецирования перпендикулярно (ортогонально) плоскости проекций: S ^П i .

Ортогональное проецирование является основным в черчении, т.к. обладает большой наглядностью и позволяет при определенном расположении геометрических образов относительно плоскостей проекций сохранить ряд линейных и угловых параметров оригинала.

Французский геометр Гаспар Монж предложил ортогонально проецировать оригинал на две взаимно перпендикулярные плоскости проекций П 1 и П 2 .

X

Рис. 11 Рис. 12

П 1 – горизонтальная плоскость проекций; П 2 - фронтальная плоскость проекций; х = П 1 Ⴖ П 2 .

Плоскости проекций разделяют пространство на четыре четверти (или квадранты). Четверти нумеруются в порядке, указанном на рис. 11. Система координат выбрана из условия совпадения координатных плоскостей с плоскостями проекций. На рис. 12 показано проецирование точки А на плоскости П 1 и П 2 . Проецирующие лучи АА 1 и АА 2 перпендикулярны соответствующим плоскостям проекций, поэтому фронтальная (А 2 ) и горизонтальная (А 1 ) проекции точки А находятся на перпендикулярах А 1 А х и А 2 А х к оси проекций х.

Повернув плоскость проекций П 1 вокруг оси х на угол 90 0 (рис. 13), получим одну плоскость – плоскость чертежа, проекции А 1 и А 2 расположатся на одном перпендикуляре к оси проекций х – линии связи. В результате совмещения плоскостей проекций П 1 и П 2 получается чертеж, называемый эпюром Монжа. Эпюр Монжа называют в современной литературе еще комплексным чертежом. Это чертеж состоящий из двух и более связанных между собой проекций геометрического образа. В дальнейшем эпюр Монжа будем называть одним словом – чертеж.

Рис. 13 Рис. 14

Так как плоскости проекций безграничны, то чертеж точки А в системе П 1 /П 2 будет выглядеть так, как на рис. 14.

А 2 А х – расстояние от точки А до плоскости проекций П 1 ;

А 1 А х – расстояние от точки А до плоскости проекций П 2 .

Поэтому проекции точки А на две плоскости проекций полностью определяют ее положение в пространстве.

Для упрощения дальнейших рассуждений будем рассматривать лишь часть пространства, расположенную влево от профильной плоскости проекции П 3 .

П 3 – профильная плоскость проекций; Z = П 2 Ⴖ П 3 ; Z – ось ординат. Плоскость проекции П 3 перпендикулярна к П 1 П 2 .

На рис. 15 показано направление поворота на угол 90 0 плоскостей проекций П 3 и П 1 вокруг соответствующих осей координат до совмещения с П 2 .

Из рис. 15 видим, что ось Х делит горизонтальную плоскость проекций П 1 на две части: переднюю полу П 1 (оси Х и Y ) и заднюю полу П 1 (оси Х и Y ).

Ось абсцисс Х делит фронтальную плоскость проекций П 2 также на две части: верхнюю полу П 2 (оси Х и Z) и нижнюю полу (оси Х и -Z ).

Рис. 16

Из рис. 15 видно, что точки, расположенные в различных четвертях пространства, имеют определенные знаки координат. Эти знаки приведены в таблице.

Построение проекций точки А в системе П 1 /П 2 /П 3 показано на рис. 17

Рис. 17 Рис. 18

ОА х – удаление точки А от профильной плоскости проекций;

А 3 – профильная проекция точки А ;

А 1 А х А 2 , А 2 А z А 3 – линии связи.

На чертеже фронтальная и профильная проекции точки лежат на одной линии связи, перпендикулярной к оси Z , причем профильная проекция находится на таком же расстоянии от оси Z , что и горизонтальная от оси Х: А z А 3 = А х А 1 .

Горизонтальная проекция точки А 1 определяется координатами Х и Y

фронтальная А 2 – координатами Х и Z , профильная П 3 – координатами Y и Z .

Относительно плоскостей проекций точка может занимать следующие положения:

  1. Точка располагается в какой-либо четверти пространства, при этом обязательно условие, что Х ≠ 0; Y ≠ 0; Z ¹ 0.
  2. Точка принадлежит какой-либо плоскости проекций, при условии, что одна из координат должна быть равна «0».

А Î П 1 , если Ζ = 0;

А Î П 2 , если Y = 0;

А Î П 3 , если Х = 0.

3. Точка принадлежит оси координат, если две любые координаты будут равны «0».

А Î Х, если Y = 0; Z = 0;

А Î U, если Х = 0; Z = 0;

А Î Z, если Х = 0; Y = 0.

Лекция

По дисциплине «Инженерная графика»

Раздел. 1 Начертательная геометрия

Составитель: Шагвалеева.Г.Н.

Введение.

Начертательную геометрию называют также теорией изображений. Предметом начертательной геометрии является изложение и обоснование способов изображения пространственных фигур на плоском чертеже и способов решения пространственных геометрических задач на плоском чертеже. Стереометрические (трехмерные) объекты обсуждаются в ней с помощью планиметрических (двухмерных) изображений этих объектов, проекций.

Говорят, что чертеж – язык техники, а начертательная геометрия – грамматика этого языка. Начертательная геометрия является теоретической основой построения технических чертежей, которые представляют собой полные графические модели конкретных инженерных изделий.

Правила построения изображений, излагаемых в начертательной геометрии, основаны на методе проекций .

Изучение начертательной геометрии способствует развитию пространственного представления и воображения, конструктивно геометрического мышления, развитию способностей к анализу и синтезу пространственных форм и отношений между ними. Освоению способов конструирования различных геометрических пространственных объектов, способов получения их чертежей на уровне графических моделей и умению решать на этих чертежах задачи, связанные с пространственными объектами и их геометрическими характеристиками.

Основание начертательной геометрии как науке было положено французским ученым и инженером Гаспаром Монжем (1746-1818) в его труде “Начертательная геометрия”, Париж, 1795 г. Гаспар Монж дал общий метод решения стереометрических задач геометрическими построениями на плоскости, то есть на чертеже, с помощью чертежных инструментов.

Принятые обозначения.

А, В, С, D, -точки обозначаются заглавными буквами латинского алфавита;

a, b, с, d - линии - строчными буквами латинского алфавита;

p 1 – горизонтальная плоскость проекций,

p 2 – фронтальная плоскость проекций,

p 3 - профильная плоскость проекций,

p 4 , p 5 , ... - дополнительные плоскости проекций.

Плоскости

Оси проекций - строчными буквами латинского алфавита: х, y и z. Начало координат - цифрой 0.

Проекции точек, прямых, плоскостей обозначаются: на p 1 с одним штрихом, на p 2 с двумя, на p 3 – с тремя штрихами.

p 1 – А I , В I , C I ,..., a I , b I , ... ,a I , b I ,

p 2 – А II , В II , C II ,..., a II , b II , ... ,a II , b II ,

p 3 – А III , В III , C III ,..., a III , b III , ... ,a III , b III .

Образование проекций.

1 Центральное проецирование .

Аппарат центрального проецирования состоит из центра проецирования S, плоскости проекций π, проецирующих лучей.

π 1 - плоскость проекций

S – центр проецирования

A, B, C - точки в пространстве

A", B", C" - проекции точек на плоскость π"

Проекция – это точка пересечения проецирующего луча с плоскостью проекций.

2. Параллельное проецирование.

Проецирующие лучи проводятся параллельно S и друг другу. Параллельные проекции делятся на косоугольные и прямоугольные. При косоугольном проецировании лучи расположены под углом к проецирующей плоскости.

При прямоугольном проецировании проецирующие лучи перпендикулярны плоскости проекций (рис. 1.3). Прямоугольное проецирование является основным способом проецирования, принятым при построении технических чертежей

Основные свойства ортогонального проецирования

1. Проекция точки - есть точка;

2. Проекция прямой (в общем случае) – есть прямая линия или точка(прямая перпендикулярна плоскости проекций);

3. Если точка лежит на прямой, то проекция этой точки будет принадлежать проекции прямой: А l ® A" l";

4. Если две прямые в пространстве параллельны, то их одноименные проекции также параллельны: a || b ® a` || b`;

5. Если две прямые пересекаются в некоторой точке, то их одноименные проекции пересекаются в соответствующей проекции этой точки: m ∩ n = K ® m" ∩ n" = K";

6. Пропорциональность отрезков, лежащих на одной прямой или на двух параллельных прямых, сохраняется и на их проекциях (рис.1.3): АВ:СD = А"B": C"D"

7. Если одна из двух взаимно перпендикулярных прямых параллельна плоскости проекций, то прямой угол проецируется на эту плоскость прямым углом (рис.1.4).

Комплексный чертеж точки или эпюр Монжа.

Самый употребительный на практике метод начертательной геометрии предложил Гаспар Монж. В основе этого метода лежит ортогональное проектирование.

Ортогональной (или прямоугольной) проекцией точки А на плоскость π 1 называют основанием перпендикуляра, опущенного из точки А на плоскость π 1 (рис.1.5)

Получаемый при этом на плоскости π 1 чертеж необратим, соответствие между оригиналом А и проекцией A" однозначно только в одну сторону: от оригинала к проекции. Оригиналу соответствует единственная проекция, оригиналом чертеж определен однозначно, но для проекции A" существует бесчисленное множество соответствующих ей оригиналов, а именно все точки проецирующей прямой A A". Точный перевод с языка чертежа на язык натуры невозможен. Поэтому Монж вводит вторую плоскость проекций.

Рис. 1.6. Рис.1. 7.

На рис. 6. изображена прямоугольная система координат.

Совмещая теперь плоскости π 1 и π 2 с построенными в них проекциями поворотом π 1 вокруг оси Х на 90 0 так, чтобы передняя полуплоскость π 1 совпала с нижней полуплоскостью π 2 , получаем комплексный чертеж точки или эпюр Монжа . (рис. 1.7).

Построенный по таким правилам чертеж, состоящий из пары проекций, расположенных в проекционной связи, обратим , то есть соответствие между оригиналом и чертежом однозначно в обе стороны. Или иначе говоря, чертеж дает исчерпывающую информацию об оригинале. Расшифровка этой информации и составляет предмет начертательной геометрии.

Из комплексного чертежа точки можно сделать выводы:

1. две проекции точки вполне определяют положение точки в пространстве;

2. проекции точек всегда лежат на линии связи, перпендикулярной оси проекции.

Линии, соединяющие проекции точек, называются линиями связи и изображаются сплошными тонкими линиями.

В ряде построений и при решении задач оказывается необходимым вводить в систему π 1 (горизонтальная плоскость) π 2 (Фронтальная плоскость) и другие плоскости проекций. Плоскость, перпендикулярная и к π 1 и к π 1, - это профильная плоскость. π 3 . Линия пересечения горизонтальной и фронтальной плоскостей дают ось Х, линия пересечения горизонтальной и профильной плоскостей дают ось У, и линия пересечения фронтальной и профильной плоскостей – ось Z. (рис.1. 8)

Чтобы получить комплексный чертеж точки необходимо расположить три плоскости в одной, для чего «разрезаем» ось У и совмещаем три основные плоскости проекций в одну (рис.1. 9).

Новой информации об оригинале третья проекция не добавляет. Она лишь делает имеющуюся информацию более удобоваримой. (Рис. 1.10)

Расстояние от точки А до плоскости π 3 (А A"") в пространстве можно увидеть на чертеже и оно равно расстоянию A"AY = A"A Z = A X 0 = X

Расстояние от точки А до плоскости π 2 (А A") в пространстве можно увидеть на чертеже и оно равно расстоянию A"AX = A""A Z = A Y 0 = Y

Расстояние от точки А до плоскости π 1 (А A") в пространстве можно увидеть на чертеже и оно равно расстоянию A"AX = A""A Y = A Z 0 = Z

Пример. Построить проекции точек А(10, 10,30), В(30,20,10)

Конкурирующие точки .

Точки, у которых совпадает одна пара одноименных проекций (а другие не совпадают), называются конкурирующими точками.

Точки расположены на одной проецирующей прямой, перпендикулярной фронтальной плоскости проекций. Направление взгляда указано стрелкой. При этом проекция B" ближе к наблюдателю, чем A", и на π 2 видимой будет проекция B"" а проекция А"" будет невидимой (рис. 1.12).

Понятие «выше-ниже »

Точки расположены на одной проецирующей прямой, перпендикулярной горизонтальной плоскости проекций. Направление взгляда указано стрелкой. При этом проекция А"" ближе к наблюдателю, чем В"", и на π 1 видимой будет проекция А" а проекция В" будет невидимой (рис. 1.13).

КРАТКИЙ КУРС ЛЕКЦИЙ

по дисциплине «Инженерная графика» 1 семестр

для студентов заочной формы обучения

полная и сокращенная программы

Волгодонск 2013


1. МЕТОДЫ ПРОЕЦИРОВАНИЯ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ... 3

2. ПРОЕКЦИИ ПРЯМОЙ.. 7

3. ПРОЕКЦИИ ПЛОСКОСТИ.. 16

4. ПРЕОБРАЗОВАНИЕ ЧЕРТЕЖА.. 29

5. ПОВЕРХНОСТИ.. 33

6. РАЗВЕРТКИ ПОВЕРХНОСТЕЙ.. 50


1. Методы ПРОЕЦИРОВАНИЯ. КОМПЛЕКСНЫЙ ЧЕРТЕЖ

Введение. Цель и задачи курса

В математическом энциклопедическом словаре дается следующее определение: «Начертательная геометрия – раздел геометрии, в котором пространственные фигуры, а также методы решения и исследования пространственных задач изучаются с помощью их изображений на плоскости».

Методы начертательной геометрии являются теоретической базой для решения задач технического черчения. В технике чертежи являются основным средством выражения человеческих идей. Они должны не только определять форму и размеры предметов, но и быть достаточно простыми и точными в графическом исполнении, помогать всесторонне исследовать предметы и их отдельные детали. Для того чтобы правильно выразить свои мысли с помощью рисунка, эскиза, чертежа требуется знание теоретических основ построения изображений геометрических объектов, их многообразие и отношения между ними, что и составляет предмет начертательной геометрии.

Методы прямоугольного проецирования на две и три

Взаимно перпендикулярные плоскости проекций.

Проекции точки, комплексный чертеж.

Метод Монжа, комплексный чертеж.

Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным . Основные принципы построения таких чертежей изложены Гаспаром Монжем - крупным французским геометром конца 18, начала 19 веков, 1789-1818 гг. одним из основателей знаменитой политехнической школы в Париже и участником работ по введению метрической системы мер и весов.

Постепенно накопившиеся отдельные правила и приемы таких изображений были приведены в систему и развиты в труде Г. Монжа "Geometrie descriptive".

Изложенный Монжем метод ортогонального проецирования на две взаимно перпендикулярные плоскости проекций был и остается основным методом составления технических чертежей.

В соответствии с методом предложенным Г. Монжем рассмотрим в пространстве две взаимно перпендикулярные плоскости проекций (рис.6). Одну из плоскостей проекций П 1 располагают горизонтально, а вторую П 2 - вертикально. П 1 - горизонтальная плоскость проекций, П 2 - фронтальная. Плоскости бесконечны и непрозрачны.



Плоскости проекций делят пространство на четыре двугранных угла – четверти. Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций.

Проекция геометрического объекта на одну плоскость, рассмотренная нами ранее, не дает полного и однозначного представления о форме геометрического объекта. Поэтому рассмотрим проецирование хотя бы на две взаимно перпендикулярные плоскости (рис. 1.2), одна из которых расположена горизонтально, а другая вертикально.

Несмотря на наглядность, с чертежом, изображенным на рис 1.2, а работать неудобно, т.к. горизонтальная плоскость на нем показана с искажением. Удобнее выполнять различные построения на чертеже, где плоскости проекций расположены в одной плоскости, а именно, плоскости чертежа. Для этого надо горизонтальную плоскость развернуть вокруг оси ОХ на 90° и совместить с фронтальной так, чтобы передняя пола горизонтальной плоскости ушла вниз, а задняя вверх. Этот метод предложил Г. Монж.

Рис. 1.2. Построение эпюра Монжа:

а) пространственная картина расположения проекций точки А; б) плоскостная картина расположения проекций точки А.

Поэтому чертеж, полученный таким образом (рис. 1.2, б), называется эпюром Монжа или комплексным чертежом.

Обычно двух проекций недостаточно, чтобы составить полное представление о рассматриваемом геометрическом объекте. Поэтому предлагается ввести третью плоскость проекций, ортогональную первым двум (рис.1. 3, а).

Рис. 1.3. Построение трехкартинного комплексного чертежа (эпюра Монжа):

а) пространственная модель плоскостей проекций; б) трехкартинный комплексный чертеж.

Тогда плоскость П 1 называется горизонтальной плоскостью проекций, П 2 - фронтальной плоскостью проекций (т.к. она расположена перед нами по фронту), П 3 - профильной плоскостью проекций (расположена в профиль по отношению к наблюдателю). Соответственно А 1 - горизонтальная проекция точки А , А 2 - фронтальная проекция точки А, А 3 - профильная проекция точки А .

Оси ОХ, ОY, OZ называются осями проекций. Они аналогичны координатным осям декартовой системы координат с той лишь разницей, что ось ОХ имеет положительное направление не вправо, а влево. Теперь, чтобы получить проекции в одной плоскости (плоскости чертежа) необходимо и профильную плоскость проекций развернуть до совмещения с фронтальной. Для этого ее нужно развернуть на 90° вокруг оси OZ , причем переднюю полу плоскости развернем вправо, а заднюю влево. В результате получим трехкартинный комплексный чертеж (эпюр Монжа), показанный на рис. 1.3, б. Так как ось ОY разворачивается вместе с двумя плоскостями П 1 и П 3 , то на комплексном чертеже ее изображают дважды.

Из этого следует важное правило взаимосвязи проекций. А именно, исходя из рис. 1.3, а, в математической форме его можно записать в виде: А 1 А x = ОА y = А z А 3 . Следовательно, в текстологическом виде оно звучит так: расстояние от горизонтальной проекции точки до оси ОХ равно расстоянию от профильной проекции указанной точки до оси ОZ . Тогда по двум любым проекциям точки можно построить третью. Горизонтальную и фронтальную проекции точки А связывает вертикальная линия связи, а фронтальную и профильную проекции – горизонтальная.

В связи с тем, что комплексный чертеж представляет собой свернутую в плоскости модель пространства, на нем нельзя изобразить проецируемую точку (за исключением случаев, когда ее положение совпадает с одной из проекций). Исходя из этого, следует иметь в виду, что на комплексном чертеже мы оперируем не самими геометрическими объектами, а их проекциями.