Миелиновая оболочка представляет собой. Миелинизированные нервные волокна

Авторы: В.П. ЧЕХОНИН, О.И. ГУРИНА, Т.Б. ДМИТРИЕВА, А.В. СЕМЕНОВА, Е.А. САВЧЕНКО, М.Э. ГРИГОРЬЕВ Лаборатория иммунохимии Государственного научного центра социальной и судебной психиатрии им. В.П. Сербского, г. Москва.
В обзоре рассмотрены физико-химические свойства, биологическая роль основного белка миелина – одного из белков, входящих в состав миелиновой оболочки. Приведены литературные данные, касающиеся процессов фосфорилирования, метилирования, ацилирования ОБМ в организме человека и животных. Продемонстрированы процессы взаимодействия с липидами. С использованием иммуногистохимических методов исследования, Northern анализа показан синтез ОБМ в онтогенезе. Большое внимание уделено анализу клинико-диагностической значимости ОБМ, а также перспективам применения его в качестве одного из критериев контроля течения рассеянного склероза, маркера нарушения процессов миелинизации при опухолях головного мозга, при гидроцефалии и другой неврологической патологии.

Ключевые слова: основной белок миелина, онтогенез, рассеянный склероз, гидроцефалия, опухоли головного мозга, демиелинизирующие заболевания.

ВВЕДЕНИЕ. Молекулярная организация миелина. Основная информация о структуре миелина получена с помощью рентгено-структурного анализа и электронной микроскопии . Уникальной морфологической особенностью миелина является то, что он формируется в результате спирального обвития отростков олигодендроглиоцитов в центральной нервной системе и шванновских клеток на периферии, вокруг аксонов нейронов . Таким образом, миелин представляет собой своеобразную мембрану, состоящую из липидного бислоя и белков, связанных с ним. В образовании миелиновой оболочки и структуре миелина ЦНС и периферической нервной системы (ПНС) имеются отличия. При формировании миелина ЦНС один олигодендроглиоцит имеет связи с несколькими сегментами миелина нескольких аксонов; при этом к аксону примыкает отросток олигодендроглиоцита, расположенного на некотором расстоянии от аксона, а внешняя поверхность миелина соприкасается с внеклеточным пространством. Шванновская клетка при образовании миелина ПНС формирует спиральные пластинки миелина и отвечает лишь за отдельный участок миелиновой оболочки между перехватами Ранвье. Цитоплазма шванновской клетки вытесняется из пространства между спиральными витками и остается только на внутренней и наружной поверхностях миелиновой оболочки .

Среди белков миелина выделяют так называемые внутренние (intrinsic) и внешние (extrinsic) белки . Первые прочно связаны с мембраной, проходя сквозь нее, в то время как другие, расположенные поверхностно, связаны слабее. Подобная мембрана является асимметричной по химическому составу и электрическому заряду. Ее экстрацеллюлярная поверхность богата углеводными остатками гликопротеинов и гликолипидов, при этом С-конец гликопротеинов находится на цитоплазматической стороне мембраны, тогда как полисахаридный остаток экспонирован на экстрацеллюлярной поверхности. Расстояние между разнонаправленными гидрофильными группировками липидов в мембране миелина составляет 4,5-5,0 нм, в то время как расстояние между соседними витками спирали - 3,0-5,0 нм. Толщина мультиламеллярного образования, сформированного исключительно липидами, составляет 1,5-3,0 нм .

Процесс формирования миелина отростками глиальных клеток сопровож-дается вытеснением цитоплазмы таким образом, что цитоплазматические поверх-ности мембраны плотно соприкасаются друг с другом, образуя так называемую главную плотную линию (major dense line). Плотный контакт наружных поверхностей мембран, образующихся при спиралевидном обвитии отростков миелинобразующих клеток вокруг аксонов нейронов, способствует формирова-нию, так называемой межпромежуточной линии (interperiod line)
Одной из биохимических характеристик, которая отличает миелин от других биологических мембран, является высокое соотношение липид/белок. Белки составляют от 25 до 30% массы сухого вещества миелиновой оболочки. На долю липидов приходится приблизительно 70-75% от сухой массы белого вещества ЦНС млекопитающих; в миелине спинного мозга соотношение липиды:белки выше . Из общего количества липидов на долю холестерола приходится около 28%, 43% – на фосфолипиды и 29% составляют галактолипиды. Известно, что липиды оказывают существенное влияние на конформационные характеристики белков, входящих в состав мембраны миелина; последние в свою очередь влияют на свойства липидов .
Основной функцией миелина является быстрое проведение нервного импульса по аксонам, которые он окружает. Мембраны клеток, формирующих миелин, плотно соприкасаются, что обеспечивает высокое сопротивление и малую емкость, обеспечивая, таким образом, аксону эффективную изоляцию и предотвращая продольное распространение импульса. Миелин прерывается только в области перехватов Ранвье, которые встречаются через правильные промежутки длинной примерно 1 мм. В связи с тем, что ионные токи не могут проходить сквозь миелин, вход и выход ионов осуществляется лишь в области перехватов. Это ведет к увеличению скорости проведения нервного импульса. Таким образом, по миелинизированным волокнам импульс проводится приблизительно в 5-10 раз быстрее, чем по немиелинизированным .
Помимо передачи нервного импульса, миелин участвует в питании нервного волокна, а также выполняет структурную и защитную функции

Основной белок миелина

Строение, физико-химические свойства. При электрофоретическом анализе в ПААГ с SDS экстрактов миелиновой оболочки человека определяется до 10 полос. Основную полосу (около 50% всех белков), составлял протеолипидный белок (PLP) с молекулярной массой 30 кДа.
Вторыми в количественном соотношении (около 30%) были белки, входящие в так называемую группу основных белков миелина (ОБМ), соответствующие молекулярным массам от 17 до 21,5 кДа. Данную группу составили 3 изоформы ОБМ с молекулярными массами 21,5 кДа, 18,5 кДа и 17,5 кДа. Первая из них кодируется 7 экзонами; в результате делеции 2 экзонов синтезируется белок молекулярной массой 18,5 кДа. При кодировании же изоформы массой 17,5 кДа были подвержены делеции 5 экзонов . Показано, что ген ОБМ человека расположен на 18 хромосоме и имеет 3 промоторные области, с которых начинается считывание информации .
У различных видов животных было также показано наличие нескольких изоформ данного белка . Так, ОБМ крысы включает в себя 4 изоформы с молекулярными массами 21,5, 18,5, 17,0 и 14,0 кДа. Интересно, что изоформы ОБМ массами 21,5 и 18,5 кДа кодируются экзонами, комплементарными человеческим, за небольшим исключением, касающимся незначительных перестановок последовательностей. В изоформе ОБМ с массой 17,0 кДа делеции подвержен 6 экзон. Делеция 2 и 6 экзонов наблюдается при кодировании изоформы белка массой 14,0 кДа. Эти две изоформы ОБМ крысы, таким образом, не имеют человеческих аналогов. Кроме того, доказано наличие изоформ ОБМ с молекулярными массами 21,5, 17,0 и 14,0 кДа в ткани ЦНС мыши . Низкомолекулярные изоформы белка образуются путем делеции участка хромосомы, кодирующего аминокислотные последовательности в области С-конца. Недавние исследования показали наличие ОБМ с молекулярной массой 21,5 кДа в мозге барана, при этом было доказано, что он не является предшественником низкомолекулярных изоформ белка. Кроме того, ОБМ с молекулярной массой 13,5 кДа был идентифицирован в мозге серебряного карася .
В настоящий момент полностью установлена аминокислотная последовательность 18,5 кДа изоформы ОБМ человека , морской свинки , свиньи . Проводятся исследования по определению аминокислотной последовательности ОБМ кролика, быка, обезьяны .
Интересен тот факт, что человеческий ОБМ имеет вариации последовательностей аминокислот в 46 и 47 положении. Здесь может находиться глицин, как самостоятельно, так и в сочетании с серином . Согласно более ранним исследованиям, у больных с рассеянным склерозом отмечалась замена серина на глицин в 44-49 положениях .
Показано, что среди млекопитающих имеется значительная степень гомологии между аминокислотными последовательностями ОБМ .
Рядом авторов была показана высокая степень гомологии – порядка 80-90% аминокислотной последовательности ОБМ у различных видов животных. Так, аминокислотные последовательности ОБМ человека и быка имеются различия аминокислотных остатков лишь в нескольких положениях, в то время как ОБМ крысы отличаются от ОБМ человека и быка положением 40 аминокислотных остатков в середине полипептидной цепи (от 118 до 157 остатка).
ОБМ содержит необычайно высокий процент (приблизительно 25%) основных аминокислот (аргинин, лизин и гистидин), равномерно распределенных по всей полипептидной цепи, что и обусловливает очень высокую изоэлектрическую точку ОБМ (рI=12-13) . Основная изоформа ОБМ с молекулярной массой 18,5 кДа) в дальнейшем может быть субфракционирована в щелочной среде по зарядам. Подобная неоднородность заряда увеличивается в результате фосфорилирования и дезаминирования in vivo. В процессе дальнейшего выделения белка происходит дополнительное дезаминирование и деградация в области С-конца. Такая гетерогенность зарядов может варьировать у различных индивидуумов в зависимости от возраста и патологического состояния организма .
Фосфорилирование ОБМ. Процесс фосфорилирования является основным источником гетерогенности. Процесс фосфорилирования ОБМ в оптическом нерве крысы возрастает в процессе развития . Фосфорилирование может способствовать приобретению молекулой белка гидрофильных свойств и уменьшать величину положительного заряда. Таким образом, фосфорилированная форма ОБМ должная в наименьшей степени взаимодействовать с анионными фосфолипидами. Это отражается в снижении способности фосфорилированных форм белка к индукции агрегации пузырьков . Кроме этого, и способы модификации, обусловливающие изменения его заряда, влияют на данную способность, а также изменяют организацию липидного слоя .
Наличие в миелине протеинкиназной и фосфорилазной активности объясняют способностью регулировать чрезмерное фосфорилирование ОБМ. Протеинкиназа миелина, выделенного из мозга человека, способна активироваться как кальцием или сАМР , так и фосфатидилинозитол-4-фосфатом . Наличие высоких концентраций фосфатидилинозитолкиназы отмечается в миелине, выделенном из головного мозга быка .
Данный фермент может быть вовлечен в регуляцию механизма контроля чрезмерного фосфорилирования белка. Остатки белка, подвергающиеся фосфорилированию в условиях in vitro, зависят от вида протеинкиназы . Протеинкиназа С важна в качестве регулятора клеточного числа. ОБМ является благоприятным субстратом для действия данного фермента . Некоторые участки этого белка являются специфическими ингибиторами активности протеинкиназы С. Так, было продемонстрировано, что деградация миелина может возрастать при ослаблении регуляторного контроля, обеспечиваемого данным ферментом. Миелиногенез осуществляется при адгезии олигодендроцита к субстрату. Этот процесс сопутствует активации фосфорилирования ОБМ протеинкиназой С . Кроме того, процесс фосфорилирования ОБМ также регулируют ганглиозиды . Фосфорилирование, катализируемое протеинкиназой С, стимулируется ганглиозидами; в то время, как фосфорилирование других участков белка, катализируемое сАМР-зависимой протеинкиназой, ими тормозится. Ганглиозиды подавляют также активацию протеинкиназы С диацилглицеролом. Участки молекулы ОБМ, подвергающиеся фосфорилированию in vitro, были выявлены методом высокоэффективной хроматографии высокого давления. Фосфорилирование in vivo происходит по-разному у различных видов млекопитающих, так, у быка, оно осуществляется в 97 и 165 положениях; у кролика – в 7, 56, 96, 113, 163 положениях. Кроме того, было выявлено, что в развивающемся мозге мыши, процессы фосфорилирования начинаются на самых ранних стадиях , что подтверждает предположение о непосредственном их участии в механизмах миелинизации.
Метилирование ОБМ. Другое преобразование белка, происходящее посттранскрипционно, заключается в метилировании одиночного аргининового остатка в 107 положении. Процесс катализируется специфическим ферментом аргинин-метилтрансферазой. Экспрессия данного фермента регулируется тиреоидными гормонами .
Степень метилирования ОБМ значительно варьирует в процессе развития. На исключительную важность метилирования ОБМ указывает тот факт, что инициация демиелинизации возможна при ингибировании биосинтеза S-аденозил-L-метионина циклолейцином, а формирование компактной структуры миелина подавляется синефунгином – ингибитором метилтрансферазы. S-аденозил-L-метионин является донором метильных групп для аргининового остатка ОБМ . У мышей линии jimpy, характеризующихся гипомиелинизацией, отмечается более низкий, по сравнению с нормальными, уровень ОБМ-специфичной аргинин-N-метилтрансферазы. Процесс миелинизации не может быть успешно завершен при нормальном уровне синтеза ОБМ потому, что метилирование белка не протекает в достаточной степени и становится невозможным его интеграция в миелиновую мембрану. Недавние исследования показали, что у этих мышей страдает и уровень синтеза ОБМ, а также полностью отсутствует синтез PLP. Отсутствие последнего может критически влиять на способность ОБМ внедряться в миелиновую мембрану .
У другой линии мутантных мышей shiverer, нарушение процесса миелинизации происходит в результате иных механизмов . Мыши shiverer являются мутантными аутосомными рецессивными мышами, с дефицитом содержания миелина в ЦНС. Данная мутация заключается в делеции 20 т.п.о. гена, которая приводит к отсутствию ОБМ . Гомозиготные мыши являются отличной поведенческой моделью, у которых наблюдается около 12 дня постнатального развития дрожание, конвульсии и ранняя смерть. Морфологический анализ показал практически полное отсутствие миелина в ткани мозга со слабо миелинизированными аксонами. Миелин у этих мышей был аномальным, представлял собой неплотную оболочку, что косвенным образом свидетельствовало о том, что ОБМ необходим для формирования плотности оболочки . Напротив, миелин ПНС у мышей shiverer был качественно и количественно нормальным, с нормальной толшиной и структурой, относительно небольшие аномалии миелина наблюдались на рентгенограммах седалищного нерва у взрослых мышей shiverer . Биохимические изучения миелина у мышей shiverer показали некоторые изменения в количестве липидов. Однако, отсутствие у таких мышей ОБМ не нарушает формирование компактного миелина в ПНС, которое, возможно, компенсирует другой белок миелина – Pо .
Известно, что все изоформы ОБМ могут подвергаться ацетилированию N-конца. Однако и свободный С-конец способен подвергаться действию карбоксипептидаз. ОБМ подвержен действию различных протеолитических ферментов. Гидролиз белка под действием катепсина D ускоряется в присутствии кислых липидов. Этот процесс может быть ограничен как ферментативно, так и неферментативно при деградации ОБМ в процессе изоляции. Этот метод основан на хроматографическом удалении примесей протеолитических ферментов и исключении неферментативной деградации при высоких значениях рH и температур .
Показано, что минорные фракции ОБМ содержат ковалентно связанный в области серинового остатка в 54 положении фосфатидилинозитолбисфосфат. В процессе экспериментального аллергического энцефаломиелита степень связывания фосфатидилинозитолбисфосфата сначала снижается, а затем возрастает .
Изучение структурной организации молекулы ОБМ в растворе проводились с помощью ЯМР-спектроскопии, флуоресцентной спектроскопии, калориметрии, а также с применением иммунологических методов анализа .
В растворе ОБМ имеет тенденцию к самоассоциации, которая играет важную роль в поддержании компактной структуры миелина. Белок в растворе представлен смесью мономер-гексамерных форм с преобладанием цепей с b-структурой . Преобладание b-структуры и формирование a-структуры индуцируется в фрагментах ОБМ при переносе из водной фазы в трифторэтанол .
Взаимодействие ОБМ с липидами. ОБМ как мембранный компонент, имеет значительное сродство к липидам, с которыми в комплексе и выделяется . Кроме того, будучи поликатионом, ОБМ формирует наиболее стабильные комплексы с анионными липидами . Но, несмотря на то, что степень связывания ОБМ значительно выше с кислыми липидами, она достаточно выражена и в отношении цвиттер-ионов, особенно – со сфингомиелином. ОБМ также взаимодействует с фосфатидилэтаноламином при рН 7,2, где этот липид находится преимущественно в цвиттер-форме. Удивительна способность ОБМ формировать нерастворимые комплексы с SDS как выше, так и ниже изоэлектрической точки .
При формировании комплексов ОБМ с основной массой анионных фосфолипидов, играют роль в равной степени как гидрофобные, так и электростатические взаимодействия . Наиболее выраженное влияние на стабилизацию липидов ОБМ оказывает при интеграции в липидные хвосты .
ОБМ также способствует освобождению глюкозы из многослойных липосом, содержащих GM4 ганглиозид, который является специфическим маркером миелина и олигодендроглии в ЦНС .
Как было показано методом рентгеноструктурного анализа, при формировании миелина происходит погружение большей части ОБМ в слой липидных головок. Известно, что ОБМ ускоряет формирование мультислоя фосфатидилглицерола и индуцирует формирование многослойной мембранной структуры с двойной периодичностью бислоя. Холестерол может увеличивать связывание протеина с поверхностью бислоя, открывая каналы между диацил-липидными головками .
Smith предположил, а работы Yohg и Cheifetz подтвердили, что ОБМ является стимулятором везикулярной агрегации, которая служит моделью молекулярных взаимодействий, имеющих важное значение для формирования компактной структуры миелина и его стабилизации в мультиламелярной структуре мембраны. ОБМ способен индуцировать агрегацию пузырьков, содержащих только фосфатидилхолин, однако степень агрегации значительно усиливается кислыми фосфолипидами. Агрегация фосфолипидных пузырьков под влиянием ОБМ значительно усиливается в присутствии алифатических альдегидов . Высказываются предположения, что возрастание уровня алифатических альдегидов может быть связано с демиелинизирующими заболеваниями . Холестерол увеличивает способность ОБМ к стимуляции агрегации пузырьков фосфатидилсерина .
Brady et. al. , а также Sridhara et. al. показали некоторые различия в свойствах ОБМ, выделенного из нормального миелина и ОБМ, выделенного из ткани мозга больных рассеянным склерозом (РС). ОБМ нормального миелина более активен в отношении индукции формирования многослойной структуры с фосфатидилглицеролом и инициации агрегации везикул фосфатидилхолина . Независимо от источника выделения ОБМ (нормальный миелин или миелин при РС), было показано, что компоненты белка, имеющие одинаковый заряд, в равной степени способны индуцировать формирование липидного мультислоя. Также было показано, что отличия ОБМ из нормального миелина и из миелина при РС, вызваны различием зарядов изомеров, входящих в состав ОБМ .
ОБМ в филогенезе и онтогенезе. Как филогенетически, так и онтогенетически, появление ОБМ может быть связано с дифференцировкой олигодендроглиоцитов и шванновских клеток. В процессе эволюции нервной системы позвоночных дифференцировка глии на клетки двух типов совпадает с появлением миелинизированных волокон, а также с ограничением способности к функциональной регенерации.
Сравнительные исследования ОБМ из ткани мозга различных биологических видов животных показали значительное межвидовое сходство. ОБМ выделен и очищен, а также описаны его свойства из ткани мозга человека, быка, крысы, мыши, морской свинки .
Обнаружение филогенетического сходства гликопротеинов у различных биологических видов дало основание провести исследование этого белка в процессе онтогенеза. Так, Grever и et. al. проводили с помощью иммуногистохимического и Northern blott анализа количественное определение ОБМ в ткани спинного мозга плодов человека с 12 до 24 недели гестации. Развитие структуры миелина исследовали с помощью электронной микроскопии. Тридцать восемь образцов спинного мозга плодов были получены после прерывания внематочной беременности. В период между 12 и 18 неделями гестации показано 15,8-кратное увеличение синтеза ОБМ мРНК. С 18 по 24 недели гестации синтез ОБМ мРНК увеличился в 2,2 раза.
Параллельно проведенный иммуноблот-анализ показал 90,5-кратное увеличение ОБМ (от 0,147 нг/мг до 13,3 нг/мг) между 12 и 18 неделями гестационного развития и приблизительно 11,5-кратное увеличение между 18 и 24 неделями гестации (с 13,3 до 154 нг/мг ткани). Иммуноцитохимический анализ также показал повышение степени окрашивания на ОБМ с увеличением гестационного возраста. У плода с гестационным возрастом 12 недель ОБМ определялся во всех трех боковых канатиках спинного мозга, с 18 недель гестационного развития ОБМ экспрессировался во всем белом веществе мозга, за исключением боковых кортикоспинальных путей и ростральных уровней fasciculus gracilis. Авторы также исследовали структуру миелина с помощью электронной микроскопии. В 12 недель гестации миелиновая оболочка представляла собой редкую неуплотненную пластину, в 18 недель гестации наблюдались отдельные точки компактного миелина, которые экспрессировали ОБМ, в 24 недели гестации компактный миелин наблюдался во всем белом веществе спинного мозга. Таким образом, авторами было продемонстрировано количественное увеличение экспрессии ОБМ, связанное с формированием миелина в течение второго триместра беременности.
Weidenheim и соавт. с помощью иммуногистохимического анализа определяли ОБМ в ткани спинного мозга (в цервикальном, грудном и люмбосакральном уровнях) и стволовой части головного мозга эмбрионов человека на протяжении первого и второго триместров беременности. С 9-10 недель гестации ОБМ-позитивные олигодендроглиоциты наблюдались по периферии эпиндимы. В переднем и боковом канатиках экспрессия ОБМ олигодендроглиоцитами отмечалась с 10-12 недель гестационного развития. В заднем канатике ОБМ детектировался на более поздних сроках гестационного развития, чем в антилатеральном белом веществе. ОБМ с 10 недели гестации обнаруживался в основном по срединной линии ствола мозга и экспрессировался латеральнее на протяжении второго триместра беременности. Таким образом, авторы заключили, что ОБМ присутствует с 10 недель гестации антилатерально в цервикальной области спинного мозга и срединной линии стволовой области мозга и экспрессируется в рострально-хвостовом направлении от антилатеральной к задней области. Исключением, однако, является область fasciculus gracilis, которая имела большее количество ОБМ-положительных клеток на поясничном уровне, чем в более ростральных областях.
Аналогичные результаты были получены и другими исследователями .
Таким образом, приведенные выше факты свидетельствуют об общем явлении эмбриогенеза человека: начало синтеза нейроспецифических антигенов приходится на 10-18 недели гестации.

Клинико-диагностическое значение ОБМ

Применение ОБМ в качестве маркера деструкции миелина открыло новое направление в нейробиологии, посвященное исследованию значимости этого антигена в диагностике демиелинизирующих заболеваний .
Основная часть этих работ посвящена анализу ОБМ в спинномозговой жидкости (СМЖ) больных рассеянным склерозом . В частности, в работе Thompson и соавт. приводятся результаты определения ОБМ с помощью конкурентного радиоиммунного анализа в пробах СМЖ 221 пациента с рассеянным склерозом. В качестве группы сравнения были выбраны пациенты с различной неврологической патологией (85 человек). При этом повышение концентрации ОБМ было выявлено у 46 из 55 пациентов (84%) с рецидивом рассеянного склероза на протяжении 6 недель и только у 11 из 84 пациентов (13%) с другими неврологическими заболеваниями. При этом имелась четкая корреляция между уровнем ОБМ в СМЖ и тяжестью рецидива (Р Кроме диагностики рассеянного склероза, ряд работ посвящен сравнительному исследованию ОБМ при целом ряде других заболеваний, сопровождающихся процессом демиелинизации. Так, Lamers et. al. методом РИА изучали концентрации ОБМ (наряду с исследованием концентраций NSE и S-100) в СМЖ детей и взрослых с различной неврологической патологией: у больных с рассеянным склерозом (хронически-прогрессивным, рецидивирующе-ремиттирующим и комбинацией обоих типов), при цереброваскулярных нарушениях (с ишемическим и геморрагическим инсультами), у пациентов с деменцией (сосудистой и Альцгеймеровского типа) и при инфекциях ЦНС . Достоверно более высокие уровни ОБМ наблюдались в группе больных с рассеянным склерозом; также достоверное повышение уровней ОБМ отмечалось при цереброваскулярных инсультах и в группах детей с эцефалопатиями.
Несомненно, заслуживают внимания работы, посвященные количественному анализу ОБМ при гидроцефалии. Так, Longatti et. al. исследовали уровень ОБМ у детей первого года жизни, страдающих постгеморрагической гидроцефалией. Авторами было показано значительное увеличение концентраций этого белка в динамике гидроцефалии. Ранее этими же авторами был продемонстрирован феномен более чем 20-кратного увеличения концентрации ОБМ в образцах СМЖ больных с гидроцефалией, полученных при вентрикулярной пункции по сравнению с люмбальной. В то же время, после проведения операции шунтирования отмечалось значительное снижение уровня ОБМ в СМЖ при вентрикулярной пункции. В результате проделанных исследований, авторы делают вывод о том, что анализ ОБМ в СМЖ при гидроцефалии может служить маркером активности развития гидроцефалии, и рекомендуют применение иммунохимического мониторинга ОБМ в динамике и при прогнозировании постгеморрагических гидроцефалий, а также в качестве одного из основополагающих критериев для проведения операции шунтирования. Результаты этой работы нашли экспериментальное подтверждение в исследованиях Del Bigio et. al. , которые выдвинули гипотезу о том, что прогрессирующая гидроцефалия может вызывать задержку процессов миелинизации. Исследователи вызывали гидроцефалию у 3-дневных крысят путем введения каолина в большую цистерну. В результате этой работы было показано, что гидроцефалия способна вызвать задержку процесса миелинизации. В то же время, своевременная операция шунтирования может активировать комплекс процессов компенсаторной миелинизации, однако, в случае длительной экспозиции гидроцефалии, процессы восстановления белого вещества весьма проблематичны.
Интересными, на наш взгляд, являются работы посвященные исследованию концентраций ОБМ в СМЖ и в сыворотке крови больных с опухолями головного мозга. Так, Nakagawa et. al. провели количественное определение ОБМ методом РИА у пациентов с различными видами глиальных опухолей, включая злокачественные. Высокие концентрации ОБМ (выше 4 нг/мл) авторы выявили у пациентов с диссеменацией злокачественных опухолей в мозговую оболочку. В случаях позитивной реакции организма пациентов на химио- или рентгенотерапию (что подтверждалось с помощью КТ, ЯМР, при общем и цитологическом исследовании СМЖ, а также клиническом обследовании), обнаруживалось достоверное снижение концентрации ОБМ в биологических жидкостях, а некоторых случаях даже до уровня нормы. В СМЖ шести пациентов со злокачественными глиомами без метастазирования концентрация ОБМ была значительно выше нормы до начала химиотерапии, а во время лечения наблюдалось дальнейшее повышение уровня ОБМ, однако после окончания химиотерапии концентрация ОБМ снизилась до уровня нормы. У некоторых пациентов со злокачественными глиомами, сопровождающимися метастазированием, авторы отмечали снижение концентраций ОБМ до 4 нг/мл после комплекса проведенных операций по удалению опухолей и химиотерапии (или облучения) в случаях благоприятного клинического течения. Таким образом, был сделан вывод о перспективности применения количественного мониторинга ОБМ для диагностики и прогнозирования течения опухолевых процессов, обусловленных глиомами.
Серия исследований Yamazaki et. al. была посвящена количественному динамическому анализу ОБМ и NSE в сыворотке крови больных с острыми травмами головного мозга. У пациентов в остром периоде после черепномозговой травмы уровни ОБМ в сыворотке крови динамично возрастали с 1,4 нг/мл до 11,3 нг/мл и были достоверно ниже, чем у пациентов с прогностически неблагоприятным исходом (смерть пациентов).
Авторы исследования пришли к выводу, что концентрация ОБМ в сыворотке крови коррелирует со степенью повреждения ткани мозга и определение уровня этого белка, наряду с определением NSE, может служить достоверным лабораторным маркером объема и степени повреждения ткани мозга при острых черепно-мозговых травмах. Аналогичное заключение было сделано ранее и Noseworthy et. al. , которые проводили исследования концентрации ОБМ в сыворотке крови у пациентов в динамике спустя 7 дней, 3 и 6 месяцев после острой черепно-мозговой травмы.
Интересным является цикл работ, посвященных изучению диагностической роли анти-ОБМ-антител в сыворотке крови и СМЖ пациентов с различными неврологическими заболеваниями. При этом, хотя и наибольшее количество исследований посвящено диагностике рассеянного склероза , вряд ли есть основания сделать однозначный вывод о каких-либо перспективах применения анти-ОБМ-антител в диагностике этого заболевания.
Так, группа исследователей под руководством K.G. Warren проводила радиоиммунный анализ анти-ОБМ-антител в СМЖ больных с рассеянным склерозом и другими неврологическими заболеваниями. Авторы выделили два вида антител к ОБМ: «свободные» и «связанные» антитела. При остром рецидиве рассеянного склероза, соотношение концентраций «свободных» и «связанных» антител был выше единицы, в то время, как у пациентов с хроническим вариантом заболевания это соотношение было ниже единицы. По мере наступления ремиссии у пациентов с острым рецидивом, коэффициент постепенно уменьшался и в конечном итоге, антитела на пределе чувствительности метода не обнаруживались. У пациентов с хроническим течением рассеянного склероза выведение антител происходило более медленно и в СМЖ низкие значения антител определялись более длительное время. Кроме изучения динамики элиминации антител в образцах сыворотки крови и СМЖ больных с рассеянным склерозом, авторы выявили анти-ОБМ-антитела в образцах СМЖ больных с острым идиопатическим невритом (преимущественно "свободные" антитела), что дало им основание предположить наличие аутоиммунного компонента в патогенезе острого идиопатического неврита.
Но в тоже время, Brokstad et. al. не выявили анти-ОБМ-антител при иммунохимическом исследовании сыворотки крови и СМЖ пациентов с рассеянным склерозом, а также другими неврологическими заболеваниями.
Приведенные данные, достаточно информативно показывают ценность ОБМ как иммунохимического маркера олигодендроглиоцитов и шванновских клеток при фундаментальных и клинических исследованиях, а также необходимость разработки тест-систем определения данного белка и анти-ОБМ-антител в СМЖ и сыворотке крови.

ЛИТЕРАТУРА

1. Beniac D.R., Wood D.D., Palaniyar N. (2000) J Struct Biol., 129 (1). 80-95;
2. Epand R.M. (1988) In: Neuronal and glial proteins: structure, function and clinical application., 231-265;
3. Facci P., Cavatorta P., Cristofolini L. (2000) Biophys J., 78 (3), 1413-1419;
4. Holton T., Ioerger T.R., Christopher J.A. (2000) Acta Crystallogr. D Biol. Crystallogr., 56 (Pt 6), 722-734;
5. Kleywegt G.J. (1999) Acta Crystallogr. D Biol. Crystallogr., 55 (11), 1878-1884;
6. Kirschner D.A., Ganser A.L., Caspar D.L. (1984). In: Myelin (P. Morell, ed.), 2nd Ed., Plenum: New York, рр. 51-95
7. Pritzker L.B., Joshi S., Harauz G. (2000) Biochemistry, 39 (18), 5382-5388;
8. Riccio P., Fasano A., Borenshtein N. (2000), J. Neurosci. Res., 15, № 59 (4), 513-521;
9. Raine C.S. (1984) In: Myelin (P. Morell, ed.), 2nd Edn., Plenum: New York, pp. 1-50
10. Balendiran G.K., Schnutgen F., Scapin G. (2000), J. Biol. Chem., 275, 27045-2754;
11. Grever W.E., Chiu F.C., Tricoche M. (1996), J. Comp. Neurol., 376 (2), 306-314;
12. Garbay B., Heape A.M., Sargueil F. et al. (2000), Progr. Neurobiol., 61, 267-304;
13. Grever W.E., Weidenheim K.M., Tricoche M. (1997), J Neurosci Res, 47, 332-340;
14. Braun P.E. (1984) In: Myelin (P. Morell, ed.), 2nd Ed., Plenum: New York, 97-113
15. Cuzner M.L., Norton W.T. (1996), Brain Pathol, 6 (3), 231-242;
16. Kirschner D.A., Blaurock A.E. (1991) In: Myelin. Biology and chemistry. (R.E. Martenson, ed.), CRC Press: Boca Raton, Florida, pp. 413 - 448
17. Norton W.T., Cammer W. (1984) Isolation and characterization of myelin. In: Myelin (Ed. Morell P.) Plenum Press, N-Y, pp.147-195;
18. Shults C.W., Whitaker J.N., Wood J.G. (1978), J. Neurochem., 30, 1543-1551;
19. Campagnoni A.T., Pribyl T.M., Campagnoni C.W. et al. (1993), J. Biol. Chem., 268, 4930 – 4938.
20. Kamholz J., De Ferra F., Puckett C. (1986), Proc. Natl. Acad. Sci. USA, 83, 4962 – 4966.
21. Devine-Beach K., Lashgari M.S., Khalili K. (1990), J Biol Chem, 265, 13830-1385;
22. Roach A., Takahashi N., Pravtcheva D. et al (1985), Cell, 42, 149-155;
23. Jacque C., Delassalle A, Raoul M (1983), J Neurochem, 41 (5), 1335-1340;
24. Ohta M., Ohta K., Ma J. (2000), Clin Chem, 46 (9), 1326-1330;
25. Barbarese E., Braun P.E., Carson J.H. (1977), Proc. Natl. Acad. Sci. USA, 74, 3360-3364.
26. Carnegie P.R. (1971), Nature (London), 229, 25 – 28;
27. Roots B.I., Agrawal D., Weir G. et al. (1984), J. Neurochem., 43, 1421-1424;
28. Белик Я.В. (1980), От химической топографии мозга к нейроспецифическим белкам и их функциям. Биохимия животных и человека: Биохимия белков нервной системы, c. 11-22.
29. Терлецкая Я.Т., Белик Я.В., Козулина Е.П. и др. (1987), Молекулярная биология, N 21, 15-26;
30. Gibson B.W., Gilliom R.D., Whitaker J.N. (1984), J. Biol. Chem., 259 (8), 5028-5031.
31. Deibler G.E., Martenson R.E., Krutzsch H.C. et al (1984), J. Neurochem., 43, 100-105.
32. Kira G., Deibler G., Krutzsch H.C. et al. (1985), J. Neurochem., 44, 134-142;
33. Deibler G.E., Krutzsch H.C. and Martenson R.E. (1985), J. Biol. Chem., 260 (1), 472-474;
34. Chou C.-H., Chou F. C.-H., Kowalski T.J. et al. (1978), J. Neurochem., 30, 745 - 750;
35. Day E.D. (1981) Contemp. Top. Mol. Immunol., 8, 1-39.
36. Day E.D., Hashim G.A., Varitek V.A. et al (1981), J. Neuroimmunol., 1 (3), 311-324.
37. Chevalier D., Allen B.G. (2000), Protein Exp. Purif., 18 (2), 229-234;
38. Wong R.W. (1999), Mol. Biotechnol., 13 (1), 17-19.
39. Riederer B., Honegger C.G., Tobler H.J. et al (1984) Gerontology, 30, 234-239;
40. Murray N., Steck A.J. (1984), J. Neurochem., 43, 243-248.
41. Cheifetz S., Moscarello M.A. (1985) Biochemistry, 24, 1909-1914.
42. Brady G.W., Fein D.B., Wood D.D. et al (1985) Biochem. Biophys. Res. Commun., 126, 1161-1165.
43. Wu N.C., Ahmad F. (1984) Biochem. J, 218, 923-932.
44. Deshmukh D.S., Kuizon S., Brockerhoff H. (1984), Life Sci., 34, 259-264.
45. Saltiel A.R., Fox J.A., Sherline P. (1987), Biochem. J., 214, 759-763.
46. Kishimoto A., Nishiyama K., Nakanishi H. et al (1985), J. Biol. Chem., 260, 12492-12499.
47. Wise B.C., Glass D.B., Chou C.H. et al (1982), J. Biol. Chem., 257, 8489-8495.
48. Vartanian T., Szuchet S., Dawson G. et al (1986), Science, 234, 1395-1398.
49. Chan K.-F. J. (1987), J. Biol. Chem., 262, 2415-2422.
50. Ulmer J.B., Braun P.E. (1986), Develop. Biol., 117, 502-510.
51. Amur S.G., Shanker G., Pieringer R.A. (1984) J. Neurochem., 43, 494-498.
52. Sorg B., Agrawal D., Agrawal H. et al (1986) J. Neurochem., 46, 379-387.
53. Kim S., Tuck M., Kim M. (1986) J. Neurosci. Res., 16, 357-365.
54. Molineaux S.M., Engh H., De Ferra F. et al (1986) Proc. Natl. Acad. Sci. USA, 83, 7542-7546.
55. Shine H.D., Readhead C., Popko B. (1992) J. Neurochem. 58 (1), 342-349.
56. Kirschner D.A., Ganser A.L. (1980) Nature, 283, 207-210.
57. Martini R., Zielasek J., Toyka K. et al (1995) Nature Genet., 11, 281-286.
58. Williams K.R., Williams N.D., Konigsberg W. et al. (1986) J. Neurosci. Res., 15, 137-145.
59. Chiu K.C., Westall F., Smith R.A. (1986) Biochem. Biophys. Res. Commun., 136, 426-432.
60. Deibler G.E., Burlin T.V., Stone A.L. (1995) J. Neurosci. Res., 15, 819-827.
61. Fraser P.E., Deber C.M. (1985) Biochemistry, №13, 4593-4598;
62. Kobayashi N., Freund S.M., Chatellier J. et al (1999) J. Mol. Biol., 292 (1), 181-190;
63. Smith R. (1985) FEBS Lett, 183, 331-334;
64. Martenson R.E., Mendz G.L., Moore W.J. (1985) Biochem. Biophys. Res. Commun., 131, 1269-1276.
65. Riccio V. , Tsugita A., Bobba A. et al (1985) Biochem. Biophys. Res. Commun., 127, 484-492.
66. Moscarello M.A., Chia L.S., Leighton D. et al (1985) J. Neurochem. 45 (2), 415-421.
67. Moskaitis J.E., Campagnoni A.T. (1986), Neurochem. Res., 11, 299-315.
68. Boggs J.M., Moscarello M.A. (1984) Can J. Biochem. Cell. Biol., 62, 11-18.
69. Boggs J.M., Moscarello M.A., Papahadjopoulos D. (1982) In: Lipids and protein interactions (Eds. P.Jost and O.H. Griffith), vol. 2, pp.27-51;
70. Boggs J.M., Rangaraj G., Koshy K.M. (1999) J. Neurosci. Res., 57, 529-535;
71. Mullin B.R., Decandis F.X., Montanaro A.J. et al (1981) Brain Res, 222, 218-221.
72. Brady G.W., Murthy N.S., Fein D.B. et al (1981) Biophys. J., 34, 345-350.
73. Sedzik J., Blaurock A.E., Hoechli M. (1984) J. Mol. Biol., 174, 385-409.
74. Smith R. (1977) Biochim. Biophys. Acta, 470, 170-184.
75. Yohg P.R., Vacante D.A., Synder W.R. (1982) J. Am. Chem. Soc., 104, 7287-7291.
76. Fu S.C., Mozzi R., Krakowka S. et al (1980), Acta Neuropathol. (Berl), 49 (1), 13-18.
77. Walker A.G., Rumsby M.G. (1985) Neurochem. Int., 7, 441-447.
78. Sridhara S., Epand R.M., Moscarello M.A. (1984) Neurochem. Res., 9, 241-248.
79. Weidenheim K.M., Epshteyn I., Rashbaum W.K. (1993) J. Neurocytol, 22 (7), 507-516
80. Weidenheim K.M., Bodhireddy S.R., Rashbaum W.K. (1996) J. Neuropathol. Exp. Neurol., 55 (6), 734-745.
81. Bodhireddy S.R., Lyman W.D., Rashbaum W.K. (1994) J. Neuropathol. Exp. Neurol., 53 (2), 144-149.
82. Zecevic N., Andjelkovic A., Matthieu J. (1998) Brain Res. Dev. Brain. Res., 14, 97-108.
83. Хохлов А.П., Савченко Ю.Н. (1990) Миелинопатии и демиелинизирующие заболевания, Медицина.
84. Annunziata P., Pluchino S., Martino T. (1997) J. Neuroimmunol., 77 128-133.
85. Brokstad K.A., Page M., Nyland H. (1994) Acta Neurol. Scand., 89 (6), 407-411.
86. Fesenmeier J.T., Whitaker J.N., Herman P.K. (1991) J. Neuroimmunol., 34 (1), 77-80.
87. Lamers K.J., van Engelen B.G., Gabreels F.J. (1995) Acta. Neurol. Scand., 92 (3), 247-251.
88. Lamers K.J., de Reus H.P., Jongen P.J. (1998) Mult. Scler., 4 (3), 124-126.
89. Longatti P.L., Guida F., Agostini S. (1994) Childs Nerv. Syst., 10 (2), 96-98.
90. Maatta J.A., Coffey E.T., Hermonen J.A. et al. (1997) Biochem. Biophys. Res. Commun., 238 (2), 498-502.
91. Massaro A.R., Michetti F., Laudisio A. (1985) Ital. J. Neurol. Sci., 6 (1), 53-56.
92. Melse J., Noppe M., Crols R. (1983) Acta Neurol. Belg., 83 (1), 17-22.
93. Soderstrom M., Link H., Xu Z. (1993) Neurology, 43 (6), 1215-1222.
94. Thompson A.J., Brazil J., Feighery C. (1985) Acta Neurol. Scand., 72 (6), 577-583.
95. Wood D.D., Bilbao J.M., O"Connors P. (1996) Ann Neurol., 40 (1), 18-24.
96. Warren K., Catz I. Johnson E. (1994) Ann Neurol., 35 (3), 280-289.
97. Yamazaki Y., Yada K., Morii S. et al (1995) Surg. Neurol., 43 (3), 267-270.
98. Barkhof F., Frequin S.T., Hommes O.R. (1992) Neurology, 42 (1), 63-67.
99. Warren K.G., Catz I. (1993) J. Neurol Sci, 115 (2), 169-176.
100. Sellebjerg F., Christiansen M., Nielsen P.M. (1998) Mult. Scler., 4 (6), 475-479.
101. Garcia-Alix A., Cabanas F., Pellicer A. (1994) Pediatrics, 93 (2), 234-240.
102. van Engelen B.G., Lamers K.J., Gabreels F.J. (1992) Clin. Chem., 38 (6), 813-816.
103. Del Bigio M.R., Kanfer J.N., Zhang Y.W. (1997) J. Neuropathol. Exp. Neurol., 56 (9), 1053-1066.
104. Matias-Guiu J., Martinez-Vazquez J., Ruibal A. (1986) Acta Neurol. Scand., 73 (5), 461-465.
105. Seeldrayers P.A., Hoyle N.R., Thomas D.G. (1984) J. Neurooncol., 2 (2), 141-145.
106. Nakagawa H., Yamada M., Kanayama T. (1994) Neurosurgery, 34 (5), 825-833.
107. Noseworthy T.W., Anderson B.J., Noseworthy A.F. (1985) Crit. Care Med., 13 (9), 743-746.
108. Sellebjerg F., Christiansen M., Garred P. (1998) Mult Scler, 4 (3), 127-131.
109. Кучинскене Д.И. (1992), Клиническое значение определения антител к основному белку миелина у больных рассеянным склерозом, ретробульбарным невритом и здоровых родственников., Автореф. дисс… канд. мед. наук.
110. Sellebjerg F., Frederiksen J.L., Olsson T. (1994) Scand. J. Immunol., 39 (6), 575-580.
111. Бойко А.Н., Фаворова О.О. (1995) Мол. биол., 29, № 4, 727-749.
112. Гусев Е.И., Демина Т.Л., Бойко А.Н. (1997) Рассеянный склероз., c. 463.
113. Warren K.G., Catz I. (1993) J. Neuroimmunol., 43 (1-2), 87-96.
114. Warren K.G., Catz I. (1994) J. Neurol Sci, 121 (1), 66-73.
115. Warren K.G., Catz I. (1995) J. Neurol Sci, 133 (1-2), 85-94.
116. Warren K.G., Catz I. (1999) Eur. Neurol., 42 (2), 95-104.

НЕРВНЫЕ ВОЛОКНА

Нервные волокна представляют собой отростки нейронов, покрытые глиальными оболочками. Различают два вида нервных волокон - безмиелиновые и миелиновые. Оба вида состоят из центрально лежащего отростка нейрона (осевого цилиндра), окруженного оболочкой из клеток олигодендроглии (в ПНС они называются леммоцитами или шванновскими клетками).

Безмиелиновые нервные волокна у взрослого располагаются преимущественно в составе вегетативной нервной системы и характеризуются сравнительно низкой скоростью проведения нервных импульсов (0.5-2 м/с). Они образуются путем погружения осевого цилиндра (аксона) в цитоплазму леммоцитов, располагающихся в виде тяжей. При этом плазмолемма леммоцита прогибается, окружая аксон, и образует дупликатуру - мезаксон (рис. 14-7). Нередко в цитоплазме одного леммоцита могут находиться до 10-20 осевых цилиндров. Такое волокно напоминает электрический кабель и поэтому называется волокном кабельного типа. Поверхность волокна покрыта базальной мембраной. В ЦНС, в особенности, в ходе ее развития, описаны безмиелиновые волокна, состоящие из "голого" аксона, лишенного оболочки из леммоцитов.

Рис. 14-7. Образование миелинового (1-3) и безмиелинового (4) нервных волокон в периферической нервной системе. Нервное волокно образуется путем погружения аксона (А) нервной клетки в цитоплазму леммоцита (ЛЦ). При образовании миелинового волокна дупликатура плазмолеммы ЛЦ - мезаксон (МА) - наматывается вокруг А, формируя витки миелиновой оболочки (МО). В представленном на рисунке безмиелиновом волокне в цитоплазму ЛЦ погружены несколько А (волокно "кабельного" типа). Я - ядро ЛЦ.

Миелиновые нервные волокна встречаются в ЦНС и ПНС и характеризуются высокой скоростью проведения нервных импульсов (5-120 м/с). Миелиновые волокна обычно толще безмиелиновых и содержат осевые цилиндры большего диаметра. В миелиновом волокне осевой цилиндр непосредственно окружен особой миелиновой оболочкой, вокруг которой располагается тонкий слой, включающий цитоплазму и ядро леммоцита - нейролемма (рис. 14-8 и 14-9). Снаружи волокно также покрыто базальной мембраной. Миелиновая оболочка содержит высокие концентрации липидов и интенсивно окрашивается осмиевой кислотой, имея под световым микроскопом вид однородного слоя, однако под электронным микроскопом обнаруживается, что она возникает в результате слияния многочисленных (до 300) мембранных витков (пластин).

Рис. 14-8. Строение миелинового нервного волокна. Миелиновое волокно состоит из осевого цилиндра, или аксона (А), непосредственно окруженного миелиновой оболочкой (МО) и нейролеммой (НЛ), включающей цитоплазму (ЦЛ) и ядро леммоцита (ЯЛ). Снаружи волокно покрыто базальной мембраной (БМ). Участки МО, в которых сохраняются промежутки между витками миелина, заполненные ЦЛ и поэтому не окрашиваемые осмием, имеют вид миелиновых насечек (МН) МО отсутствует в участках, соответствующих границе соседних леммоцитов - узловых перехватах (УП).

Образование миелиновой оболочки происходит при взаимодействии осевого цилиндра и клеток олигодендроглии с некоторыми различиями в ПНС и ЦНС.

Образование миелиновой оболочки в ПНС: погружение осевого цилиндра в леммоцит сопровождается формированием длинного мезаксона, который начинает вращаться вокруг аксона, образуя первые рыхло расположенные витки миелиновой оболочки (см. рис. 14-7). По мере увеличения числа витков (пластин) в процессе созревания миелина они располагаются все более плотно и частично сливаются; промежутки между ними, заполненные цитоплазмой леммоцита, сохраняются лишь в отдельных участках, не окрашиваемых осмием - миелиновых насечках (Шмидта-Лантермана). При формировании миелиновой оболочки цитоплазма и ядро леммоцита оттесняются к периферии волокна, образуя нейролемму. По длине волокна миелиновая оболочка имеет прерывистый ход.

Рис. 14-9. Ультраструктурная организация миелинового нервного волокна. Вокруг аксона (А) располагаются витки миелиновой оболочки (ВМО), снаружи покрытые нейролеммой, а которую входят цитоплазма (ЦЛ) и ядро леммоцита (ЯЛ). Волокно окружено снаружи базальной мембраной (БМ). ЦЛ, помимо нейролеммы, образует внутренний листок (ВЛ), непосредственно прилежащий к А (расположенный между ним и ВМО), она содержится также в зоне, соответствующей границе соседних леммоцитов - узловом перехвате (УП), где миелиновая оболочка отсутствует, и в участках неплотной укладки ВМО - миелиновых насечках (МН).

Узловые перехваты (Ранвье) - участки в области границы соседних леммоцитов, в которых миелиновая оболочка отсутствует, а аксон прикрыт лишь интердигитирующими отростками соседних леммоцитов (см. рис. 14-9). Узловые перехваты повторяются по ходу миелинового волокна с интервалом, равным, в среднем, 1-2 мм. В области узлового перехвата аксон часто расширяется, а в его плазмолемме присутствуют многочисленные натриевые каналы (которые отсутствуют вне перехватов под миелиновой оболочкой).

Распространение деполяризации в миелиновом волокне осуществляется скачками от перехвата к перехвату (сальтаторно). Деполяризация в области одного узлового перехвата сопровождается ее быстрым пассивным распространением по аксону к следующему перехвату, (так как утечка тока в межузловом участке минимальна благодаря высоким изолирующим свойствам миелина). В области следующего перехвата импульс вызывает включение имеющихся ионных каналов и возникает новый участок локальной деполяризации и т.д.

Образование миелиновой оболочки в ЦНС: осевой цилиндр не погружается в цитоплазму олигодендроцита, а охватывается его плоским отростком, который в дальнейшем вращается вокруг него, теряя цитоплазму, причем его витки превращаются в пластинки миелиновой обо-

лочки (рис. 14-10). В отличие от шванновских клеток, один олигодендроцит ЦНС своими отростками может участвовать в миелинизации многих (до 40-50) нервных волокон. Участки аксона в области перехватов Ранвье в ЦНС не прикрыты цитоплазмой олигодендроцитов.

Рис. 14-10. Образование олигодендроцитами миелиновых волокон в ЦНС. 1 - аксон (А) нейрона охватывается плоским отростком (ПО) олигодендроцита (ОДЦ), витки которого превращаются в пластинки миелиновой оболочки (МО). 2 - один ОДЦ своими отростками может участвовать в миелинизации многих А. Участки А в области узловых перехватов (УП) не прикрыты цитоплазмой ОДЦ.

Нарушение образования и повреждение образованного миелина лежат в основе ряда тяжелых заболеваний нервной системы. Миелин в ЦНС может явиться мишенью для аутоиммунного поражения Т-лимфоцитами и макрофагами с его разрушением (демиелинизацией). Этот процесс активно протекает при рассеянном склерозе - тяжелом заболевании неясной (вероятно, вирусной) природы, связанном с расстройством различных функций, развитием параличей, потерей чувствительности. Характер неврологических нарушений определяется топографией и размерами поврежденных участков. При некоторых метаболических расстройствах возникают нарушения образования миелина - лейкодистрофии, проявляющиеся в детстве тяжелыми поражениями нервной системы.

Классификация нервных волокон

Классификация нервных волокон основана на различиях их строения и функции (скорости проведения нервных импульсов). Выделяют три основных типа нервных волокон:

1. Волокна типа А - толстые, миелиновые , с далеко отстоящими узловыми перехватами. Проводят импульсы с высокой скоростью

(15-120 м/с); подразделяются на 4 подтипа (α, β, γ, δ) с уменьшающимися диаметром и скоростью проведения импульса.

2. Волокна типа В - средней толщины, миелиновые, меньшего диаметра,

чем волокна типа А, с более тонкой миелиновой оболочкой и более низкой скоростью проведения нервных импульсов (5-15 м/с).

3. Волокна типа С - тонкие, безмиелиновые, проводят импульсы со сравнительно малой скоростью (0,5-2 м/с).

Регенерация нервных волокон в ПНС включает закономерно развертывающуюся сложную последовательность процессов, в ходе которых отросток нейрона активно взаимодействует с глиальными клетками. Собственно регенерация волокон следует за рядом реактивных изменений, обусловленных их повреждением.

Реактивные изменения нервного волокна после его перерезки. В течение 1-й недели после перерезки нервного волокна развивается восходящая дегенерация проксимальной (ближайшей к телу нейрона) части аксона, на конце которой формируется расширение (ретракционная колба). Миелиновая оболочка в области повреждения распадается, тело нейрона набухает, ядро смещается к периферии, хроматофильная субстанция растворяется (рис. 14-11).

В дистальной части волокна после его перерезки отмечается нисходящая дегенерация с полным разрушением аксона, распадом миелина и последующим фагоцитозом детрита макрофагами и глией.

Структурные преобразования при регенерации нервного волокна. Через 4- 6 нед. структура и функция нейрона восстанавливаются, от ретракционной колбы в направлении дистальной части волокна начинают отрастать тонкие веточки (конусы роста). Шванновские клетки в проксимальной части волокна пролиферируют, образуя ленты (Бюнгнера), параллельные ходу волокна. В дистальной части волокна Швановские клетки также сохраняются и митотически делятся, формируя ленты, соединяющиеся с аналогичными образованиями в проксимальной части.

Регенерирующий аксон растет в дистальном направлении со скоростью 3- 4 мм/сут. вдоль лент Бюнгнера, которые играют опорную и направляющую роль; Шванновские клетки образуют новую миелиновую оболочку. Коллатерали и терминали аксона восстанавливаются в течение нескольких месяцев.

Рис. 14-11. Регенерация миелинового нервного волокна (по R.Krstic, 1985, с изменениями). 1 - после перерезки нервного волокна проксимальная часть аксона (А) подвергается восходящей дегенерации, миелиновая оболочка (МО) в области повреждения распадается, перикарион (ПК) нейрона набухает, ядро смещается к периферии, хроматофильная субстанция (ХС) распадается (2). Дистальная часть, связанная с иннервируемым органом (в приведенном примере - скелетной мышцей) претерпевает нисходящую дегенерацию с полным разрушением А, распадом МО и фагоцитозом детрита макрофагами (МФ) и глией. Леммоциты (ЛЦ) сохраняются и митотически делятся, формируя тяжи - ленты Бюнгнера (ЛБ), соединяющиеся с аналогичными образованиями в проксимальной части волокна (тонкие стрелки). Через 4-6 нед структура и функция нейрона восстанавливаются, от проксимальной части А дистально отрастают тонкие веточки (жирная стрелка), растущие вдоль ЛБ (3). В результате регенерации нервного волокна восстанавливается связь с органоммишенью (мышцей) и регрессирует ее атрофия, вызванная нарушенной иннервацией (4). При возникновении преграды (П) на пути регенерирующего А (например, соединительнотканного рубца) компоненты нервного волокна

формируют травматическую неврому (ТН), которая состоит из разрастающихся веточек А и ЛЦ (5).

Условиями регенерации являются: отсутствие повреждения тела нейрона, небольшое расстояние между частями нервного волокна, отсутствие соединительной ткани, которая может заполнить промежуток между частями волокна. При возникновении преграды на пути регенерирующего аксона формируется травматическая (ампутационная) неврома, которая состоит из разрастающихся аксона и шванновских клеток, впаивающихся в соединительную ткань.

Регенерация нервных волокон в ЦНС отсутствует: хотя нейроны ЦНС обладают способностью к восстановлению своих отростков, этого не происходит, по-видимому, вследствие неблагоприятного влияния микроокружения. После повреждения нейрона микроглия, астроциты и гематогенные макрофаги фагоцитируют детрит в участке разрушенного волокна, на его месте пролиферирующие астроциты образуют плотный глиальный рубец.

НЕРВНЫЕ ОКОНЧАНИЯ

Нервные окончания - концевые аппараты нервных волокон. По функции они разделяются на три группы:

1) межнейронные контакты (синапсы) - обеспечивают функциональную связь между нейронами;

2) эфферентные (эффекторные) окончания - передают сигналы из нервной системы на исполнительные органы (мышцы, железы), имеются на аксонах;

3) рецепторные (чувствительные) окончания воспринимают раздражения из внешней и внутренней среды, имеются на дендритах.

МЕЖНЕЙРОННЫЕ КОНТАКТЫ (СИНАПСЫ)

Межнейронные контакты (синапсы) подразделяются на электрические и химические.

Электрические синапсы в ЦНС млекопитающих редки; они имеют строение щелевых соединений, в которых мембраны синаптически связанных клеток (пре- и постсинаптическая) разделены промежутком шириной 2 нм, пронизанным коннексонами. Последние представляют собой трубочки, образованные белковыми молекулами и служащие водными каналами, через которые мелкие молекулы и ионы могут транспортироваться из одной клетки в

другую (см. главу 3). Когда потенциал действия, распространяющийся по мембране одной клетки, достигает области щелевого соединения, электрический ток пассивно протекает через щель от одной клетки к другой. Импульс способен передаваться в обоих направлениях и практически без задержки.

Химические синапсы - наиболее распространенный тип у млекопитающих. Их действие основано на преобразовании электрического сигнала в химический, который затем вновь преобразуется в электрический. Химический синапс состоит из трех компонентов: пресинаптической части, постсинаптической части и синаптической щели (рис. 14-12). В пресинаптической части содержится (нейро)медиатор, который под влиянием нервного импульса выделяется в синаптическую щель и, связываясь с рецепторами в постсинаптической части, вызывает изменения ионной проницаемости ее мембраны, что приводит к ее деполяризации (в возбуждающих синапсах) или гиперполяризации (в тормозных синапсах). Химические синапсы отличаются от электрических односторонним проведением импульсов, задержкой их передачи (синаптической задержкой длительностью 0.2-0.5 мс), обеспечением как возбуждения, так и торможения постсинаптического нейрона.

Рис. 14-12. Строение химического синапса. Пресинаптическая часть (ПРСЧ) имеет вид концевого бутона (КБ) и включает: синаптические пузырьки (СП), митохондрии (МТХ), нейротрубочки (НТ), нейрофиламенты (НФ), пресинаптическую мембрану (ПРСМ) с пресинаптическим уплотнением (ПРСУ). В постсинаптическую часть (ПОСЧ) входит постсинаптическая мембрана (ПОСМ) с постсинаптическим уплотнением (ПОСУ). В синаптической щели (СЩ) находятся интрасинаптические филаменты (ИСФ).

1. Пресинаптическая часть образуется аксоном по его ходу (проходящий синапс) или представляет собой расширенную конечную часть аксона (концевой бутон). В ней содержатся митохондрии, аЭПС, нейрофиламенты, нейротрубочки и синаптические пузырьки диаметром 20-65 нм, в которых находится нейромедиатор. Форма и характер содержимого пузырьков зависят от находящихся в них нейромедиаторов. Круглые светлые пузырьки обычно содержат ацетилхолин, пузырьки с компактным плотным центром - норадреналин, крупные плотные пузырьки со светлым подмембранным ободком - пептиды. Нейромедиаторы вырабатываются в теле нейрона и механизмом быстрого транспорта переносятся в окончания аксона, где происходит их депонирование. Частично синаптические пузырьки образуются в самом синапсе путем отщепления от цистерн аЭПС. На внутренней стороне плазмолеммы, обращенной к синаптической щели (пресинаптической мембраны) имеется пресинаптическое уплотнение, образованное фибриллярной гексагональной белковой сетью, ячейки которой способствуют равномерному распределению синаптических пузырьков по поверхности мембраны.

2. Постсинаптическая часть представлена постсинаптической мембраной, содержащей особые комплексы интегральных белков - синаптические рецепторы, связывающиеся с нейромедиатором. Мембрана утолщена за счет скопления под ней плотного филаментозного белкового материала (постсинаптическое уплотнение). В зависимости от того, является ли постсинаптической частью межнейронного синапса дендрит, тело нейрона или (реже) его аксон, синапсы подразделяют на аксо-дендритические, аксосоматические и аксо-аксональные, соответственно.

3. Синаптическая щель шириной 20-30 нм иногда содержит поперечно расположенные гликопротеиновые интрасинаптические филаменты толщиной 5 нм, которые являются элементами специализированного гликокаликса, обеспечивающими адгезивные связи пре- и пост-синатической частей, а также направленную диффузию медиатора.

Механизм передачи нервного импульса в химическом синапсе. Под действием нервного импульса происходит активация потенциалзависимых кальциевых каналов пресинаптической мембраны; Са 2+ устремляется в аксон, мембраны синаптических пузырьков в присутствии Са2+ сливаются с пресинаптической мембраной, а их содержимое (медиатор) выделяется в синаптическую щель механизмом экзоцитоза. Воздействуя на рецепторы постсинаптической мембраны, медиатор вызывает либо ее деполяризацию, возникновение постсинаптического потенциала действия и образование нервного импульса, либо ее гиперпо-

ляризацию, обусловливая реакцию торможения. Медиаторами, опосредующими возбуждение, например, служат ацетилхолин и глутамат, а торможение опосредуется ГАМК и глицином.

После прекращения взаимодействия медиатора с рецепторами постсинаптической мембраны большая часть его эндоцитозом захватывается пресинаптической частью, меньшая рассеивается в пространстве и захватывается окружающими глиальными клетками. Некоторые медиаторы (например, ацетилхолин) расщепляются ферментами на компоненты, которые далее захватываются пресинаптической частью. Мембраны синаптических пузырьков, встроенные в пресинаптическую мембрану, в дальнейшем включаются в эндоцитозные окаймленные пузырьки и повторно используются для образования новых синаптических пузырьков.

В отсутствие нервного импульса пресинаптическая часть выделяет отдельные небольшие порции медиатора, вызывая в постсинаптической мембране спонтанные миниатюрные потенциалы.

ЭФФЕРЕНТНЫЕ (ЭФФЕКТОРНЫЕ) НЕРВНЫЕ ОКОНЧАНИЯ

Эфферентные (эффекторные) нервные окончания в зависимости от природы иннервируемого органа подразделяются на двигательные и секреторные. Двигательные окончания имеются в поперечнополосатых и гладких мышцах, секреторные - в железах.

Нервно-мышечное окончание (нервно-мышечный синапс, моторная бляшка) - двигательное окончание аксона мотонейрона на волокнах поперечнополосатых соматических мышц - состоит из концевого ветвления аксона, образующего пресинаптическую часть, специализированного участка на мышечном волокне, соответствующего постсинаптической части, и разделяющей их синаптической щели (рис. 14-13).

В крупных мышцах, развивающих значительную силу, один аксон, разветвляясь, иннервирует большое количество (сотни и тысячи) мышечных волокон. Напротив, в мелких мышцах, осуществляющих тонкие движения (например, наружных мышцах глаза), каждое волокно или их небольшая группа иннервируются отдельным аксоном. Один мотонейрон в совокупности с иннервируемыми им мышечными волокнами образует двигательную единицу.

Пресинаптическая часть. Вблизи мышечного волокна аксон утрачивает миелиновую оболочку и дает несколько веточек, которые

Аксон

Аксон - одиночный отросток нервной клетки, достигающий в длину до 1,5 метра, постоянного диаметра, покрытый нейроглиальными оболочками. Аксон проводит нервные импульсы от тела нервной клетки к другим нейронам или к рабочим органам. В месте, где аксон отходит от тела, имеется аксонный холмик , который, сужаясь, переходит в начальный сегмент аксона, ещё не покрытый нейроглиальной оболочкой. В аксонном холмике отсутствует вещество Нисля.

Клеточная мембрана аксона называется аксолеммой , а цитоплазма - аксоплазмой . Аксолемма выполняет важнейшую роль в проведении нервного импульса. В аксоплазме находятся нейрофибриллы, митохондрии и агранулярная ЭПС. Все эти органеллы сильно вытягиваются вдлину. В аксоплазме происходит постоянный ток молекул от тела нейрона к периферии и в обратном направлении.

Аксон делится на несколько крупных ветвей , которые отходят от перехватов Ранвье. Эти ветви оканчиваются многочисленными разветвлениями - терминалями . Они образуют синапсы на других ннейронах.

Аксон всегда покрыт нейроглиальной оболочкой. В зависимости от характера структуры оболочек различают 2 типа волокон :

1) немиеленизированные (безмякотные);

2) меилинизированные (мякотные).

Немиелинизированные волокна главным образом встречаются в вегетативной нервной системе и имеют малый диаметр. Такой аксон погружён в нейроглиальную клетку так, что оболочка нейроглиальной клетки смыкается над аксоном, охватывает его со всех сторон, образуя мезаксон .

Установлено, что в одну нейроглиальную клетку может погружаться до 10-20 аксонов. Такие волокна называются волокнами кабельного типа . При этом оболочку образует цепочка нейроглиальных клеток.

Второй тип волокон называется немиелинизированными. Они имеют больший диаметр аксона.

Нейроглиальная оболочка состоит из двух слоёв: внутренний слой - миелиновая оболочка, наружный слой - неврилемма .

Протяжённость миелиновой оболочки начинается, несколько отступив от тела аксона, и заканчивается на расстоянии 2 мкм от синапса. Она состоит из сегментов равной длины - межузловых сегментов , разделённых перехватами Ранвье. Здесь аксон либо обнажён, либо покрыт неврилеммой. В области перехватов Ранвье могут отходит ветви. Миелиновая оболочка - упорядоченная структура, которая состоит из чередующихся белковых и липидных слоёв. Её структурной единицей является бимолекулярный липидный слой, заключённый между двумя молекулярными белковыми слоями. Толщина этой субъединицы равняется 115-130 А, а количество самих слоёв может достигать 100 и более. Миелиновая оболочка является изолятором и обладает большим сопротивлением постоянному току, что способствует огромному ускорению проведения нервного импульса. Нервный импульс как бы перескакивает с одного перехвата Ранвье на другой, так как деполяризация аксонов происходит только в областях перехватов Ранвье. Такое проведение нервного импульса называется сайтоторным (скачкообразным).

Человека и позвоночных животных имеет единый план строения и представлена центральной частью - головным и спинным мозгом, а также периферическим отделом - отходящими от центральных органов нервами, представляющими собой отростки нервных клеток - нейронов.

Особенности нейроглиальных клеток

Как мы уже говорили, миелиновая оболочка дендритов и аксонов образована специальными структурами, характеризующимися низкой степенью проницаемости для ионов натрия и кальция, а потому имеющих только потенциалы покоя (они не могут проводить нервные импульсы и выполняют электроизоляционные функции).

Данные структуры называются К ним относятся:

  • олигодендроциты;
  • волокнистые астроциты;
  • клетки эпендимы;
  • плазматические астроциты.

Все они формируются из наружного слоя зародыша - эктодермы и имеют общее название - макроглия. Глия симпатических, парасимпатических и соматических нервов представлена шванновскими клетками (нейролеммоцитами).

Строение и функции олигодендроцитов

Они входят в состав центральной нервной системы и являются клетками макроглии. Так как миелин - это белково-липидная структура, она способствует увеличению скорости проведения возбуждения. Сами клетки образуют электроизолирующий слой нервных окончаний в головном и спинном мозге, формируясь уже в период внутриутробного развития. Их отростки обворачивают в складки своей наружной плазмалеммы нейроны, а также дендриты и аксоны. Получается, что миелин - это основной электроизолирующий материал, разграничивающий нервные отростки смешанных нервов.

и их особенности

Миелиновая оболочка нервов периферической системы образована нейролеммоцитами (шванновскими клетками). Их отличительная особенность состоит в том, что они способны образовывать защитную оболочку только одного аксона, и не могут формировать отростки, как это присуще олигодендроцитам.

Между шванновскими клетками на расстоянии 1-2 мм располагаются участки, лишённые миелина, так называемые перехваты Ранвье. По ним скачкообразно происходит проведение электрических импульсов в пределах аксона.

Леммоциты способны к репарации нервных волокон, а также выполняют В результате генетических аббераций клетки оболочки леммоцитов начинают неконтролируемое митотическое деление и рост, вследствие чего в различных отделах нервной системы развиваются опухоли - шванномы (невриномы).

Роль микроглии в разрушении миелиновой структуры

Микроглия представляет собой макрофаги, способные к фагоцитозу и умеющие распознавать различные патогенные частицы - антигены. Благодаря мембранным рецепторам эти глиальные клетки вырабатывают ферменты - протеазы, а также цитокины, например, интерлейкин 1. Он является медиатором воспалительного процесса и иммунитета.

Миелиновая оболочка, функции которой заключаются в изолировании осевого цилиндра и улучшении проведения нервного импульса, может повреждаться интерлейкином. В результате этого, нерв «оголяется» и скорость проведения возбуждения резко снижается.

Более того, цитокины, активируя рецепторы, провоцируют избыточный транспорт ионов кальция в тело нейрона. Протеазы и фосфолипазы начинают расщеплять органеллы и отростки нервных клеток, что приводит к апоптозу - гибели данной структуры.

Она разрушается, распадаясь на частицы, которые и пожирают макрофаги. Это явление называется эксайтотоксичностью. Оно вызывает дегенерацию нейронов и их окончаний, приводя к таким заболеваниям, как болезнь Альцгеймера и болезнь Паркинсона.

Мякотные нервные волокна

Если отростки нейронов - дендриты и аксоны, покрывает миелиновая оболочка, то они называются мякотными и иннервируют скелетную мускулатуру, входя в соматический отдел периферической нервной системы. Немиелинизированные волокна образуют вегетативную нервную систему и иннервируют внутренние органы.

Мякотные отростки имеют больший диаметр, чем безмякотные, и формируются следующим образом: аксоны прогибают плазматическую мембрану клеток глии и формируют линейные мезаксоны. Затем они удлиняются и шванновские клетки многократно обворачиваются вокруг аксона, образуя концентрические слои. Цитоплазма и ядро леммоцита перемещаются в область наружного слоя, который называется неврилеммой или шванновской оболочкой.

Внутренний слой леммоцита состоит из слоистого мезоксона и называется миелиновой оболочкой. Толщина её в различных участках нерва неодинакова.

Как восстановить миелиновую оболочку

Рассматривая роль микроглии в процессе демиелинизации нервов, мы установили, что под действием макрофагов и нейромедиаторов (например, интерлейкинов) происходит разрушение миелина, что в свою очередь приводит к ухудшению питания нейронов и нарушению передачи нервных импульсов по аксонам.

Данная патология провоцирует возникновение нейродегенеративных явлений: ухудшение когнитивных процессов, прежде всего памяти и мышления, появление нарушения координации движений тела и тонкой моторики.

В итоге возможна полная инвалидизация больного, которая возникает в результате аутоиммунных заболеваний. Поэтому вопрос о том, как восстановить миелин, в настоящее время стоит особенно остро. К таким способам относится прежде всего сбалансированная белково-липидная диета, правильный образ жизни, отсутствие вредных привычек. В тяжелых случаях заболеваний применяют медикаментозное лечение, восстанавливающее количество зрелых глиальных клеток - олигодендроцитов.

  • 62. Дифференцировка b-лимфоцитов и их функциональное значение.
  • 63.Развитие, строение, количество и функциональное значение эозинофильных лейкоцитов.
  • 64.Моноциты. Развитие, строение, функции и количество.
  • 65.Развитие, строение и функциональное значение нейтрофильных лейкоцитов.
  • 66. Развитие кости из мезенхимы и на месте хряща.
  • 67.Строение кости как органа. Регенерация и трансплантация костей.
  • 68.Строение пластинчатой и ретикулофиброзной костной ткани.
  • 69.Костные ткани. Классификация, развитие, строение и изменения под влиянием факторов внешней и внутренней среды. Регенерация. Возрастные изменения.
  • 70.Хрящевые ткани. Классификация, развитие, строение, гистохимическая характеристика и функция. Рост хрящей, регенерация и возрастные изменения.
  • 72. Регенерация мышечных тканей.
  • 73.Поперечнополосатая сердечная мышечная ткань. Развитие, строение типичных и атипичных кардиомиоцитов. Особенности регенерации.
  • 74.Поперечнополосатая мышечная ткань скелетного типа. Развитие, строение. Структурные основы сокращение мышечного волокна.
  • 76.Нервная ткань. Общая морфофункциональная характеристика.
  • 77.Гистогенез и регенерация нервной ткани.
  • 78.Миелиновые и безмиелиновые нервные волокна. Строение и функция. Процесс миелинизации.
  • 79.Нейроциты, их классификация. Морфологическая и функциональная характеристика.
  • 80.Строение чувствительных нервных окончаний.
  • 81.Строение двигательных нервных окончаний.
  • 82.Межнейральные синапсы. Классификация, строение и гостофизиология.
  • 83.Нейроглия. Классификация, развитие, строение и функция.
  • 84.Олигодендроглия, ее местоположение, развитие и функциональное значение.
  • 88.Парасимпатический отдел нервной системы, его представительство в составе цнс и на периферии.
  • 89.Спинальные нервные узлы. Развитие, строение и функции.
  • 78.Миелиновые и безмиелиновые нервные волокна. Строение и функция. Процесс миелинизации.

    Нервные волокна.

    Отростки нервных клеток, покрытые оболочками, называются волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном.

    В ЦНС оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в перефирической – нейролеммоциты.

    Безмиелиновые нервные волокна располагаются преимущественно в периферической вегетативной нервной системе. Их оболочка представляет собой тяж нейролеммоцитов, в который погружены осевые цилиндры. Безмиелиновое волокно, в котором находятся несколько осевых цилиндров, называется волокном кабельного типа. Осевые цилиндры из одного волокна могут переходить в соседнее.

    Процесс образования безмиелинового нервного волокна происходит следующим образом. При появлении отростка в нервной клетке рядом с ним появляется тяж нейролеммоцитов. Отросток нервной клетки (осевой цилиндр) начинает погружаться в тяж нейролеммоцитов, увлекая плазмолемму вглубь цитоплазмы. Сдвоенная плазмолемма называется мезаксоном. Таким образом, осевой цилиндр располагается на дне мезаксона (подвешен на мезаксоне). Снаружи безмиелиновое волокно покрыто базальной мембраной.

    Миелиновые нервные волокна располагаются преимущественно в соматической нервной системе, имеют значительно больший диаметр по сравнению с безмиелиновыми-достигает до 20 мкм. Осевой цилиндр тоже более толстый. Миелиновые волокна окрашиваются осмием в черно-коричневый цвет. После окрашивания в оболочке волокна видны 2 слоя: внутренний миелиновый и наружный, состоящий из цитоплазмы, ядра и плазмолеммы, который называется неврилеммой. В центре волокна проходит неокрашенный (светлый) осевой цилиндр.

    В миелиновом слое оболочки видны косые светлые насечки (incisio myelinata). По ходу волокна имеются сужения, через которые не переходит миелиновый слой оболочки. Эти сужения называются узловыми перехватами (nodus neurofibra). Через эти перехваты проходит только неврилемма и базальная мембрана, окружающая миелиновое волокно. Узловые перехваты являются границей между двумя смежными леммоцитами. Здесь от нейролеммоцита отходят короткие выросты диаметром около 50 нм, заходящие между концами таких же отростков смежного нейролеммоцита.

    Участок миелинового волокна, расположенный между двумя узловыми перехватами, называется межузловым, или интернодальным, сегментом. В пределах этого сегмента рас-полагается всего лишь 1 нейролеммоцит.

    Миелиновый слой оболочки - это мезаксон, навернутый на осевой цилиндр.

    Формирование миелинового волокна. Вначале процесс образования миелинового волокна сходен с процессом образованием безмиелинового, т. е. осевой цилиндр погружается в тяж нейролеммоцитов и образуется мезаксон. После этого мезаксон удлиняется и навертывается на осевой цилиндр, оттесняя цитоплазму и ядро на периферию. Вот этот, навернутый на осевой цилиндр, мезаксон и есть миелиновый слой, а наружный слой оболочки - это оттесненные к периферии ядра и цитоплазма нейролеммоцитов.

    Миелиновые волокна отличаются от безмиелиновых по строению и функции. В частности, скорость движения им¬пульса по безмиелиновому нервному волокну составляет 1-2 м в секунду, по миелиновому - 5-120 м в секунду. Объясняется это тем, что по миелиновому волокну импульс движется сальтоторно (скачкообразно). Это значит, что в пределах узлового перехвата импульс движется по неврилемме осевого цилиндра в виде волны деполяризации, т. е. медленно; в пределах межузлового сегмента импульс движется как электрический ток, т. е. быстро. В то же время импульс по безмиелиновому волокну движется только в виде волны деполяризации.

    На электронограмме хорошо видно отличие миелинового волокна от безмиелинового - мезаксон послойно навернут на осевой цилиндр.