Оптические методы определения минералов. Поляризация света: её суть и роль в природе Где применяется поляризация света

а) Поляризационные светофильтры.

Свет, отраженный от воды, от других диэлектриков, содержит яркие блики, ослепляющие глаза, ухудшающие изображение. Блики, вследствие закона Брюстера, имеют поляризованную компоненту, в которой световые векторы расположены параллельно отражающей поверхности. Если на пути бликующего света поставить поляризационный светофильтр, плоскость пропускания которого перпендикулярна отражающей поверхности, то блики будут погашены полностью или частично. Поляризационные светофильтры применяют в фотографии, на перископах подводных лодок, в биноклях, микроскопах и т.д.

б).Поляриметры, сахариметры.

Это приборы, использующие свойство плоскополяризованного света поворачивать плоскость колебания в веществах, которые называют оптически активными, например растворы. Угол поворота пропорционален оптическому пути и концентрации вещества:

В простейшем случае поляриметр – это поляризатор и анализатор, расположенные последовательно в пучке света. Если их плоскости пропускания взаимно перпендикулярны, то свет не проходит через них. Помещая между ними оптически активное вещество, наблюдают просветление. Повернув на угол поворота плоскости колебаний φ анализатор, опять добиваются полного затемнения. Применяются поляриметры для измерения концентрации растворов, для исследования молекулярного строения веществ.

в). Индикаторы на жидких кристаллах.

Жидкие кристаллы – это вещества, молекулы которых либо имеют форму нитей, либо плоских дисков. Даже в слабом электрическом поле молекулы ориентируются, и жидкость приобретает свойства кристалла. В жидкокристаллическом индикаторе жидкость расположена между поляроидом и зеркалом. Если поляризованный свет проходит в области электродов, то на оптическом пути в две толщины слоя жидкости плоскость колебаний поворачивается на 90 о и свет не выходит через поляроид и наблюдается черное изображение электродов. Поворот обусловлен тем, что обыкновенный и необыкновенный пучки света распространяются в кристалле с разной скоростью, возникает разность фаз, и результирующий световой вектор постепенно поворачивается. Вне электродов свет выходит и наблюдается серый фон.

Многообразно применение поляризованного света. Исследование внутренних напряжений в линзах телескопов, в стеклянных моделях деталей. Применение ячейки Керра как быстродействующего фотозатвора импульсных лазеров. Измерение интенсивности света в фотометрах.


Контрольные вопросы

1. С какой целью на перископы подводных лодок устанавливают поляризаторы?

2. Какие действия производит фотограф с поляризационным светофильтром при установке его на объектив перед фотосъемкой?



3. Почему естественный свет при отражении от диэлектриков ли и поляризуется, а при отражении от металлов не поляризуется?

4. Изобразите ход пучков естественного света при падении на жидкокристаллический индикатор мобильного телефона в области электрического поля и вне поля.

5. Каким является свет, отраженный от индикатора наручных электронных часов, естественным или поляризованным?

6. Как расположить плоскости пропускания поляроидов на фарах и лобовом стекле автомобиля, чтобы встречные машины не ослепляли друг друга?

7. Интенсивность света, проходящего через анализатор, изменяется в два раза при повороте через каждые 90 о. Какой это свет? Какова степень поляризации света?

8. На пути естественного света расположено несколько параллельных стеклянных пластинок под углом Брюстера (стопа Столетова). Как меняется степень поляризации и интенсивность проходящего пучка света с увеличением числа пластинок?

9. На пути естественного света расположено несколько параллельных стеклянных пластинок под углом Брюстера (стопа Столетова). Как меняется степень поляризации и интенсивность отраженного пучка света с увеличением числа пластинок?

10. Плоскополяризованный пучок света под углом Брюстера падает на поверхность диэлектрика. Плоскость колебаний светового вектора поворачивается, Как зависит интенсивность от угла между плоскостью падения и плоскостью колебаний светового вектора?

11. Если смотреть на светящуюся точку через двоякопреломляющий кристалл исландского шпата, то видно две точки. Как меняется их взаимное расположение, если поворачивать кристалл

12. Если узкий пучок света проходит через двоякопреломляющий кристалл, то из него выходят два пучка света. Как доказать, что это поляризованные взаимно перпендикулярно пучки?

13. Если узкий пучок света проходит через двоякопреломляющий кристалл турмалина, то из него выходят два пучка света. Как узнать, который из них обыкновенный, а который необыкновенный пучок света?

14. Блики света от лужи слепят глаз. Как должна быть расположена плоскость пропускания света поляризационных очков относительно вертикали?

15. Объясните способ получения объемного изображения на плоском экране в стереокинотеатре.

16. Объясните, для чего в микроскопах применяют поляризационные светофильтры?

17. Как доказать, что луч лазера является плоскополяризованным светом. Почему лазер вырабатывает плоскополяризованный свет?

18. Как следует расположить оптическую ось двоякопреломляющего кристалла, чтобы обыкновенный и необыкновенный пучки света распространялись после прохождения совместно?

19. Обыкновенный и необыкновенный пучки света распространяются в кристалле совместно с различными скоростями V о V е

F Tran

A BB YY

F Tran

A B BYY

вые колебания, которые совершаются только в одной определенной плоскости;

направление колебаний задается поляризатором. Минерал изучается в проходящем поляризованном свете, который внешне ничем не отличается от обычного света, т. е. мы без дополнительных устройств не в состоянии определить, с каким светом имеем дело– простым или поляризованным. Для того, чтобы воспользоваться всеми преимуществами поляризованного света, необходимо использовать еще один поляризатор, который называется анализатором. Он расположен в верхней части тубуса, непосредственно перед окулярами. Анализатор можно убирать, и тогда мы рассматриваем минерал на просвет так же, как и в обычном свете. Когда же анализатор включен(николи скрещены), то наблюдаются специфические картины, зависящие от структуры минерала и его оптических свойств.

Для возможности использования поляризованного микроскопа необходимы специальные знания по кристаллооптике, т. к., используя такой микроскоп, исследователь по оптическим свойствам и явлениям, наблюдаемым только в такой микроскоп, может многое сказать о структуре минерала. Не вдаваясь в теоретические знания по кристаллооптике, мы рассмотрим некоторые практические следствия, которые можно наблюдать при работе с поляризационным микроскопом.

О ПТИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ МИНЕРАЛОВ

Наиболее важными оптическими свойствами для идентификации минералов является оптический класс и показатель преломления.

При оптическом методе исследования применяют поляризационный микроскоп. Надо приготовить препарат из исследуемых зерен. Исследуемые зерна должны быть небольшими (при необходимости большие зерна раздавливают) – размер 0,1–0,2 мм. Они должны находится (быть погружены) в капле жидкости на предметном стекле, покрытой покровным стеклом. Иногда минералы исследуются в шлифах (тонких пластинках толщиной 0,03 мм). Пластинки наклеивают на предметное стекло специальным изотропным веществом, смолой, – канадским бальзамом и накрывают покровным стеклом. Но это больше касается изучения минералов совместно с горными породами.

Первая задача при определении минерала заключается в выяснении, к какому минеральному виду он принадлежит: является ли он корундом, цирконом, оливином или полевым шпатом. Первое предположение о природе минерала нередко можно сделать на основании его цвета, блеска и общего вида, но быть уверенным в правильности определения можно только в результате измерения той или иной его оптической или физической константы.

Прежде чем определять оптические свойства минерала, под микроскопом наблюдают его физические свойства, связанные со структурой и симметрией– это форма зерен или их обломков, спайность, трещиноватость, включения. Наличие или отсутствие спайности выявляется обычно при дроблении минерала на мелкие осколки; так минерал с хорошей спайностью образует осколки пре-

F Tran

A BB YY

F Tran

A B BYY

имущественно с прямыми ребрами (например, амфиболы, пироксены, полевые

шпаты и тригональные карбонаты). В некоторых случаях под микроскопом можно определить направления или углы спайности.

Изучение прозрачности

Минералы бывают прозрачные, полупрозрачные и непрозрачные. Минералы, слагающие горные породы (силикаты, алюмосиликаты, реже карбонаты и фосфаты) являются прозрачными – это оливин, пироксен, амфибол, кварц, полевые шпаты, кальцит, апатит и др. Полупрозрачными называются минералы, просвечивающие в тонких сколах, например, хромшпинелиды или гематит. Непрозрачными называются минералы, не просвечивающие даже в тонких сколах, например, пирит, халькопирит, магнетит, ильменит и др.

Изучение формы зерен

Для многих минералов форма зерен и наличие спайности являются легко наблюдаемыми диагностическими признаками, поэтому с их изучения и надо начинать определение минерала. Анизотропные минералы в зависимости от типа кристаллической решетки могут иметь т а б л и т ч а т ы,е п р и з м а т и ч е - с к и е, п л а с т и н ч а т ы е, л и с т о в а т ы е, ч е ш у й ч а т ы е, и г о л ь ч а т ы е и другие формы

Исследование включений

Включения и их характер дают представление об условиях кристаллизации несущего их минерала, от которого они отличаются размерами, формой, рельефом и цветом. Включения могут быть представлены округлыми пузырьками, тонкими игольчатыми кристалликами и неправильными образованиями(при замещении). Пузырьки заполнены газом, жидкостью, иногда тем и другим вместе и даже с участием твердой фазы– мельчайших кристалликов каких-либо минералов. Точная диагностика включений требует специальной методики. Поэтому при изучении под микроскопом ограничиваются описанием их формы и размеров, ориентировки по отношению к граням или спайности, количества, равномерности распределения в минерале и определением в первом приближении.

Определение оптического класса

Анизотропные вещества легко отличить от изотропных, если наблюдать препарат с исследуемыми зернами под поляризационным микроскопом с вв - е денным анализатором .

1. Жидкость и зерна изотропного вещества будут казаться темными и останутся такими при любом повороте столика микроскопа.

2. На большей части зерен анизотропного вещества будут наблюдаться цвета интерференции, а зерна будут становиться темными(погасать) четыре раза с интервалом в 90º при полном повороте столика микроскопа.

3. Чтобы определить, является ли анизотропный минерал одноосным (минералом средних сингоний) или двуосным (минералом низших сингоний) ис-

F Tran

A BB YY

F Tran

A B BYY

пользуют наблюдение в сходящемся свете. Для этого применяют линзу Бертра-

на, делающей свет сходящимся. Перед определением осности среди массы зерен находят наиболее тусклое серое зерно, даже когда оно находится на45º от положения максимального погасания. При включении линзы Бертрана получают одну из характерных фигур интерференции(черный крест для одноосных минералов или одну, не уходящую при вращении столика микроскопа, ветвь гиперболы для двуосных минералов). Тут же можно определитьоптический знак минерала (положительный или отрицательный), если воспользоваться дополнительными приспособлениями – кварцевой пластинкой или кварцевым клином.

Определение показателя преломления

Отклонение направления светового луча при вхождении в другую среду называется светопреломлением . Показатель преломления может быть определен как скорость света в воздухе, деленная на скорость света в среде. Скорость света в воздухе равно300 000 км/сек. С такой же огромной скоростью идет к нам свет от Солнца и звезд. В кварце (горный хрусталь, аметист) скорость света снижается до 194 000 км/сек, а в алмазе до 124 000 км/сек. Таким образом алмаз имеет показатель преломления 300 000: 124 000 = 2,42, т. е. самый высокий по сравнению с показателями преломления всех драгоценных камней, используемых в ювелирном деле, что обусловливает сверкающий алмазный блеск камня.

Измерение величин показателя преломления является важным методом определения минералов. Для каждого минерала характерен определенный показатель или показатели преломления.

Для изотропных минералов характерен только один показатель преломления, а для анизотропных – два или три крайних значения. Свет, проходя через изотропное вещество (например, воду, стекло или изотропный минерала – гранат, шпинель, флюорит) распространяется с одинаковой скоростью по всем направлениям – показатель преломления таких веществ только один.

Также вы помните, что луч света, проходя через кальцит (или другие анизотропные вещества) распадается на два луча, колебания которых взаимно перпендикулярны. Один из лучей называют обыкновенным, а другой необыкновенным. Один из лучей будет иметь максимальный показатель преломления для данного минерала, а второй, перпендикулярный первому, – минимальный. Для минералов низших сингоний существует еще и третий показатель преломления n m , промежуточный. Чем больше разница между значениями минимального и максимального показателей преломления, тем больше у минерала двупреломление. Двупреломление в отличие от показателя преломления определить под микроскопом гораздо сложнее, т. к. этот параметр зависит от толщины зерна. Двупреломление определяют в шлифах и на рефрактометре.

Перед тем как производить точные измерения показателя преломления необходимо найти ориентированное сечение минерала(обычно он должен лежать на стекле параллельно оси симметрии), в котором можно точно определить два показателя преломления – один вдоль оси, а второй – перпендикуляр-

F Tran

P

A B BY Y

но ей. Хотя часто бывает достаточно определить, в общем, величину показателя преломления, чтобы оценить ее как высокую, среднюю или низкую.

Показатель преломления ювелирных камней (особенно в оправе) определяют при помощи рефрактометра. Незакрепленные ювелирные камни (особенно, если у них нет ровных граней) определяют при помощи иммерсионных жидкостей. При использовании этого метода зерно погружают в каплю жидкости с известным показателем преломления и накрывают покровным стеклом. Наблюдения поверхности минерала и его контактов с жидкостью покажут -на сколько показатели преломления этих двух компонентов(минерала и жидкости) различаются между собой. Чем меньше разница в показателях преломления, тем тоньше границы зерна и тем более гладкая будет его поверхность. Сведения о том, больше или меньше показатель преломления минерала по отношению к жидкости, даст оптический эффект, который называется полоска Бекке. Это световая полоска на контакте минерала и жидкости, возникает из-за разницы показателей преломления двух сред.

По направлению движения полоски Бекке можно судить о том больше или меньше показатель преломления минерала, чем показатель преломления жидкости. Для этого надо притенить изображение, немного прикрыв диафрагму, сделать большое увеличение и осторожно опускать или поднимать столик микроскопа. Если полоска Бекке при опускании столика будет двигаться на минерал, то его показатель преломления выше, чем у жидкости, если от минерала, то наоборот.

Изучение окраски минерала и плеохроизма

Это важное свойство, которым обладают окрашенные минералы. Подавляющее большинство минералов, обладающих плеохроизмом, макроскопически его не проявляют, т. к. для этого нужны специальные условия наблюдения (на просвет), а многие, прекрасно плеохроирующие минералы из-за своего темного цвета в больших зернах, не просвечивают (например, биотит и роговая обманка). Для наблюдения плеохроизма достаточно вращать столик микроскопа и наблюдать изменение цвета минерала (без анализатора).

Несмотря на то, что минерал может быть окрашен в разных породах -по разному, у него есть какой-то чаще других встречающийся цвет, который является основным. Окраска минерала, обусловленная его внутренними свойствами, называется идиохроматической, а зависящая от примесей – аллохроматической. При прохождении через любое вещество интенсивность света всегда уменьшается, т. к. свет частично поглощается этим веществом. Если все длины волн белого света поглощаются (а б с о р б и р у ю т) равномерно, то вещество будет казаться бесцветным. Если какие-то длины волн поглощаются более интенсивно,

то вещество будет казаться окрашенным. Оптически изотропные вещества обладают равномерной абсорбцией, поэтому при вращении столика микроскопа их окраска не будет изменяться. Однако чаще всего мы имеем дело с оптически анизотропными средами, обладающими избирательной абсорбцией. Такая и з-

* Окраска является результатом суммы всех длин волн света, прошедших через данное вещество;

Применения поляризации света в практических нуждах достаточно разнообразны. Так, некоторые примеры применения разрабатывались очень много лет назад, но продолжают использоваться в настоящее время. Другие примеры применений только находятся на стадии внедрения

Рисунок 1. Применение поляризации света. Автор24 - интернет-биржа студенческих работ

В методическом смысле всем им присуще одно общее свойство – либо они способствуют решению конкретных задач в физике, либо вовсе недоступны в отношении других методов или позволяют решать их нестандартным, но при этом более оперативным и эффективным способом.

Явление поляризации света

С целью более детального знакомства с применением поляризации света, следует понимать суть самого явления поляризации.

Определение 1

Явление поляризации света является оптическим феноменом, нашедшим свое применение в техническом смысле, однако при этом не встречающимся в рамках повседневной жизни. Поляризованный свет нас в буквальном смысле окружает, однако для человеческого глаза сама поляризация остается практически недоступной. Мы, таким образом страдаем «поляризационной слепотой».

Создаваемый солнцем (или каким-либо иным обычным источником, например, лампой) естественный свет является совокупностью волн, которые излучаются за счет огромного числа атомов.

Поляризованной волной будет считаться поперечная волна, где колебания всех частиц выполняется в пределах в одной плоскости. Ее при этом можно получить, благодаря резиновому шнуру, в том случае, если поставить на его пути специальную преграду с тонкой щелью. Щель, в свою очередь, будет пропускать исключительно колебания, происходящие вдоль нее. Плоскополяризованная волна излучается отдельным атомом.

Примеры поляризации света и закон Умова

В природе существует множество разнообразных примеров поляризации света. При этом можно рассмотреть наиболее распространенные из них:

  • Самым простым и широко известным примером поляризации является чистое небо, которое считается ее источником.
  • Другими широко распространёнными случаями можно считать блики на стеклянных витринах и водной поверхности. При необходимости они устраняются за счет соответствующих поляроидных фильтров, которыми зачастую пользуются фотографы. Данные фильтры становятся незаменимыми в случае необходимости запечатления на фотоснимках каких-либо защищённых стеклом картин либо экспонатов из музея.

Принцип действия вышеуказанных фильтров базируется на том факте, что совершенно любому отраженному свету (в зависимости от угла падения) присуща определенная степень поляризации. При взгляде на блик, таким образом, легко можно подобрать оптимальный угол расположения фильтра, при котором он подавляется, вплоть до своего полного исчезновения.

Аналогичный принцип задействуют производители качественных очков с солнцезащитным фильтром. За счет задействования в их стекле поляроидных фильтров, убираются те блики, которые мешают. Они, в свою очередь, исходят от поверхностей мокрого шоссе или моря.

Замечание 1

Эффективное применение явления поляризации демонстрирует закон Умова: любой рассеянный свет с неба – это солнечные лучи, ранее претерпевшие множественные отражения от молекул воздуха, и неоднократно при этом преломившиеся в каплях воды или кристаллах льда. Наряду с тем, процесс поляризации будет характерным не только в отношении направленного отражения (от воды, например), но и для диффузного.

В 1905 году физики представили доказательство версии о том, что, чем темнее поверхность отражения световой волны, тем более высокой оказывается степень поляризации, и именно эту зависимость удалось доказать в законе Умова. Если рассматривать данную зависимость на конкретном примере с асфальтовым шоссе, выходит, что во влажном состоянии оно становится более поляризованным в сравнении с сухим.

Применение поляризации света в истории и в повседневной жизни

Поляризация света, таким образом, оказывается непростым явлением для изучения, а важным в плане широкого практического применения в физике. На практике в повседневной жизни встречаются следующие примеры:

  1. Ярким примером, знакомым всем, является 3D-кинематограф.
  2. Еще одним распространенным примером являются поляризационные очки, скрывающие солнечные блики от воды и света фар на трассе.
  3. Так называемые поляризационные фильтры задействованы в фототехнике, а поляризация волн применяется с целью передачи сигналов между антеннами разных космических аппаратов.
  4. Одной из главнейших повседневных задач светотехники считается постепенное изменение и регулирование интенсивности световых потоков. Решение данной задачи за счет пары поляризаторов (поляроидов) обладает определенными преимуществами перед остальными методами регулирования. Поляроиды могут изготавливаться в формате больших размеров, что предполагает употребление таких пар не только в лабораторных установках, но и в иллюминаторах пароходов, окнах ж/д вагонов и пр.
  5. Еще одним примером является поляризационная блокировка, применяемая в световом оборудовании рабочего места операторов, которые обязаны видеть одновременно, например, экран осциллографа и определенные таблицы, карты или графики.
  6. Поляроиды могут оказаться полезными для тех, чья работа связана с водой (моряки, рыбаки), с целью гашения зеркально отражающихся от воды бликов, частично поляризованных.

Рисунок 2. Применение поляризационных устройств. Автор24 - интернет-биржа студенческих работ

Замечание 2

Гашение отраженного света в условиях нормального или близкого к нормальному падения может осуществляться за счет циркулярных поляризаторов. Ранее наука доказала, что в этом случае право циркулярный свет преобразуется в лево циркулярный (и обратно). Тот же самый поляризатор, таким образом, создающий циркулярную поляризацию падающего света, будет провоцировать гашение отраженного света.

В астрофизике, спектроскопии, светотехнике свое широкое применение находят так называемые поляризационные фильтры, позволяющие вычленять узкие полосы из исследуемого спектра и провоцирующие изменения насыщенности или цветовых оттенков.

Действие таких фильтров основывается на свойствах основных параметров фазовых пластинок (дихроизм поляроидов) и поляризаторов, находящихся в непосредственной зависимости от длины волны. По этой причине разнообразные комбинации подобных устройств могут применяться в целях изменений спектрального энергораспределения в световых потоках.

Пример 1

Так, например, пара хроматических поляроидов, которым присущ дихроизм исключительно в пределах видимой сферы, в скрещенном положении начнет пропускать красный свет, а в параллельном – только белый. Такое простейшее устройство будет эффективным в практическом применении при освещении фотолабораторий.

Таким образом, сфера применения поляризации света является достаточно разнообразной. По этой причине исследование явления поляризации приобретает свою особенную актуальность.

Двойное лучепреломление существует в естественно анизотропных телах. Однако существуют различные способы искусственной оптической анизотропии  сообщение оптической анизотропии естественно изотропным веществам.

5.1. Фотоупругость

Тело под влиянием механической деформации ста­новится оптически анизотропным. Например, при одностороннем сжатии или растяжении пластинка из прозрачного материала приобретает свойства одноосно­го кристалла, оптическая ось которого совпадает с направлением сжа­тия или растяжения. Разность показателей преломления обыкновенного и необыкновенного лучей в направлении, перпендикулярном оптической оси, пропорциональна нормальному напряжению σ


(8)

где χ 1  коэффициент, зависящий от свойств вещества; k  порядок интерференционной полосы;  напряжение.

5.2. Ячейка Керра

Возникновение двойного лучепреломления в газах, жидкостях и в аморфных твердых телах (диэлектриках) под воздействием сильного однородного электрического поля называется эффектом Керра . Это явление впервые было обнаружено шотландским физиком Д. Керром в 1875 году.

На пути l (длина пластины конденсатора) между обыкновенным и не­обыкновенным лучами возникает оптическая разность хода

где  2 – коэффициент пропорциональности; В – постоянная Керра, зависящая от природы вещества, его температуры и длины волны света в вакууме.

Эффект Керра объясняется различной поляризуемостью молекул вещества по различным направлениям. Это явление практически безинер­ционно, т.е. переход вещества из изотропного состояния в анизотроп­ное при включении поля происходит приблизительно за 10 -10 с. Поэтому ячейка Керра служит идеальным световым затвором и применяется в быстропротекающих процессах (в скоростной фото- и киносъемке и т.д.)

5.3. Вращение плоскости поляризации

Некоторыеоптически активные вещества обладают способностью вращать плоскость поляризации прохо­дя­щего через них плоско поляри­зо­ванного света. К ним относятся твер­дые тела (кварц, сахар, киноварь), чистые жидкости (ски­пидар, никотин, винная кислота) и растворы оптически активных веществ (сахар, спирт и т.д.).

Вращение плоскости поля­ри­зации можно наблюдать на сле­дующем опыте. Если между скре­щенными поляризатором и ана­лизатором поместить опти­чес­ки активное вещество, то по­ле зрения анализатора про­све­тля­ется. При повороте ана­ли­за­то­ра на угол φ можно вновь по­лу­­чить темное поле зрения. В растворах угол поворота плоскости поляризации пропорциона­лен пути света в растворе l и концентрации активного вещества С :

, (10)

где [φ 0 ]  удельное вращение.

Оптически активные вещества в зависимости от направления вра­щения плоскости поляризации подразделяются на правовращающие и левовращающие .

Явление вращения плоскости поляризации в растворах лежит в основе сертификации продуктов. Это явление используется, например, для точного определения концентрации растворов оптически активных веществ (поляриметрия ).

Оптически неактивные вещества приобретает способность вращать плоскость поляризации под действием магнитного поля. Это явление было обнаружено М. Фарадеем и получило название эффекта Фарадея . Этот эффект имеет огромное значение для науки, так как в нем об­наруживается связь между оптическими и электромагнитными процес­сами.

Блики представляют собой концентрацию световых лучей при их отражении от блестящих поверхностей.

Человеческому глазу становится сложно обеспечить четкость зрительного восприятия.

Блокировка неприятных горизонтальных лучей носит название поляризации.

Поляризационная слепота человека

Окружающий в повседневной жизни человека свет имеет три характеристики:

  • Яркость;
  • Длину волны. Её определяют в виде цветовой палитры окружающего мира;
  • Поляризацию.

Последняя характеристика недоступна человеку. Можно провести опыты со специальными фильтрами, чтобы понять о каком явлении идёт речь. Однако представить мир таким, как он выглядит, в результатах опытов почти невозможно.

Большинство животных и насекомых могут различать поляризацию света.

При помощи фотопринадлежностей, рассматривая голубое небо, можно увидеть появление особой тёмной полосы. Эффект проявляется при повороте фильтров в случаях размещения солнца сбоку.

Сложные манипуляции. Каждая пчела способна различать данный эффект без любых приспособлений. Однако, далеко не факт, что она видит такую же полосу.

Исследования в данной области были начаты ещё в 1690 году Х.Гюйгенсом, а затем продолжены И.Ньютоном и Дж.Максвеллом, чтобы в 1844 Хайдингер смог сделать удивительное открытие.

Далеко не все люди равнодушны к поляризации света. Глаза некоторых способны различать её без специальных приборов или фильтров.

Им достаточно смотреть на однородное поле, освещенное поляризованным светом, чтобы увидеть фигуру Хайдингера. Она напоминает эллипс, сдавленный в центре. Её окрас приближен к светло-желтому, а фон кажется голубым.

Видеть подобную картину возможно всего лишь несколько секунд. Расположение фигуры всегда строго перпендикулярно поляризационным лучам.

Применение исследований поляризации в офтальмологии

Исследования в линейно поляризованном и циркулярнополяризованном свете подтвердили, что люди, обладающие способностью видеть фигуру, наблюдают её в обоих случаях.

В результате возникло предположение, что некоторым сферам глаза под силу оказывать двойное преломление света. Также было установлено, что полным качеством отличается именно сетчатка глаза или её поверхность.

При обращении человека к офтальмологу по причине ослабления зрения и сохранении способности видеть уникальную фигуру, специалист исключает заболевания, связанные с сетчаткой.

Утрата способности видеть фигуру неизменно связана с повреждением сетчатки.

При установке поляризатора в лучевой канал исследователям удалось изучить анатомические особенности строения глаза. Первые опыты в данном направления были проведены еще в 1920 году, но тогда не хватило возможностей техники.

Возобновили исследования японские ученые, подтвердившие предположения о пересечении волокон в центральной части роговицы по принципу сетки.

Для своих экспериментов они использовали волновую пластинку, с помощью которой смогли собрать максимально точные данные о световых лучах, отражающихся от прозрачных элементов глаза.

Защита глаза с помощью поляризации света

Водители, рыбаки, лыжники прекрасно знают, насколько серьёзные нагрузки приходится испытывать глазам. Человеку необходимо сохранять скорость реакции на непредвиденные ситуации.

Обычные солнцезащитные очки не способны подавить агрессивное воздействие бликов на поверхность глаза, заставляя щуриться.

Помимо определенного дискомфорта блики вызывают и серьезную усталость глаз, вызывая кратковременную, но значительную потерю остроты зрения.

Длительные исследования в области защиты от негативных явлений приобрели реальное воплощение с развитием технического прогресса.

Использование поляризационных линз в очках полностью блокируют блики. Если оптические свойства линзы сохранены при получении необходимого изгиба, человек не будет испытывать дискомфорта, рассматривая мир сквозь линзы таких очков.

Разница между обычными солнечными очками и очками с поляризационными линзами огромна.

Они не только блокируют яркие пучки света, но и представляют мир максимально контрастным, что позволяет моментально заметить любое изменение, а значит и своевременно среагировать на него.
Качественно разработанные модели поляризационных очков абсолютно комфортные, не вызывают ощущения усталости даже при длительном использовании.

Профессиональное использование оптического эффекта

Неспособность человеческого глаза различить многие контрасты в обычном дневном свете вовсе не означает отсутствие возможности оценить всю глубину и красоту момента.

Профессиональные фотографы прекрасно знают, что специальные фильтры позволяют увидеть истинное расстояние между почти прозрачными объектами.

Облака на фоне голубого неба выглядят невероятно пушистыми, объёмными.

Исследования учёных в области оптики позволили создать самый чувствительный микроскоп.

В его конструкцию включены поляризаторы и поляризационные компенсаторы, что позволяет получить максимальную четкость и контрастность мельчайших частиц, существование которых до этого даже не было определено.

Одним из подобных открытий стало определение элементов ядра клетки. Сейчас многие учёные даже не представляют свою работу без столь точной техники.

Поляризация активно используется во многих сферах человеческой жизни. Даже развлекательная индустрия не осталась в стороне, предложив любителям кино оценить фильмы в формате 3D.

Использование фильтров для разделения информации для каждого глаза, чтобы в результате получить абсолютно новое изображение, полностью меняющее представление о возможностях человеческого глаза и многогранности мира.