Преобразование подобия с коэффициентом k 3. Преобразование подобия

Лекция №16

Преобразование подобия. Гомотетия. Виды подобия.

Классификация подобий плоскости. Группа подобия и ее подгруппы.

Определение 16.1 . Преобразование плоскости называется преобразованием подобия, если k > 0, что для любых двух точек А и B и их образов A ` и B ` выполняется равенство
.

При k =1 преобразование подобия сохраняет расстояние, т.е. является движением. Значит, движение – частный случай подобия.

Определение 16.2. Преобразование плоскости называется гомотетией, если существует некоторое число m1 , что для любых трех точек плоскости М, М, M ` выполняется условие
.

Точка М - центр гомотетии, числоm – коэффициент гомотетии. Если m > 0 – гомотетия положительна, если m < 0 – гомотетия отрицательна.

Теорема 16.3. Гомотетия есть подобие.

Доказательство:

,
.

2. По определению гомотетии имеем:

3. Вычтем из первого равенства второе: ,

. Значит, гомотетия есть подобие, где коэффициент гомотетии
равен коэффициенту подобия.

Если точка М (x , у) при гомотетии переходит в точкуM`(x`,y`), то:

- аналитические выражения гомотетии.

Свойства гомотетии

    Гомотетия с коэффициентом, отличным от 1, переводит прямую, не проходящую через центр гомотетии, в прямую, ей параллельную; прямую, проходящую через центр – в себя.

    Гомотетия сохраняет простое отношение трех точек.

    Гомотетия сохраняет ориентацию плоскости.

    Гомотетия переводит угол в равный ему угол.

Теорема 16.4. Пусть f – преобразование подобия с коэффициентом k > 0 , а h – гомотетия с коэффициентом k и центром в точке М . Тогда существует единственное движение g такое, что f = g h .

Доказательство:

Рассмотрим композицию движения и гомотетии(помножим обе части равенства (*) на гомотетию):
илиg h = f (**)

Гомотетия обладает всеми свойствами движений, подобие также обладает всеми свойствами движений.

Так как гомотетия сохраняет ориентацию, а подобие есть произведение движения на гомотетию, т.е. движение имеет одну ориентацию с гомотетией, то подобие также имеет эту ориентацию. В этом случае говорят о подобии 1-го рода.

Если движение имеет ориентацию, противоположную гомотетии, то в этом случае подобие имеет противоположную ориентацию и является подобием 2-го рода.

Аналитические выражения подобия

Так какгомотетия задается выражениями , движение задается выражениями, то координаты образа
точки
в преобразовании подобия
вычисляются по формулам:

    Если ε = 1, то подобие первого рода;

    Если ε = -1, то подобие второго рода.

Теорема 16.5. Любое преобразование подобия имеет только одну неподвижную точку в том случае, если оно отлично от движения.

Доказательство:

1. Точка
является неподвижной точкой этого преобразования тогда и только тогда, когда
. Из аналитических выражений подобия следует, что

Определитель системы не равен 0 при ε = ± 1 . Таким образом, при k 1 для любого имеем, что определитель не равен нулю и, следовательно, система является однородной, т.е. будет иметь единственное решение.

Классификация подобия

Подобие первого рода.



Подобие второго рода.

Следствие16.6. Любое преобразование подобия, имеющее более чем одну неподвижную точку или не имеющее неподвижных точек, является движением.

Группа подобия и ее подгруппы.

Пусть P – множество всех преобразований подобия плоскости, и на нем задана некоторая операция «∙».

Множество Р является группой относительно этой операции.

Действительно:

Подобие первого рода образует подгруппу группы Р. Множество гомотетий с коэффициентом k (равным коэффициенту подобия) образует подгруппу группы Р.

Множество подобий второго рода не образует подгруппу, т.к. произведение подобий второго рода дает подобие первого рода.

Тема урока: Преобразование подобия. Подобные фигуры.Гомотетия

Тип урока: урок сообщения и усвоения новых знаний.

Цели урока:

Образовательные:

    дать понятие преобразования подобия фигур;

    свойства преобразования подобия;

Развивающие:

1 .Развивать практические навыки применения подобия фигур при решении задач.

2. Создавать условия для реальной оценки у обучающихся своих знаний и возможностей.

Воспитательные:

1 .Воспитание навыков контроля и взаимоконтроля.

2.Воспитание аккуратности при выполнении чертежей и записей

Ход урока.

1. Организация на урок. подготовка учащихся к восприятию новых знаний, сообщение темы и целей урока.

2. Постановка цели:

знать : определение и свойства преобразования подобия, гомотетия

уметь: строить подобные и гомотетичные фигуры с данным коэффициентом подобия

3. Актуализация прежних знаний

Повторение пройденного материала, тесно связанного с изучением нового (фронтально устно, МД) Работа у доски

Карточка № 1

Построить фигуру, в которую переходит  АВС, при параллельном переносе на вектор

Карточка № 2.

Построить фигуру, в которую переходит отрезок АВ при повороте около точки О на угол 90 о

К арточка № 3

Построить фигуру, в которую переходит  АВС, при симметрии относительно точки О

Карточка № 4

Построить фигуру, в которую переходит фигура F при симметрии относительно прямой у

3) Проверка выполнения заданий у доски . Еще раз подчеркнуть, что любое движение сохраняет расстояние между точками, а поэтому фигуры при движении переходят в равные фигуры.

Определите вид преобразований:

Что общего между этими преобразованиями?

Свойства движения:

    При движении прямая переходит в прямую, луч – в луч, отрезок – в отрезок.

    Сохраняются расстояния между точками.

    Сохраняются углы между лучами.

Следствие: При движении фигура переходит в равную ей фигуру!!!

4. Объяснение нового материала (лекция с опорным конспектом, СР с учебником -конспектирование)

Сначала выполните следующее задание: начертите у себя в тетрадях, а мы на доске, схематично план класса.

Почему стол на плане изображен прямоугольником(а не кругом или

квадратом)?

Чем отличаются и что имеют общего стол на планах на доске и в тетрадях? (отличаются размерами, но имеют одну и ту же форму).

В жизни часто встречаются предметы, имеющие одинаковую форму, но различные размеры. Таковы, например, фотографии одного и того же лица, изготовленные с одного негатива в различных размерах, планы здания или целого города, местности, вычерченные в различных масштабах.

Такие фигуры принято называть подобными , а преобразование, переводящее одну фигуру F в подобную фигуру F, называют преобразованием подобия.

Демонстрируются плакаты с изображением фигур, имеющих одинаковую форму, но различные размеры. Учащимся предлагается привести примеры таких предметов из жизни.

Для того, чтобы дать строгое математическое определение преобразования подобия надо выделить свойства этого преобразования.

Перед каждым учащимся лежит карточка (рис. 1)


Даны подобные фигуры F и F. Измерьте и сравните расстояния АВ и АВ, ВС и В 1 С 1 и т.д. Какую можно заметить зависимость между расстояниями у подобных фигур? (Все расстояния изменяются в одно и то же число раз, на чертеже в 2 раза).

    Преобразование при котором фигура сохраняет вид, но изменяет размеры называется преобразованием подобия

т.е. ХУ" = к·ХУ; АВ= к ·АВ.

Число к называется коэффициентом подобия.

Преобразование подобия имеет широкое практическое применение, в частности, при выполнении деталей машин, составлении карт и планов местности. При этом коэффициент подобия называется масштабом.

Частным случаем преобразования подобия является преобразование гомотетии .

Пусть F данная фигура, О – фиксированная точка, к – положительное число. Через произвольную точку Х фигуры F проведем луч ОХ и отложим на нем отрезок ОХ" равный к ·ОХ.

    Любой точке Х на плоскости будет соответствовать точка Х" удовлетворяющая равенству ОХ"= к ОХ,преобразование называется гомотетией, относительно центра О с коэффициентом к.

Число к называется коэффициентом гомотетии , а фигуры F и F называются гомотетичными.

-

Для фигур F и F" укажите гомотетичные точки. Как располагается любая пара точек и центр О? (На одном луче).

Какая особенность в расположении гомотетичных отрезков? (Они параллельны ).

Всегда ли подобные фигуры гомотетичны? (Обратиться к карточке рис.2)

А всегда ли гомотетичные фигуры подобны?

Ответ на последний вопрос дает теорема: Гомотетия есть преобразование подобия.

Составьте постер: Преобразование подобия (свойства)

    расстояние между любыми двумя точками увеличиваются или уменьшаются в одно тоже число раз

    соответствующие стороны подобных фигур параллельны

    При гомотетии сохраняются только углы!!!

    центр и гомотетичные точки расположены на одной прямой

5,Проверка понимания нового материала :

    Построить точку (отрезок, фигуру) гомотетичную данной, если коэффициент гомотетии равен к.

) к = 2 б) к = 3 в) к = 2

Практическая работа на карточках в 2 вариантах :

Вариант 1.

Дан прямоугольник и точка О. Построить фигуру, гомотетичную данному прямоугольнику относительно центра О с коэффициентом k = -2.


Вариант 2.

Дан квадрат и точка О. Построить фигуру, гомотетичную данному квадрату относительно центра О с коэффициентом k = 0,5.


В зависимости от подготовленности класса, можно организовать обмен карточками между соседями.

6 . Итог урока: (систематизация и обобщение знаний;)

Отметить учащихся, активно работавших на уроке. Сообщить и прокомментировать выставленные оценки

7. Домашнее задание § №

Примеры

  • Каждая гомотетия является подобием.
  • Каждое движение (в том числе и тождественное) также можно рассматривать как преобразование подобия с коэффициентом k = 1 .

Подобные фигуры на рисунке имеют одинаковые цвета.

Связанные определения

Свойства

В метрических пространствах так же, как в n -мерных римановых , псевдоримановых и финслеровых пространствах подобие определяется как преобразование, переводящее метрику пространства в себя с точностью до постоянного множителя.

Совокупность всех подобий n-мерного евклидова, псевдоевклидова, риманова, псевдориманова или финслерова пространства составляет r -членную группу преобразований Ли , называемой группой подобных (гомотетических) преобразований соответствующего пространства. В каждом из пространств указанных типов r -членная группа подобных преобразований Ли содержит (r − 1) -членную нормальную подгруппу движений.

См. также

Wikimedia Foundation . 2010 .

  • Преобразование графиков функций
  • Преобразование плоскости

Смотреть что такое "Преобразование подобия" в других словарях:

    преобразование подобия - Изменение характеристик моделируемого объекта посредством умножения его параметров на значения таких величин, которые преобразуют сходственные параметры, обеспечивая этим подобие и делая математическое описание, если оно имеется, тождественным… …

    преобразование подобия - panašumo transformacija statusas T sritis fizika atitikmenys: angl. transformation of similitude vok. Ähnlichkeitstransformation, f; äquiforme Transformation, f rus. преобразование подобия, n pranc. conversion de similitude, f; transformation de… … Fizikos terminų žodynas

    ПРЕОБРАЗОВАНИЕ ПОДОБИЯ - см Гомотетия … Большой энциклопедический политехнический словарь

    преобразование подобия - Изменение количественных характеристик данного явления посредством умножения их на постоянные множители, преобразующие эти характеристики в соответствующие характеристики подобного явления … Политехнический терминологический толковый словарь

    Преобразование - (в кибернетике) изменение значений переменных, характеризующих систему, например, превращение переменных на входе предприятия (живой труд, сырье и т.д.) в переменные на выходе (продукты, побочные результаты, брак). Это пример П … Экономико-математический словарь

    преобразование (в кибернетике) - Изменение значений переменных, характеризующих систему, например, превращение переменных на входе предприятия (живой труд, сырье и т.д.) в переменные на выходе (продукты, побочные результаты, брак). Это пример П. в ходе вещественного процесса. В… … Справочник технического переводчика

    ПРЕОБРАЗОВАНИЕ - замена одного математического объекта (геометрической фигуры, алгебраической формулы, функции и др.) аналогичным объектом, получаемым из первого по определенным правилам. Напр., заменяя алгебраическое выражение x2+4x+4 выражением (x+2)2,… … Большой Энциклопедический словарь

    Преобразование плоскости - Здесь собраны определения терминов из планиметрии. Курсивом выделены ссылки на термины в этом словаре (на этой странице). # А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф … Википедия

    Преобразование - одно из основных понятий математики, возникающее при изучении соответствий между классами геометрических объектов, классами функций и т.п. Например, при геометрических исследованиях часто приходится изменять все размеры фигур в одном и… … Большая советская энциклопедия

    преобразование - я; ср. 1. к Преобразовать и Преобразоваться. П. училища в институт. П. сельского хозяйства. П. механической энергии в тепловую. 2. Коренное изменение, перемена. Крупные социальные преобразования. Заняться хозяйственными преобразованиями. ◁… … Энциклопедический словарь


Подобием μ называется такое преобразование плоскости, которое расстояние между любыми двумя точками изменяет в r>0 раз: .

При условии r=1 это движение.

Гомотетия с коэффициентом также является частным случаем подобия .

Теорема : Если даны прямоугольные декартовы реперы , то единственное подобие μ, которое осуществляет перевод

Как и для движений можно показать, что и

Из этих формул следует, что всякое подобие можно представить в виде произведения гомотетии и движения .

Из теоремы следует, что:

Прямые переходят в прямые,

Углы между линиями сохраняются,

Все расстояния изменяются в r раз.

Теорема: множество преобразований подобия (на плоскости) образуют группу.

Группу подобия G(μ) называют метрической группой (группой Клейна), которая позволяет измерять расстояния.

Подгруппой является группа движений 1 рода (не изменяет ориентацию фигуры: параллельный перенос, поворот, центральная симметрия и тождественное преобразование).

Подобие является частным случаем отношения эквивалентности:

Подобие можно разбить на два класса:

Сохраняет ориентацию – 1 рода (образует группу);

Изменяет ориентацию – 2 рода (не образует группу).

При подобии площади фигур изменяются в r 2 раз, где r – коэффициент подобия.

Применение к решению задач:

Построить треугольник по двум углам и периметру.

Используем свойство подобия: линейные размеры подобных фигур соотносятся с коэффициентом подобия r.

1.Строим треугольник, у которого:

Основание равно нашему периметру,

Углы при основании равны нашим углам (получим треугольник, подобный данному – согласно 2 признаку подобия);

2. Можно определить новый периметр K, исходный периметр и сторона AB известны.

Так как треугольники подобны, то . Согласно теореме Фалеса найдем .

Аналогично найдем .

3. Откладываем от точки и получаем , аналогично от точки и получаем . Строим углы a и b, и получаем нужный нам треугольник .

ПРЕОБРАЗОВАНИЕ ПОДОБИЯ

Преобразование фигуры F в фигуру F" называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз (рис. 1). Это значит, что если произвольные точки X, Y фигуры F при преобразовании подобия переходят в точки X", Y" фигуры F", то X"Y" = k-XY, причем число k -- одно и то же для всех точек X, Y. Число k называется коэффициентом подобия. При k = l преобразование подобия, очевидно, является движением.

Пусть F -- данная фигура и О -- фиксированная точка (рис. 2). Проведем через произвольную точку X фигуры F луч ОХ и отложим на нем отрезок ОХ", равный k?OX, где k -- положительное число. Преобразование фигуры F, при котором каждая ее точка X переходит в точку X", построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и F" называются гомотетичными.

Теорема 1. Гомотетия есть преобразование подобия

Доказательство. Пусть О -- центр гомотетии, k -- коэффициент гомотетии, X и Y - две произвольные точки фигуры (рис.3)


Рис.3

При гомотетии точки X и Y переходят в точки X" и Y" на лучах ОХ и OY соответственно, причем OX" = k?OX, OY" = k?OY. Отсюда следуют векторные равенства ОХ" = kOX, OY" = kOY.

Вычитая эти равенства почленно, получим: OY"-OX" = k (OY- OX).

Так как OY" - OX"= X"Y", OY -OX=XY, то Х" Y" = kХY. Значит, /X"Y"/=k /XY/, т.e. X"Y" = kXY. Следовательно, гомотетия есть преобразование подобия. Теорема доказана.

Преобразование подобия широко применяется на практике при выполнении чертежей деталей машин, сооружений, планов местности и др. Эти изображения представляют собой подобные преобразования воображаемых изображений в натуральную величину. Коэффициент подобия при этом называется масштабом. Например, если участок местности изображается в масштабе 1:100, то это значит, что одному сантиметру на плане соответствует 1 м на местности.

Задача. На рисунке 4 изображен план усадьбы в масштабе 1:1000. Определите размеры усадьбы (длину и ширину).

Решение. Длина и ширина усадьбы на плане равны - 4 см и 2,7 см. Так как план выполнен в масштабе 1:1000, то размеры усадьбы равны соответственно 2,7 х1000 см = 27 м, 4х100 см = 40 м.

СВОЙСТВА ПРЕОБРАЗОВАНИЯ ПОДОБИЯ

Так же как и для движения, доказывается, что при преобразовании подобия три точки А, В, С, лежащие на одной прямой, переходят в три точки А 1 , В 1 , С 1 , также лежащие на одной прямой. Причем если точка В лежит между точками А и С, то точка В 1 лежит между точками А 1 и С 1 . Отсюда следует, что преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.

Докажем, что преобразование подобия сохраняет углы между полупрямыми.

Действительно, пусть угол ABC преобразованием подобия с коэффициентом k переводится в угол А 1 В 1 С 1 (рис. 5). Подвергнем угол ABC преобразованию гомотетии относительно его вершины В с коэффициентом гомотетии k. При этом точки А и С перейдут в точки А 2 и С 2 . Треугольники А 2 ВС 2 и А 1 В 1 С 1 равны по третьему признаку. Из равенства треугольников следует равенство углов А 2 ВС 2 и А 1 В 1 С 1 . Значит, углы ABC и А 1 В 1 С 1 равны, что и требовалось доказать.