Строение молекулы днк ген. Молекула ДНК: уровни структурной организации

Молекулы нуклеиновых кислот всех ти­пов живых организмов - это длинные неразветвленные полимеры мононуклеотидов. Роль мостика между нуклеотидами выпол­няет 3",5"-фосфодиэфирная связь, соединяю­щая 5"-фосфат одного нуклеотида и 3"-гидроксильный остаток рибозы (или дезоксирибозы) следующего. В связи с этим полинуклеотидная цепь оказывается полярной. На одном ее конце остается свободной 5"-фосфатная группа, на другом 3"-ОН-группа.

ДНК, подобно белкам , имеет первич­ную, вторичную и третичную структуры.

Первичная структура ДНК . Данная структура определяет закодированную в ней информацию, представляя собой последова­тельность чередования дезоксирибонуклеотидов в полинуклеотидной цепи.

Молекула ДНК состоит из двух спиралей , имеющих одну и ту же ось, и противоположные направления. Сахарофосфатный остов располагается по периферии двойной спирали, а азотистые основания находятся внутри. Остов содержит ковалентные фосфодиэфирные связи , а обе спирали между основаниями соединены водородными связями и гидрофобными взаимодействиями.

Эти связи впервые были открыты и изучены Э.Чаргаффом в 1945 г. и получили название принципа комплементарности , а особенности образования водородных свзей между основаниями называются правилами Чаргаффа :

  • пуриновое основание всегда связывается с пиримидиновым: аденин - с тимином (А®Т), гуанин – с цитозином (Г®Ц);
  • молярное соотношение аденина к тимину и гуанина к цитозину равно 1 (А=Т, или А/Т=1 и Г=Ц, или Г/Ц=1);
  • сумма остатков А и Г равно сумме остатков Т и Ц, т.е. А+Г=Т+Ц;
  • в ДНК, выделенных из разных источников, отношение (Г+Ц)/(А+Т), называемое коэффициентом специфичности, неодинаково.

Правила Чаргаффа основаны на том, что аденин образует две связи с тимином, а гуанин образует три связи с цитозином:

На основании правил Чаргаффа можно представить двуспиральную структуру ДНК, которая приведена на рисунке.

А-форма В-форма

A-аденин, G-гуанин, C-цитозин, T-тимин

Схематическое изображение двуспиральной

молекулы ДНК

Вторичная структура ДНК . В соответствии с моделью, предложенной в 1953 г. Дж. Уотсоном и Ф. Криком, вторичная структура ДНК представляет собой двухцепочечную правозакрученную спираль из комплементарных друг другу антипараллельных полинуклеотидных цепей.

Для вторичной структуры ДНК решающим являются две особенности строения азотистых оснований нуклеотидов. Первая заключается в наличии групп, способных образовывать водородные связи. Вторая особенность заключается в том, что пары комплементарных оснований А-Т и Г-Ц оказываются одинаковы­ми не только по размеру, но и по форме.

Благодаря способности нуклеотидов к спариванию, образуется жесткая, хорошо стабилизированная двухцепочечная структура. Основные элементы и параметрические характеристики такой структуры наглядно изображены на рисунке.

На основе тщательного анализа рентгенограмм выделенных ДНК установ­лено, что двойная спираль ДНК может существовать в виде нескольких форм (А, В, С, Z и др.). Указанные формы ДНК различаются диаметром и шагом спирали, числом пар оснований в витке, углом наклона плоскости оснований по отношению к оси молекулы.


Третичная структура ДНК. У всех живых организмов двухспиральные молекулы ДНК плотно упакованы с образованием сложных трехмерных структур. Двухцепочечные ДНК прокариот, имеющие кольцевую ковалентно-замкнутую форму, образуют левые (-) суперспирали . Третичная структура ДНК эукариотических клеток также образуется пу­тем суперспирализации, но не свободной ДНК, а ее комплексов с белками хромосом (белки-гистоны классов Н1, Н2, Н3, Н4 и Н5).


В пространственной организации хромосом можно выделить несколько уровней. Первый уровень – нуклеосомный. В результате нуклеосомной организации хроматина двойная спираль ДНК диаметром 2 нм приобретает диаметр 10-11 нм и укорачивается примерно в 7 раз.

Вторым уровнем пространственной организации хромосом является обра­зование из нуклеосомной нити хроматиновой фибриллы диаметром 20- 30 нм (уменьшение линейных размеров ДНК еще в 6-7 раз).

Третичный уровень организации хромосом обусловлен укладкой хромати­новой фибриллы в петли. В образовании петель принимают участие негистоновые белки. Участок ДНК, со­ответствующий одной петле, содержит от 20 000 до 80 000 пар нуклеотидов. В результате такой упаковки линейные размеры ДНК уменьшаются при­мерно в 200 раз. Петлеобразная доменная организация ДНК, называемая ин­терфазной хромонемой, может подвергаться дальнейшей компактизации, сте­пень которой меняется в зависимости от фазы клеточного цикла.

Для детального понимания сути метода ПЦР-диагностики необходимо совершить небольшой экскурс в школьный курс биологии.

Еще из школьных учебников мы знаем, что дезоксирибонуклеиновая кислота (ДНК) — универсальный носитель генетической информации и наследственных признаков у всех существующих на Земле организмов. Исключение составляют только некоторые микроорганизмы, например, вирусы — универсальным носителем генетической информации у них является РНК - одноцепочечная рибонуклеиновая кислота.

Строение ДНК-молекулы

Открытие ДНК молекулы произошло в 1953 году. Френсис Крик и Джеймс Уотсон открыли структуру двойной спирали ДНК, их работа впоследствии была отмечена Нобелевской премией.

ДНК представляет собой двойную нить, скрученную в спираль. Каждая нить состоит из «кирпичиков» — из последовательно соединенных нуклеотидов. Каждый нуклеотид ДНК содержит одно из четырёх азотистых оснований — гуанин (G), аденин (A) (пурины), тимин (T) и цитозин (C) (пиримидины), связанное с дезоксирибозой, к последней, в свою очередь, присоединена фосфатная группа. Между собой соседние нуклеотиды соединены в цепи фосфодиэфирной связью, образованной 3’-гидроксильной (3’-ОН) и 5’-фосфатной группами (5’-РО3). Это свойство обуславливает наличие полярности в ДНК, т. е. противоположной направленности, а именно 5’- и 3’-концов: 5’-концу одной нити соответствует 3’-конец второй нити.

0Array ( => Анализы) Array ( => 2) Array ( =>.html) 2

Структура ДНК

Первичная структура ДНК — это линейная последовательность нуклеотидов ДНК в цепи. Последовательность нуклеотидов в цепи ДНК записывают в виде буквенной формулы ДНК: например — AGTCATGCCAG, запись ведется с 5’- на 3’-конец цепи ДНК.

Вторичная структура ДНК образуется за счет взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, водородных связей. Классический пример вторичной структуры ДНК — двойная спираль ДНК. Двойная спираль ДНК — самая распространенная в природе форма ДНК, состоящая из двух полинуклеотидных цепей ДНК. Построение каждой новой цепи ДНК осуществляется по принципу комплементарности, т. е. каждому азотистому основанию одной цепи ДНК соответствует строго определенное основание другой цепи: в комплемнтарной паре напротив A стоит T, а напротив G располагается C и т.д.

Синтез ДНК. Репликация

Уникальным свойством ДНК является ее способность удваиваться (реплицироваться). В природе репликация ДНК происходит следующим образом: с помощью специальных ферментов (гираз), которые служат катализатором (веществами, ускоряющими реакцию), в клетке происходит расплетение спирали в том ее участке, где должна происходить репликация (удвоение ДНК). Далее водородные связи, которые связывают нити, разрываются и нити расходятся.

В построении новой цепи активным «строителем» выступает специальный фермент — ДНК-полимераза. Для удвоения ДНК необходим также стратовый блок или «фундамент», в качестве которого выступает небольшой двухцепочечный фрагмент ДНК. Этот стартовый блок, а точнее - комплементарный участок цепи родительской ДНК — взаимодействует с праймером — одноцепочечным фрагментом из 20—30 нуклеотидов. Происходит репликация или клонирование ДНК одновременно на обеих нитях. Из одной молекулы ДНК образуются две молекулы ДНК, в которых одна нить от материнской молекулы ДНК, а вторая, дочерняя, вновь синтезированная.

5360 руб.Стоимость комплексной программы у врача гастроэнтеролога

СКИДКА 25%НА ПРИЕМ ВРАЧА КАРДИОЛОГА

- 25%первичный
приём врача
терапевта по выходным

5 160 руб.вместо 5 420 руб. Обследование мужчин на урологические инфекции

АЛЛЕРГОЛОГИЯ5 120 руб. вместо 5 590 руб.

Таким образом, процесс репликации ДНК (удваивания) включает в себя три основных этапа:

  • Расплетение спирали ДНК и расхождение нитей
  • Присоединение праймеров
  • Образование новой цепи ДНК дочерней нити

В основе анализа методом ПЦР лежит принцип репликации ДНК — синтеза ДНК, который современным ученым удалось воссоздать искусственно: в лаборатории врачи вызывают удвоение ДНК, но только не всей цепи ДНК, а ее небольшого фрагмента.

Функции ДНК

Молекула ДНК человека — носитель генетической информации, которая записана в виде последовательности нуклеотидов с помощью генетического кода. В результате описанной выше репликации ДНК происходит передача генов ДНК от поколения к поколению.

Изменение последовательности нуклеотидов в ДНК (мутации) может приводить к генетическим нарушениям в организме.

Пространственную модель молекулы ДНК в 1953 году предложили американские исследователи генетик Джеймс Уотсон (род. 1928) и физик Фрэнсис Крик (род. 1916). За выдающийся вклад в это открытие им была присуждена Нобелевская премия по физиологии и медицине 1962 года.

Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер, мономером которого является нуклеотид. В состав каждого нуклеотида входят остаток фосфорной кислоты, соединенный с сахаром дезоксирибозой, который, в свою очередь, соединен с азотистым основанием. Азотистых оснований в молекуле ДНК четыре вида: аденин, тимин, гуанин и цитозин.

Молекула ДНК состоит из двух длинных цепей, сплетенных между собой в виде спирали, чаще всего, правозакрученной. Исключение составляют вирусы, которые содержат одноцепочную ДНК.

Фосфорная кислота и сахар, которые входят в состав нуклеотидов, образуют вертикальную основу спирали. Азотистые основания располагаются перпендикулярно и образуют «мостики» между спиралями. Азотистые основания одной цепи соединяются с азотистыми основаниями другой цепи согласно принципу комплементарности, или соответствия.

Принцип комплементарности. В молекуле ДНК аденин соединяется только с тимином, гуанин – только с цитозином.

Азотистые основания оптимально соответствуют друг другу. Аденин и тимин соединяется двумя водородными связями, гуанин и цитозин – тремя. Поэтому на разрыв связи гуанин-цитозин требуется больше энергии. Одинаковые по размеру тимин и цитозин гораздо меньше аденина и гуанина. Пара тимин-цитозин была бы слишком мала, пора аденин-гуанин – слишком велика, и спираль ДНК искривилась бы.

Водородные связи непрочны. Они легко разрываются и так же легко восстанавливаются. Цепи двойной спирали под действием ферментов или при высокой температуре могут расходиться, как замок-молния.

5. Молекула рнк Рибонуклеиновая кислота (рнк)

Молекула рибонуклеиновой кислоты (РНК) тоже является биополимером, который состоит из четырех типов мономеров – нуклеотидов. Каждый мономер молекулы РНК содержат остаток фосфорной кислоты, сахар рибозу и азотистое основание. Причем, три азотистых основания такие же, как в ДНК – аденин, гуанин и цитозин, но вместо тимина в РНК присутствует близкий ему по строению урацил. РНК – одноцепочечная молекула.

Количественное содержание молекул ДНК в клетках какого-либо вида практически постоянно, однако количество РНК может существенно меняться.

Виды рнк

В зависимости от строения и выполняемой функции различают три вида РНК.

1. Транспортная РНК (тРНК). Транспортные РНК в основном находятся в цитоплазме клетки. Они переносят аминокислоты к месту синтеза белка в рибосому.

2. Рибосомальная РНК (рРНК). Рибосомальная РНК связывается с определенными белками и образует рибосомы – органеллы, в которых происходит синтез белков.

3. Информационная РНК (иРНК), или матричная РНК (мРНК). Информационная РНК переносит информацию о структуре белка от ДНК рибосоме. Каждая молекула иРНК соответствует определенному участку ДНК, который кодирует структуру одной белковой молекулы. Поэтому для каждого из тысяч белков, которые синтезируются в клетке, имеется своя особенная иРНК.

Аббревиатура клеточный ДНК многим знакома из школьного курса биологии, но мало кто сможет с легкостью ответить, что это. Лишь смутное представление о наследственности и генетике остается в памяти сразу после окончания учебы. Знание, что такое ДНК, какое влияние оно оказывает на нашу жизнь, порой может оказаться очень нужным.

Молекула ДНК

Биохимики выделяют три типа макромолекул: ДНК, РНК и белки. Дезоксирибонуклеиновая кислота – это биополимер, который несет ответственность за передачу данных о наследственных чертах, особенностях и развитии вида из поколения в поколение. Его мономером является нуклеотид. Что такое молекулы ДНК? Это главный компонент хромосом и содержит генетический код.

Структура ДНК

Ранее ученые представляли, что модель строения ДНК периодическая, где повторяются одинаковые группы нуклеотидов (комбинаций молекул фосфата и сахара). Определенная комбинация последовательности нуклеотидов предоставляет возможность «кодировать» информацию. Благодаря исследованиям выяснилось, что у разных организмов структура различается.

Особенно известны в изучении вопроса, что такое ДНК американские ученые Александер Рич, Дэйвид Дэйвис и Гэри Фелзенфелд. Они в 1957 году представили описание нуклеиновой кислоты из трех спиралей. Спустя 28 лет, ученый Максим Давидович Франк-Каменицкий продемонстрировал, как дезоксирибонуклеиновая кислота, которая состоит из двух спиралей, складывается Н-образной формой из 3 нитей.

Структура у дезоксирибонуклеиновой кислоты двухцепочечная. В ней нуклеотиды попарно соединены в длинные полинуклеотидные цепи. Эти цепочки при помощи водородных связей делают возможным образование двойной спирали. Исключение – вирусы, у которых одноцепочечный геном. Существуют линейные ДНК (некоторые вирусы, бактерии) и кольцевые (митохондрии, хлоропласты).

Состав ДНК

Без знания, из чего состоит ДНК, не было бы ни одного достижения медицины. Каждый нуклеотид – это три части: остаток сахара пентозы, азотистое основание, остаток фосфорной кислоты. Исходя из особенностей соединения, кислоты могут называться дезоксирибонуклеиновой или рибонуклеиновой. В состав ДНК входит огромное число мононуклеотидов из двух оснований: цитозин и тимин. Кроме этого, она содержит производные пиримидинов, аденин и гуанин.

Есть в биологии определение DNA – мусорная ДНК. Функции ее еще неизвестны. Альтернативная версия названия – «некодирующая», что не верно, т.к. она содержит кодирующие белки, транспозоны, но их назначение тоже тайна. Одна из рабочих гипотез говорит о том, что некоторое количество этой макромолекулы способствует структурной стабилизации генома в отношении мутаций.

Где находится­

Расположение внутри клетки зависит от особенностей вида. У одноклеточных ДНК находится в мембране. У остальных живых существ она располагается в ядре, пластидах и митохондриях. Если говорить о человеческой ДНК, то ее называют хромосомой. Правда, это не совсем так, ведь хромосомы – это комплекс хроматина и дезоксирибонуклеиновой кислоты.

Роль в клетке

Основная роль ДНК в клетках – передача наследственных генов и выживание будущего поколения. От нее зависят не только внешние данные будущей особи, но и ее характер и здоровье. Дезоксирибонуклеиновая кислота находится в суперскрученном состоянии, но для качественного процесса жизнедеятельности она должна быть раскрученной. С этим ей помогают ферменты - топоизомеразы и хеликазы.

Топоизомеразы относятся к нуклеазам, они способны изменять степень скрученности. Еще одна их функция – участие в транскрипции и репликации (делении клеток). Хеликазы разрывают водородные связи между основаниями. Существуют ферменты лигазы, которые нарушенные связи «сшивают», и полимеразы, которые участвуют в синтезе новых цепей полинуклеотидов.

Как расшифровывается ДНК

Эта аббревиатура для биологии является привычной. Полное название ДНК- дезоксирибонуклеиновая кислота. Произнести такое не каждому под силу с первого раза, поэтому часто в речи расшифровка ДНК опускается. Встречается еще понятие РНК – рибонуклеиновая кислота, которая состоит из последовательностей аминокислот в белках. Они напрямую связаны, а РНК является второй по важности макромолекулой.

ДНК человека

Человеческие хромосомы внутри ядра разделены, что делает ДНК человека самым стабильным, полным носителем информации. Во время генетической рекомбинации спирали разделяются, происходит обмен участками, а затем связь восстанавливается. За счет повреждения ДНК образовываются новые комбинации и рисунки. Весь механизм способствует естественному отбору. До сих пор неизвестно, как долго она отвечает за передачу генома, и какова ее эволюция метаболизма.

Кто открыл­

Первое открытие структуры ДНК приписывают английским биологам Джеймсу Уотсону и Френсису Крику, которые в 1953 году раскрыли особенности строения молекулы. Нашел же ее в 1869 году швейцарский врач Фридрих Мишер. Он изучал химический состав животных клеток с помощью лейкоцитов, которые массово скапливаются в гнойных поражениях.

Мишер занимался изучением способов отмывания лейкоцитов, выделял белки, когда обнаружил, что кроме них есть что-то еще. На дне посуды во время обработки образовался осадок из хлопьев. Изучив эти отложения под микроскопом, молодой врач обнаружил ядра, которые оставались после обработки соляной кислотой. Там содержалось соединение, которое Фридрих назвал нуклеином (от лат. nucleus - ядро).

Самовоспроизведение генетического материала. Репликация.

Принципы записи генетической информации. Генетический код и его свойства.

Генетический код – свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов. Для построения белков в природе используется 20 различных аминокислот. Каждый белок представляет собой цепочку или несколько цепочек в строго определенной последовательности. Эта последовательность определяет строение белка, а следоваетльно и его свойства. Набор аминокислот универсален почти для всех живых организмов.

Свойства ген. кода:

Триплетность- сочетание 3-х нуклеотидов

Непрерывность- между триплетами нет знаков препинания, т.е. информация считывается непрерывно

Неперекрываемость- один и тот же нуклеотид не может одновременно входить в состав нескольких триплетов

Специфичность- определенный кодон соответствует только 1 аминокислоте

Вырожденность- одной и той же аминокислоте может соответствовать несколько кодонов

Универсальность- генетический код работает одинаково в организмах разного уровня сложности

Помехоустойчивость

В процессе репликации генетического материала водородные связи между азотистыми основаниями разрываются, и из двойной спирали образуется две нити ДНК. Каждая из них становится матрицей для синтеза другой комплементарной нити ДНК. Последняя, через водородную связь, соединяется с матричной ДНК. Итак, любая дочерняя молекула ДНК состоит из одной старой и одной новой полинуклеотидной цепи. В результате дочерние клетки получают такую же генетическую информацию, как и у родительских клеток. Поддержание такой ситуации обеспечивается механизмом самокоррекции, осуществляемым ДНК-полимеразой. Способность генетического материала, ДНК, к самовоспроизведению (репликации) лежит в основе размножения живых организмов, передачи наследственных свойств из поколения в поколение и развития многоклеточного организма из зиготы.

Нескорректированные изменения химической структуры генов, воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков, называются генными мутациями.

Изменения структуры ДНК можно разделить на 3 группы: 1. Замена одних оснований другими.

2. сдвиг рамки считывания при изменении количества нуклеотидных пар в составе гена.

3. изменение порядка нуклеотидных последовательностей в пределах гена.

1. Замена одних оснований другими. Могут возникать случайно или под влиянием конкретных химических агентов. Если измененная форма основания остается незамеченной во время репарации, то при ближайшем цикле репликации она может присоединить к себе другой нуклеотид.



Другой причиной может быть ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего измененную форму основания или его аналог. Если эта ошибка остается незамеченной во время репарации, то измененное основание включается в процесс репликации что приводит к замене одной пары на другую.

Вследствие образуется новый триплет в ДНК. Если этот триплет кодирует ту же аминокислоту, то изменения не отразятся на структуре пептида (вырожденность генетического кода). Если вновь возникший триплет кодирует другую аминокислоту, изменяется структура пептидной цепи и свойства белка.

2. сдвиг рамки считывания. Эти мутации происходят из-за выпадения (делеция) или вставки в нуклеотидную последовательность ДНК одной или нескольких пар комплементарных нуклеотидов. Причиной может быть воздействие на генетический материал некоторых химических веществ (акридиновых соединений). Большое число мутаций происходит вследствие включения в ДНК подвижных генетических элементов – транспозонов. Так же причиной могут послужить ошибки при рекомбинации при неравноценном внутригенном кроссинговере.

При таких мутациях изменяется смысл биологической информации, записанной в данной ДНК.

3. изменение порядка нуклеотидных последовательностей. Данный тип мутаций происходит вследствие поворота участка ДНК на 180ᵒ (инверсия). Это происходит из-за того что молекула ДНК образует петлю, в пределах которой репликация идет в неправильном направлении. В пределах инвертированного участка нарушается считывание информации и нарушается аминокислотная последовательность белка.

Причины: -неравный кроссинговер между гомологичными хромосомами

Внутрихромосомный кроссинговер

Разрывы хромосом

Разрывы с последующим соединением элементов хромосом

Копирование гена и его перенос в другой участок хромосомы