1 как обозначаются точки. прямая линия a

Конспект урока по математике

Тема: «Прямая. Обозначение прямой»

Класс: 1 «Г»

Цели урока:

Образовательная: - знать понятия прямая и непрямая линии; уметь изображать прямую линию; уметь различать прямые и непрямые линии; уметь принимать и сохранят учебную задачу; уметь выполнять учебно – познавательные действия в материальной и умственной форме; уметь работать в паре; умение делать выводы;

Развивающая: - развивать наблюдательность, логическое мышление, навыки самоконтроля; мыслительные операции(анализ, синтез, обобщение); развивать навык правильного речевого поведения;

Воспитывающая: ценностное отношение к предмету, воспитывать внимательность, аккуратность, усидчивость, прилежание; положительное отношение к учению; желание приобретать новые знания;

Тип урока: изучение нового материала

Техническое обеспечение: компьютер, мультимедийный проектор, экран, интерактивная доска

Оборудование :, учебник «Математика 1 класса», рабочая тетрадь по математике

УМК: «Перспектика »

Дата проведения: 01.10.2016г.

Время проведения: 45 минут

Проводящий: Болдуева Людмила Юрьевна

Организационный момент

    Актуализация знаний

    Целеполагание

    Ознакомление с новым материалом.

    Физкультминутка

    Закрепление

Физкультминутка для глаз

    Закрепление

    Итог

    Рефлексия

10. Домашнее задание

Здравствуйте, садитесь.

Для начала проведем устный счет.

На доску по одному, под счет детей прикрепляются кленовые листочки (или любая другая наглядность)

Молодцы!

А теперь назовите числа в порядке убывания.

Хорошо, молодцы!

Ребята, мы с вами попали в страну «Геометрию» и нас встречают точка. (учитель прикрепляет первую точку на доску). Назовем мы ее с вами точка А.

Сейчас с помощью линейки я проведу линию. Кто знает, как она называется?

Какова будет тема нашего урока?

А что мы сегодня будем делать, чему научимся?

Хорошо, молодцы!

Просмотр видео.

Итак, сколько прямых мы можем провести через одну точку?

Открываем учебник на стр. 50 и смотрим упражнение 1. Здесь показано как проведена прямая линия через одну точку с помощью линейки.

Можно ли ещё провести прямые через точку А?

Продолжаем, к нашей точке пришла в гости подружка. Это точка Б. (к доске учитель прикрепляет точку Б)

Просмотр видео.

Сколько можно провести прямых через две точки?

Правильно!

Открываем рабочие тетради на стр.38, выполняем задание 1.

Проверка посадки. Напомнить как держим карандаш.

Даны две точки А и Б. Проводим прямую с помощью линейки. Отмечаем на ней точку О. - - Какие прямые у нас получились?

Как ещё можно обозначить прямую АБ?

Правильно, БА.

(все действия учитель выполняет на интерактивной доске)

Игра на интерактивной доске(2)

Но существуют и непрямые линии, посмотрите на вторую картинку в учебнике. Это непрямые линии. И на доске у нас есть прямая и непрямая линия.

(на доске изображена прямая линия и непрямая линия)

А кто может сказать с помощью чего мы можем узнать прямая линия или нет?

Правильно, с помощью линейки. Если линейка совпадает с прямой, то линия – прямая, если нет, то непрямая.

Давайте попробуем(учитель прикладывает линейку к 1 прямой – линейка совпала, значит линия – прямая; прикладываем ко второй – не совпадает значит линия непрямая)

Игра на интерактивной доске(1)

Возвращаемся к рабочей тетради, номер 2, мы выполняем в парах, а затем проверяем вместе. Вам нужно провести прямые ДЕ и МК, потом провести ещё прямые через точки Е,М,К. Проводите. Подумайте вместе с вашим соседом по парте и запишите обозначения этих прямых.

Проверка, выполненного задания.(Учитель изображает прямые на интерактивной доске, обсуждая правильность выполнения с детьми)

На компьютере (презентация)

Возвращаемся к рабочим тетрадям и выполняем номер 3.

(учитель рисует вместе с детьми на интерактивной доске)

Пальчиковая гимнастика:

Пальчики.

Раз, два, три, четыре, пять, (Сжимают и разжимают кулачки.)

Мы пошли в лесок гулять.

Этот пальчик по дорожке, (Загибают пальчики, начиная с большого.)

Этот пальчик по тропинке,

Этот пальчик за грибами,

Этот пальчик за малиной,

Этот пальчик заблудился,

Очень поздно возвратился.

Пальчики мы с вами размяли и теперь выполняем номер 4.

Правила посадки.

Ну-ка показали, как мы держим ручку? Хорошо, молодцы!

И последнее упражнение, которое мы выполним на это уроке номер 6.

Давайте разбирать, нам нужно узнать кто из артистов будет выступать следующим, если он не на коньках, не клоун и не птица.

Кто подходит под это описание?

Правильно, молодцы!

Вот и подошел к концу наш с вами урок.

Что нового мы с вами сегодня узнали?

Чему научились?

Сегодня на уроке все работали активно, хорошо себя вели и поэтому я сейчас раздам вам по солнышку.

Ребята, поднимите руки, те кто всё понял на уроке, легко справился со всеми заданиями.

А теперь те, у кого были затруднения.

(А что именно ты не понял, что у тебя не получилось?)

Дома, по желанию вы можете сделать номер 7, в учебнике. Здесь узоры и цифры нужно перерисовать а тетрадь.

Здороваются, садятся.

Вместе с учителем считают листочки.

Прямая и её обозначение

Научимся изображать прямую

Работа с учебником

Только одну.

Выходят по очереди и выполняют задание

Проводят дети, под музыку

Работа с рабочими тетрадями

Работа в парах

Выполняют упражнение

Сжимают и разжимают кулачки

Загибаю пальчики, начинаю с большого

Ответы детей

Мы узнали, что такое прямая, её имя.

Научились изображать прямую

Мотивационная основа учебной деятельности (Л);

Смыслообразование (Л);

Постановка познавательной цели(П);

Познавательная инициатива (Р);

Прогнозирование (Р);

учебно-познавательный интерес (Л);

Смыслообразование (Л);

Волевая саморегуляция (Р);

Анализ, синтез, сравнение,

обобщение, аналогия (П);

Постановка и формулирование

проблемы (П);

Учет разных мнений,

координирование в

сотрудничестве

разных позиций (К);

Формулирование и аргументация

своего мнения и позиции в

Точка и прямая являются основными геометрическими фигурами на плоскости.

Древнегреческий учёный Евклид говорил: «точка» – это то, что не имеет частей». Слово «точка» в переводе с латинского языка означает результат мгновенного касания, укол. Точка является основой для построения любой геометрической фигуры.

Прямая линия или просто прямая – это линия, вдоль которой расстояние между двумя точками является кратчайшим. Прямая линия бесконечна, и изобразить всю прямую и измерить её невозможно.

Точки обозначают заглавными латинскими буквами А, В, С, D, Е и др., а прямые теми же буквами, но строчными а, b, c, d, e и др. Прямую можно обозначить и двумя буквами, соответствующими точкам, лежащим на ней. Например, прямую a можно обозначить АВ.

Можно сказать, что точки АВ лежат на прямой а или принадлежат прямой а. А можно сказать, что прямая а проходит через точки А и В.

Простейшие геометрические фигуры на плоскости – это отрезок, луч, ломаная линия.

Отрезок – это часть прямой, которая состоит из всех точек этой прямой, ограниченных двумя выбранными точками. Эти точки – концы отрезка. Отрезок обозначается указанием его концов.

Луч или полупрямая – это часть прямой, которая состоит из всех точек этой прямой, лежащих по одну сторону от данной её точки. Эта точка называется начальной точкой полупрямой или началом луча. Луч имеет точку начала, но не имеет конца.

Полупрямые или лучи обозначаются двумя строчными латинскими буквами: начальной и любой другой буквой, соответствующей точке, принадлежащей полупрямой. При этом начальная точка ставится на первом месте.

Получается, что прямая бесконечна: у неё нет ни начала, ни конца; у луча есть только начало, но нет конца, а отрезок имеет начало и конец. Поэтому только отрезок мы можем измерить.

Несколько отрезков, которые последовательно соединены между собой так, что имеющие одну общуюточкуотрезки (соседние) располагаются не на одной прямой, представляют собой ломаную линию.

Ломаная линия может быть замкнутой и незамкнутой. Если конец последнего отрезка совпадает с началом первого, перед нами замкнутая ломаная линия, если же нет – незамкнутая.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

В геометрии основными геометрическими фигурами являются точка и прямая. Для обозначения точек принято использовать прописные латинские буквы: A, B, C, D, E, F … . Для обозначения прямых используют строчные латинские буквы: a, b, c, d, e, f … . На рисунке ниже представлена прямая а, и несколько точек A, B, C, D.

Для изображения на рисунке прямой мы пользуемся линейкой, но мы изображаем не всю прямую, а только лишь её кусок. Так как прямая в нашем представлении простирается до бесконечности в обе стороны, то прямая есть бесконечна.

На рисунке представленном выше мы видим, что точки А и С расположены на прямой а . В таких случаях говорят, что точки А и С принадлежат прямой а. Либо говорят, что прямая проходит через точки А и С. При записи принадлежность точки к прямой обозначают специальным значком. А тот факт, что точка не принадлежит прямой, отмечают таким же значком, только зачеркнутым.

В нашем случае точки B и D не принадлежат прямой а.

Как уже отмечалось выше, на рисунке точки А и С принадлежат прямой а. Часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными точками называется отрезком . Другими словами, отрезком называется часть прямой, ограниченная двумя точками.

В нашем случае мы имеем отрезок АB . Точки А и B называются концами отрезка. Для того, чтобы обозначить отрезок указывают его концы, в нашем случае АB. Одним из основных свойств принадлежности точек и прямых является следующее свойство : через любые две точки можно провести прямую, и притом только одну.

Если две прямые имеют общую точку, то говорят, что эти две прямые пересекаются. На рисунке прямые a и b пересекаются в точке A. Прямые а и с не пересекаются.

Любые две прямые имеют только одну общую точку либо не имеют общих точек. Если предположить обратное, что две прямые имеют две общих точки, тогда через них проходили бы две прямые. А это невозможно, так как через две точки можно провести лишь одну прямую.


В этой статье мы подробно остановимся на одном из первичных понятий геометрии – на понятии прямой линии на плоскости. Сначала определимся с основными терминами и обозначениями. Далее обсудим взаимное расположение прямой и точки, а также двух прямых на плоскости, приведем необходимые аксиомы. В заключении, рассмотрим способы задания прямой на плоскости и приведем графические иллюстрации.

Навигация по странице.

Прямая на плоскости - понятие.

Прежде чем дать понятие прямой на плоскости, следует четко представлять себе что же представляет собой плоскость. Представление о плоскости позволяет получить, к примеру, ровная поверхность стола или стены дома. Следует, однако, иметь в виду, что размеры стола ограничены, а плоскость простирается и за пределы этих границ в бесконечность (как будто у нас сколь угодно большой стол).

Если взять хорошо заточенный карандаш и дотронуться его стержнем до поверхности «стола», то мы получим изображение точки. Так мы получаем представление о точке на плоскости .

Теперь можно переходить и к понятию прямой линии на плоскости .

Положим на поверхность стола (на плоскость) лист чистой бумаги. Для того чтобы изобразить прямую линию, нам необходимо взять линейку и провести карандашом линию на сколько это позволяют сделать размеры используемой линейки и листа бумаги. Следует отметить, что таким способом мы получим лишь часть прямой. Прямую линию целиком, простирающуюся в бесконечность, мы можем только вообразить.

Взаимное расположение прямой и точки.

Начать следует с аксиомы: на каждой прямой и в каждой плоскости имеются точки.

Точки принято обозначать большими латинскими буквами, например, точки А и F . В свою очередь прямые линии обозначают малыми латинскими буквами, к примеру, прямые a и d .

Возможны два варианта взаимного расположения прямой и точки на плоскости : либо точка лежит на прямой (в этом случае также говорят, что прямая проходит через точку), либо точка не лежит на прямой (также говорят, что точка не принадлежит прямой или прямая не проходит через точку).

Для обозначения принадлежности точки некоторой прямой используют символ «». К примеру, если точка А лежит на прямой а , то можно записать . Если точка А не принадлежит прямой а , то записывают .

Справедливо следующее утверждение: через любые две точки проходит единственная прямая.

Это утверждение является аксиомой и его следует принять как факт. К тому же, это достаточно очевидно: отмечаем две точки на бумаге, прикладываем к ним линейку и проводим прямую линию. Прямую, проходящую через две заданные точки (например, через точки А и В ), можно обозначать двумя этими буквами (в нашем случае прямая АВ или ВА ).

Следует понимать, что на прямой, заданной на плоскости, лежит бесконечно много различных точек, причем все эти точки лежат в одной плоскости. Это утверждение устанавливается аксиомой: если две точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.

Множество всех точек, расположенных между двумя заданными на прямой точками, вместе с этими точками называют отрезком прямой или просто отрезком . Точки, ограничивающие отрезок, называются концами отрезка. Отрезок обозначают двумя буквами, соответствующими точкам концов отрезка. К примеру, пусть точки А и В являются концами отрезка, тогда этот отрезок можно обозначить АВ или ВА . Обратите внимание, что такое обозначение отрезка совпадает с обозначением прямой. Чтобы избежать путаницы, рекомендуем к обозначению добавлять слово «отрезок» или «прямая».

Для краткой записи принадлежности и не принадлежности некоторой точки некоторому отрезку используют все те же символы и . Чтобы показать, что некоторый отрезок лежит или не лежит на прямой пользуются символами и соответственно. К примеру, если отрезок АВ принадлежит прямой а , можно кратко записать .

Следует также остановиться на случае, когда три различных точки принадлежат одной прямой. В этом случае одна, и только одна точка, лежит между двумя другими. Это утверждение является очередной аксиомой. Пусть точки А , В и С лежат на одной прямой, причем точка В лежит между точками А и С . Тогда можно говорить, что точки А и С находятся по разные стороны от точки В . Также можно сказать, что точки В и С лежат по одну сторону то точки А , а точки А и В лежат по одну сторону от точки С .

Для полноты картины заметим, что любая точка прямой делит эту прямую на две части – два луча . Для этого случая дается аксиома: произвольная точка О , принадлежащая прямой, делит эту прямую на два луча, причем две любые точки одного луча лежат по одну сторону от точки О , а две любые точки разных лучей – по разные стороны от точки О .

Взаимное расположение прямых на плоскости.

Сейчас ответим на вопрос: «Как могут располагаться две прямые на плоскости относительно друг друга»?

Во-первых, две прямые на плоскости могут совпадать .

Это возможно в том случае, когда прямые имеют по крайней мере две общие точки. Действительно, в силу аксиомы, озвученной в предыдущем пункте, через две точки проходит единственная прямая. Иными словами, если через две заданные точки проходят две прямые, то они совпадают.

Во-вторых, две прямые на плоскости могут пересекаться .

В этом случае прямые имеют одну общую точку, которую называют точкой пересечения прямых. Пересечение прямых обозначают символом «», к примеру, запись означает, что прямые а и b пересекаются в точке М . Пересекающиеся прямые приводят нас к понятию угла между пересекающимися прямыми . Отдельно стоит рассмотреть расположение прямых на плоскости, когда угол между ними равен девяноста градусам. В этом случае прямые называются перпендикулярными (рекомендуем статью перпендикулярные прямые, перпендикулярность прямых). Если прямая a перпендикулярна прямой b , то можно использовать краткую запись .

В-третьих, две прямые на плоскости могут быть параллельными.

Прямую линию на плоскости с практической точки зрения удобно рассматривать вместе с векторами. Особое значение имеют ненулевые векторы, лежащие на данной прямой или на любой из параллельных прямых, их называют направляющими векторами прямой . В статье направляющий вектор прямой на плоскости даны примеры направляющих векторов и показаны варианты их использования при решении задач.

Также следует обратить внимание на ненулевые векторы, лежащие на любой из прямых, перпендикулярных данной. Такие векторы называют нормальными векторами прямой . О применении нормальных векторов прямой рассказано в статье нормальный вектор прямой на плоскости .

Когда на плоскости даны три и более прямых линии, то возникает множество различных вариантов их взаимного расположения. Все прямые могут быть параллельными, в противном случае некоторые или все из них пересекаются. При этом все прямые могут пересекаться в единственной точке (смотрите статью пучок прямых), а могут иметь различные точки пересечения.

Не будем подробно останавливаться на этом, а приведем без доказательства несколько примечательных и очень часто используемых фактов:

  • если две прямые параллельны третьей прямой, то они параллельны между собой;
  • если две прямые перпендикулярны третьей прямой, то они параллельны между собой;
  • если на плоскости некоторая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую прямую.

Способы задания прямой на плоскости.

Сейчас мы перечислим основные способы, которыми можно задать конкретную прямую на плоскости. Это знание очень полезно с практической точки зрения, так как на нем основывается решение очень многих примеров и задач.

Во-первых, прямую можно задать, указав две точки на плоскости.

Действительно, из аксиомы, рассмотренной в первом пункте этой статьи, мы знаем, что через две точки проходит прямая, и притом только одна.

Если в прямоугольной системе координат на плоскости указаны координаты двух несовпадающих точек, то есть возможность записать уравнение прямой, проходящей через две заданные точки .


Во-вторых, прямую можно задать, указав точку, через которую она проходит, и прямую, которой она параллельна. Этот способ справедлив, так как через данную точку плоскости проходит единственная прямая, параллельная заданной прямой. Доказательство этого факта проводилось на уроках геометрии в средней школе.

Если прямую на плоскости задать таким способом относительно введенной прямоугольной декартовой системы координат, то есть возможность составить ее уравнение. Об этом написано в статье уравнение прямой, проходящей через заданную точку параллельно заданной прямой .


В-третьих, прямую можно задать, если указать точку, через которую она проходит, и ее направляющий вектор.

Если прямая линия задана в прямоугольной системе координат таким способом, то легко составить ее каноническое уравнение прямой на плоскости и параметрические уравнения прямой на плоскости .


Четвертый способ задания прямой заключается в том, что следует указать точку, через которую она проходит, и прямую, которой она перпендикулярна. Действительно, через заданную точку плоскости проходит единственная прямая, перпендикулярная данной прямой. Оставим этот факт без доказательства.


Наконец, прямую на плоскости можно задать, указав точку, через которую она проходит, и нормальный вектор прямой.

Если известны координаты точки, лежащей на заданной прямой, и координаты нормального вектора прямой, то есть возможность записать общее уравнение прямой .


Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.