Джеймса кларка максвелла краткая биография. Джеймс максвелл краткая биография

Джеймс Клерк Максвелл (1831-79) - английский физик, создатель классической электродинамики , один из основоположников статистической физики, организатор и первый директор (с 1871) Кавендишской лаборатории, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света, установил первый статистический закон - закон распределения молекул по скоростям, названный его именем.

Когда какое-нибудь явление можно описать как частный случай какого-нибудь общего, приложимого к другим явлениям принципа, то говорят, что это явление получило объяснение

Максвелл Джеймс Клерк

Развивая идеи Майкла Фарадея, создал теорию электромагнитного поля (уравнения Максвелла); ввел понятие о токе смещения, предсказал существование электромагнитных волн, выдвинул идею электромагнитной природы света. Установил статистическое распределение, названное его именем. Исследовал вязкость, диффузию и теплопроводность газов. Максвелл показал, что кольца Сатурна состоят из отдельных тел. Труды по цветному зрению и колориметрии (диск Максвелла), оптике (эффект Максвелла), теории упругости (теорема Максвелла, диаграмма Максвелла - Кремоны), термодинамике, истории физики и др.

Семья. Годы учения

Джеймс Максвелл родился 13 июня 1831, в Эдинбурге. Он был единственным сыном шотландского дворянина и адвоката Джона Клерка, который, получив в наследство поместье жены родственника, урожденной Максвелл, прибавил это имя к своей фамилии. После рождения сына семья переехала в Южную Шотландию, в собственное поместье Гленлэр («Приют в долине»), где и прошло детство мальчика.

Из всех гипотез…выбирайте ту, которая не пресекает дальнейшего мышления об исследуемых вещах

Максвелл Джеймс Клерк

В 1841 отец отправил Джеймса в школу, которая называлась «Эдинбургская академия». Здесь в 15 лет Максвелл написал свою первую научную статью «О черчении овалов». В 1847 он поступил в Эдинбургский университет, где проучился три года, и в 1850 перешел в Кембриджский университет, который окончил в 1854. К этому времени Джеймс Максвелл был первоклассным математиком с великолепно развитой интуицией физика.

Создание Кавендишской лаборатории. Преподавательская работа

По окончании университета Джеймс Максвелл был оставлен в Кембридже для педагогической работы. В 1856 он получил место профессора Маришал-колледжа в Абердинском университете (Шотландия). В 1860 избран членом Лондонского королевского общества. В том же году переехал в Лондон, приняв предложение занять пост руководителя кафедры физики в Кинг-колледже Лондонского университета, где работал до 1865 года.

Вернувшись в 1871 в Кембриджский университет, Максвелл организовал и возглавил первую в Великобритании специально оборудованную лабораторию для физических экспериментов, известную как Кавендишская лаборатория (по имени английского ученого Генри Кавендиша). Становлению этой лаборатории, которая на рубеже 19-20 вв. превратилась в один из крупнейших центров мировой науки, Максвелл посвятил последние годы своей жизни.

Чтобы вполне правильно вести научную работу посредством систематических опытов и точных демонстраций, требуется стратегическое искусство

Максвелл Джеймс Клерк

Вообще фактов из жизни Максвелла известно немного. Застенчивый, скромный, он стремился жить уединенно и не вел дневников. В 1858 Джеймс Максвелл женился, но семейная жизнь, видимо, сложилась неудачно, обострила его нелюдимость, отдалила от прежних друзей. Существует предположение, что многие важные материалы о жизни Максвелла погибли во время пожара 1929 в его гленлэрском доме, через 50 лет после его смерти. Он умер от рака в возрасте 48 лет.

Научная деятельность

Необычайно широкая сфера научных интересов Максвелла охватывала теорию электромагнитных явлений, кинетическую теорию газов, оптику, теорию упругости и многое другое. Одними из первых его работ были исследования по физиологии и физике цветного зрения и колориметрии, начатые в 1852. В 1861 Джеймс Максвелл впервые получил цветное изображение, спроецировав на экран одновременно красный, зеленый и синий диапозитивы. Этим была доказана справедливость трехкомпонентной теории зрения и намечены пути создания цветной фотографии. В работах 1857-59 Максвелл теоретически исследовал устойчивость колец Сатурна и показал, что кольца Сатурна могут быть устойчивы лишь в том случае, если состоят из не связанных между собой частиц (тел).

В 1855 Д. Максвелл приступил к циклу своих основных работ по электродинамике. Были опубликованы статьи «О фарадеевых силовых линиях» (1855-56), «О физических силовых линиях» (1861-62), «Динамическая теория электромагнитного поля» (1869). Исследования были завершены выходом в свет двухтомной монографии «Трактат об электричестве и магнетизме» (1873).

Всякий великий человек является единственным в своем роде. В историческом шествии ученых у каждого из них своя определенная задача и свое определенное место

Максвелл Джеймс Клерк

Создание теории электромагнитного поля

Когда Джеймс Максвелл в 1855 начал исследования электрических и магнитных явлений, многие из них уже были хорошо изучены: в частности, установлены законы взаимодействия неподвижных электрических зарядов (закон Кулона) и токов (закон Ампера); доказано, что магнитные взаимодействия есть взаимодействия движущихся электрических зарядов. Большинство ученых того времени считало, что взаимодействие передается мгновенно, непосредственно через пустоту (теория дальнодействия).

Решительный поворот к теории близкодействия был сделан Майклом Фарадеем в 30-е гг. 19 в. Согласно идеям Фарадея, электрический заряд создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой, и наоборот. Взаимодействие токов осуществляется посредством магнитного поля. Распределение электрических и магнитных полей в пространстве Фарадей описывал с помощью силовых линий, которые по его представлению напоминают обычные упругие линии в гипотетической среде - мировом эфире.

Максвелл полностью воспринял идеи Фарадея о существовании электромагнитного поля, то есть о реальности процессов в пространстве возле зарядов и токов. Он считал, что тело не может действовать там, где его нет.

Первое, что сделал Д.К. Максвелл - придал идеям Фарадея строгую математическую форму, столь необходимую в физике. Выяснилось, что с введением понятия поля законы Кулона и Ампера стали выражаться наиболее полно, глубоко и изящно. В явлении электромагнитной индукции Максвелл усмотрел новое свойство полей: переменное магнитное поле порождает в пустом пространстве электрическое поле с замкнутыми силовыми линиями (так называемое вихревое электрическое поле).

Следующий, и последний, шаг в открытии основных свойств электромагнитного поля был сделан Максвеллом без какой-либо опоры на эксперимент. Им была высказана гениальная догадка о том, что переменное электрическое поле порождает магнитное поле, как и обычный электрический ток (гипотеза о токе смещения). К 1869 все основные закономерности поведения электромагнитного поля были установлены и сформулированы в виде системы четырех уравнений, получивших название Максвелла уравнений.

Действительный очаг науки – не томы научных трудов, но живой ум человека, и для того чтобы продвигать науку, нужно направить человеческую мысль в научное русло. Это можно сделать различными способами: огласив какое-либо открытие, отстаивая парадоксальную идею, или изобретая научную фразу, или изложив систему доктрины

Максвелл Джеймс Клерк

Уравнения Максвелла - основные уравнения классической макроскопической электродинамики, описывающие электромагнитные явления в произвольных средах и в вакууме. Уравнения Максвелла получены Дж. К. Максвеллом в 60-х гг. 19 в. в результате обобщения найденных из опыта законов электрических и магнитных явлений.

Из уравнений Максвелла следовал фундаментальный вывод: конечность скорости распространения электромагнитных взаимодействий. Это главное, что отличает теорию близкодействия от теории дальнодействия. Скорость оказалась равной скорости света в вакууме: 300000 км/с. Отсюда Максвелл сделал заключение, что свет есть форма электромагнитных волн.

Работы по молекулярно-кинетической теории газов

Чрезвычайно велика роль Джеймса Максвелла в разработке и становлении молекулярно-кинетической теории (современное название - статистическая механика). Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им был открыт первый статистический закон - закон распределения молекул по скоростям (Максвелла распределение). Кроме того, он рассчитал значения вязкости газов в зависимости от скоростей и длины свободного пробега молекул, вывел ряд соотношений термодинамики.

Распределение Максвелла - распределение по скоростям молекул системы в состоянии термодинамического равновесия (при условии, что поступательное движение молекул описывается законами классической механики). Установлено Дж. К. Максвеллом в 1859.

Максвелл был блестящим популяризатором науки. Он написал ряд статей для Британской энциклопедии и популярные книги: «Теория теплоты» (1870), «Материя и движение» (1873), «Электричество в элементарном изложении» (1881), которые были переведены на русский язык; читал лекции и доклады на физические темы для широкой аудитории. Максвелл проявлял также большой интерес к истории науки. В 1879 он опубликовал труды Г. Кавендиша по электричеству, снабдив их обширными комментариями.

Оценка работ Максвелла

Работы ученого не были по достоинству оценены его современниками. Идеи о существовании электромагнитного поля казались произвольными и неплодотворными. Только после того, как Генрих Герц в 1886-89 экспериментально доказал существование электромагнитных волн, предсказанных Максвеллом, его теория получила всеобщее признание. Произошло это спустя десять лет после смерти Максвелла.

После экспериментального подтверждения реальности электромагнитного поля было сделано фундаментальное научное открытие: существуют различные виды материи, и каждому из них присущи свои законы, не сводимые к законам механики Ньютона. Впрочем, сам Максвелл вряд ли отчетливо это сознавал и первое время пытался строить механические модели электромагнитных явлений.

О роли Максвелла в развитии науки превосходно сказал американский физик Ричард Фейнман: «В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием 19 столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием».

Джеймс Максвелл скончался 5 ноября 1879, Кембридж. Он похоронен не в усыпальнице великих людей Англии - Вестминстерском аббатстве, - а в скромной могиле рядом с его любимой церковью в шотландской деревушке, недалеко от родового поместья.

Джеймс Клерк Максвелл - цитаты

Чтобы вполне правильно вести научную работу посредством систематических опытов и точных демонстраций, требуется стратегическое искусство.

Из всех гипотез выбирайте ту, которая не пресекает дальнейшего мышления об исследуемых вещах.

Для развития науки требуется в каждую данную эпоху не только, чтобы люди мыслили вообще, но чтобы они концентрировали свои мысли на той части обширного поля науки, которое в данное время требует разработки.

Многие научные издания и журналы в последнее время публикуют статьи о достижениях в физике и современных ученных и редко встречаются публикации о физиках прошлого. Нам бы хотелось исправить это положение и вспомнить об одном из выдающихся физиков прошлого века Джеймсе Клерке Максвелле. Это известный английский физик, отец классической электродинамики, статистической физики и многих других теорий, физических формул и изобретений. Максвелл стал создателем и первым руководителем Кавендишской лаборатории.

Как известно, Максвелл выходцем из Эдинбурга и родился в 1831 году в дворянской семье, которая имела родственную связь с шотландской фамилией Клерков Пеникуик. Детство Максвелла прошло в поместье Гленлэр. Предки Джеймса были политическими деятелями, поэтами, музыкантами и учеными. Наверное, склонность к наукам ему передалась по наследству.

Джеймс воспитывался без матери (так как она умерла, когда ему было 8 лет) отцом, который заботливо относился к мальчику. Отец хотел, чтобы его сын изучал естественные науки. Джеймс сразу полюбил технику и быстро развивал практические навыки. Первые уроки на дому маленький Максвелл воспринял с упорством, так как ему не были по душе жесткие методы воспитания, применяемые учителем. Дальнейшее обучение проходило в аристократической школе, где у мальчика проявились большие математические способности. Особенно Максвеллу нравилась геометрия.

Многим великим людям геометрия казалась потрясающей наукой, и даже в 12 лет говорил об учебнике геометрии, как о святой книге. Максвелл любил геометрию не хуже других научных светил, но у него плохо складывались отношения со школьными товарищами. Они постоянно придумывали ему обидные прозвища и одной из причин была его нелепая одежда. Отец Максвелла считался чудаком и покупал сыну одежду, которая вызывала улыбку.

Максвелл уже в детстве подавал большие надежды в области науки. В 1814 году его отдали учиться Эдинбургскую гимназию, а в 1846 году ему вручили медаль за заслуги в области математики. Его отец гордился своим сыном и ему предоставилась возможность представлять одну из научных работ сына перед коллегией Эдинбургской Академии наук. Эта работа касалось математических расчетов эллиптических фигур. Тогда эта работа имела название «О черчении овалов и об овалах со многими фокусами». Она была написана в 1846 году, а опубликована для широких масс в 1851.

Усиленно изучать физику Максвелл начал после перевода в Эдинбургский университет. Его учителями стали Калланд, Форбс и другие. Они сразу увидели в Джеймсе высокий интеллектуальный потенциал и неудержимое стремление изучать физику. До этого периода Максвелл сталкивался с отдельными разделами физики и изучал оптику (посвятил много времени поляризации света и кольцам Ньютона). В этом ему помогал известный физик Вильям Николь, который в свое время изобрел призму.

Конечно, Максвеллу не были чужды другие естественные науки, и он особое внимание уделял изучению философии, истории науки и эстетики.

В 1850 году он поступает в Кембридж, в котором когда-то работал Ньютон и в 1854 году получает академическую степень. После этого его исследования коснулись области электричества и электроустановок. А в 1855 году ему предоставили членство в совете Тринити-колледжа.

Первая значительная научная работа Максвелла – это «О фарадеевых силовых линиях», которая появилась в 1855 году. В свое время Больцман сказал о статье Максвелла, что данная работа имеет глубокий смысл и показывает насколько целеустремленно подходит к научной работе молодой ученый. Больцман считал, что Максвелл не только разбирался в вопросах естествознания, но и внес особый вклад в теоретическую физику. Максвелл обозначил в своей статье все тенденции эволюции физики на несколько последующих десятилетий. Позже к такому же выводу пришел Кирхгоф, Маха и .

Как образовалась Кавендишская лаборатория?

После завершения учебы в Кембридже Джеймс Максвелл остается здесь, как преподаватель и в 1860 году он становится членом Лондонского королевского общества. В это же время он переезжает в Лондон, где ему предоставляют место руководителя кафедры физики в Кинг-колледже Лондонского университета. На этой должности он проработал 5 лет.

В 1871 году Максвелл возвращается в Кембридж и создает первую в Англии лабораторию для исследований в области физики, которая получила название Кавендишская лаборатория (в честь Генри Кавендиша). Развитию лаборатории, которая стала настоящим центром научных исследований, Максвелл посвятил остаток своей жизни.

О жизни Максвелла известно мало, так как он не вел записей и дневников. Это был скромный и застенчивый человек. Умер Максвелл в возрасте 48 лет от онкологического заболевания.

Какое научное наследие Джеймса Максвелла?

Научная деятельность Максвелла охватывала многие направления в физике: теория электромагнитных явлений, кинематическая теория газов, оптика, теория упругости и другие. Первое, что заинтересовало Джеймса Максвелла – это изучение и проведение исследований в физиологии и физике цветного зрения.

Максвеллу впервые удалось получить цветное изображение, которое получилось благодаря одновременной проекции красного, зеленного и синего диапазона. Этим Максвелл очередной раз доказал миру, что цветной образ зрения основан на трехкомпонентной теории. Данное открытие положило начало создания цветных фотографий. В период с 1857-1859 года Максвеллу удалось исследовать устойчивость колец Сатурна. Его теория говорит о том, что кольца Сатурна будут устойчивы только при одном условии – несвязанности между собой частиц или тел.

С 1855 года Максвелл уделял особое внимание работе в области электродинамики. Существует несколько научных работ этого периода «О фарадеевых силовых линиях», « О физических силовых линиях», «Трактат об электричестве и магнетизме» и «Динамическая теория электромагнитного поля».

Максвелл и теория электромагнитного поля.

Когда Максвелл стал изучать электрические и магнитные явления, то многие из них уже были хорошо исследованы. Был создан закон Кулона , закон Ампера , также было доказано, что магнитные взаимодействия связаны действием электрических зарядов. Многие ученые того времени были сторонниками теории дальнодействия, которая утверждает, что взаимодействие происходит мгновенно и в пустом пространстве.

Главную роль в теории близкодействия сыграли исследования Майкла Фарадея (30-е годы XIX века). Фарадей утверждал, что природа электрического заряда основана на окружающем пространстве электрического поля. Поле одного заряда связано с соседним в двух направлениях. Токи взаимодействуют при помощи магнитного поля. Магнитные и электрические поля по Фарадею описаны им в виде силовых линий, которые являются упругими линиями в гипотетической среде – в эфире.

Максвелл поддерживал теорию Фарадея о существовании электромагнитных полей, то есть был сторонником возникающих процессов вокруг заряда и тока.

Максвелл объяснил идеи Фарадея в математическом виде, в чем очень нуждалась физика. При введении понятия поля законы Кулона и Ампера стали более убедительными и глубоко осмысленными. В понятии электромагнитной индукции Максвелл сумел рассмотреть свойства самого поля. Под действием переменного магнитного поля в пустом пространстве зарождается электрическое поле с замкнутыми силовыми линиями. Такое явление называется вихревым электрическим полем.

Следующим открытием Максвелла было то, что переменное электрическое поле может порождать магнитное поле, на подобии обычного электрического тока. Эту теорию назвали – гипотезой о токе смещения. В дальнейшем поведение электромагнитных полей Максвелл выразил в своих уравнениях.


Справка. Уравнения Максвелла – это уравнения описывающие электромагнитные явления в различных средах и вакуумном пространстве, а также относятся к классической макроскопической электродинамике. Это логический вывод, сделанный с опытов, основанных на законах электрических и магнитных явлений.
Основным выводом уравнений Максвелла является конечность распространения электрических и магнитных взаимодействий, что разграничивало теорию близкодействия и теорию дальнодействия. Скоростные характеристики приблизились к скорости света 300000 км/с. Это дало повод Максвеллу утверждать, что свет это явление, связанное с действием электромагнитных волн.

Молекулярно-кинетическая теория газов Максвелла.

Максвелл внес свою лепту в изучение молекулярно-кинетической теории (сейчас данная наука называется статистическая механика ). Максвеллу первому пришла в голову идея о статистическом характере законов природы. Он создал закон распределения молекул по скоростям, а так же ему удалось рассчитать вязкость газов в отношении скоростных показателей и длины свободного пробега молекул газа. Также благодаря работам Максвелла мы имеем ряд соотношений термодинамики.

Справка. Распределение Максвелла – это теория распределения по скоростям молекул системы в условиях термодинамического равновесия. Термодинамическое равновесие – это условие поступательного движения молекул описанное законами классической динамики.

У Максвелла было множество научных трудов, которые были опубликованы: «Теория теплоты», «Материя и движение», « Электричество в элементарном изложении» и другие. Максвелл не только двигал науку в период, но и интересовался ее историей. В свое время ему удалось опубликовать труды Г. Кавендиша, которые он дополнил своими комментариями.

Чем запомнился миру Джеймс Клерк Максвелл?

Максвелл вел активную работу по изучению электромагнитных полей. Его теория об их существовании получила всемирное признание только спустя десятилетие после его смерти.

Максвелл первый классифицировал материи и присвоил каждой свои законы, которые не сводились к законам механики Ньютона.

О максвелле писали многие ученные. Физик Р. Фейнман сказал о нем, что Максвелл, открывший законы электродинамики, смотрел через века в будущее.

Эпилог. Джеймс Клерк Максвелл умер 5 ноября 1879 года в Кембридже. Его похоронили в небольшой шотландской деревушке возле его любимой церкви, которая находится не далеко возле его родового поместья.

5 ноября 1879 года умер британский физик, математик и механик Джеймс Клерк Максвелл. Ему было 48 лет. За свою жизнь он стал автором множества открытий. Мы вспомнили самые интересные из них.

1. Метод рисования овала. Это открытие Максвелл сделал, еще будучи школьником. Он учился в Эдинбургской академии. Поначалу учеба мало интересовала Джеймса, но позже он стал проявлять к ней интерес. Больше всего мальчик увлекся геометрией. Его понимание красоты геометрических образов возросло после лекции художника Дэвида Рамзая Хея об искусстве этрусков. Размышления над этой темой привели Максвелла к изобретению способа рисования овалов. Метод восходил еще к работам Рене Декарта и состоял в использовании булавок-фокусов, нитей и карандаша, что позволяло строить окружности (один фокус), эллипсы (два фокуса) и более сложные овальные фигуры (большее количество фокусов). Надо сказать, что результаты работы школьника не остались незамеченными и были доложены профессором Джеймсом Форбсом на заседании Эдинбургского королевского общества и затем опубликованы в его «Трудах».

2. Теория цветов. После учебы в Кембридже Максвелл готовился к профессорскому званию. В это время главным научным интересом молодого человека становится работа по теории цветов. Она берет начало в творчестве Исаака Ньютона, который придерживался идеи о семи основных цветах. Максвелл был продолжателем теории Томаса Юнга, выдвинувшего идею трех основных цветов и связавшего их с физиологическими процессами в организме человека. Джеймс использовал уже придуманный ранее «цветовой волчок», диск которого был разделен на окрашенные в разные цвета секторы, а также «цветовой ящик», разработанную им самим оптическую систему, позволявшую смешивать эталонные цвета. Однако ему впервые удалось получить с их помощью количественные результаты и довольно точно предсказывать возникающие в результате смешения цвета. Например, если раньше считалось, что белый цвет можно получить смешением синего, красного и желтого, то Максвелл опроверг это. Его опыты показали, что смешение синего и желтого цветов дает не зеленый, как часто полагали, а розоватый оттенок. Также он выяснил, что основными цветами являются красный, зеленый и синий.


3. Устойчивость колец Сатурна . В Абердине Максвелл женился и занимался преподавательской работой, однако наука все еще отнимала значительную часть его времени. Большее внимание Максвелла в это время привлекало исследование природы колец Сатурна, предложенное в 1855 году Кембриджским университетом на соискание премии Адамса (работу требовалось завершить за два года). Кольца были открыты Галилео Галилеем еще в начале XVII века и долгое время были загадкой природы. Природу вещества, из которого были кольца Сатурна, пытались определить многие ученые. Уильям Гершель считал их сплошными твёрдыми объектами. Пьер Симон Лаплас доказывал, что твёрдые кольца должны быть неоднородными, очень узкими и обязательно должны вращаться. Максвелл провел исследования - математический анализ различных вариантов строения колец - и убедился, что они не могут быть ни твёрдыми, ни жидкими. Выво ученого был таким: подобная структура может быть устойчивой только в том случае, если состоит из роя не связанных между собой метеоритов. Устойчивость колец обеспечивается их притяжением к Сатурну и взаимным движением планеты и метеоритов. При помощи Фурье -анализа Максвелл изучил распространение волн в таком кольце и показал, что при определенных условиях метеориты не сталкиваются между собой. Для случая двух колец он определил, при каких соотношениях их радиусов наступает состояние неустойчивости. Получив за работу премию Адамса и собрав восторженные отзывы коллег, Максвелл продолжил опыты. Его работа получила признание в научных кругах. Королевский астроном Джордж Эйри объявил ее самым блестящим применением математики к физике, которое он когда-либо видел.


4. Первая цветная фотография. Это открытие было сделано в Лондоне . Сначала, в 1860 году, Максвелл выступил с докладом на съезде Британской ассоциации в Оксфорде Максвелл о своих результатах в области теории цветов, подкрепив их экспериментальными демонстрациями с помощью цветового ящика. Год спустя во время лекции в Королевском институте Джеймс представил коллегам первую в мире цветную фотографию, идея которой возникла у него ещё в 1855 году. Она была изготовлена вместе с фотографом Томасом Саттоном. Сперва было получено три негатива цветной ленты на стекле, покрытом фотографической эмульсией (коллодий). Негативы сняли через зелёный, красный и синий фильтры (растворы солей различных металлов). Затем негативы освещали через те же фильтры, после чего удалось получить цветное изображение. Кстати, опыт Максвелла воссоздали спустя почти сто лет назад сотрудники фирмы «Кодак». Принцип ученого использовали еще долгие годы.

Джеймс Кларк Максвелл прожил всего 48 лет, но его вклад в математику, физику и механику трудно переоценить. Сам Альберт Эйнштейн заявил, что теорией относительности он обязан уравнениям Максвелла для электромагниного поля.

В Эдинбурге на улице Индии есть дом, на стене которого висит мемориальная доска:
"Джеймс Кларк Максвелл
Естествоиспытатель
Родился здесь 13 июня 1831 года".

Будущий великий ученый принадлежал к старинной дворянской семье и большую часть детства провел в имении своего отца Миддлби, располагавшемся в Южной Шотландии. Он рос любопытным и активным ребенком, и уже тогда родные отмечали, что его любимые вопросы: "Как это сделать?" и "Как это происходит?".

Когда Джеймсу исполнилось десять, по решению семьи, он поступил в Эдинбургскую академию, где учился прилежно, хотя и не проявляя никаких особых талантов. Однако увлекшись геометрией, Максвелл изобрел новый способ рисования овалов. Содержание его работы, посвященной геометрии овальных кривых, было изложено в "Трудах Эдинбургского королевского общества" за 1846 год. Автору тогда исполнилось только четырнадцать лет. В шестнадцать Максвелл отправился в Эдинбургский университет, выбрав основными предметами физику и математику. Кроме того, он заинтересовался проблемами философии, прослушал курсы логики и метафизики.

Уже упомянутые "Труды Эдинбургского королевского общества" опубликовали еще два сочинения талантливого студента - о кривых качения и об упругих свойствах твердых тел. Последняя тема имела важное значение для строительной механики.

Проучившись в Эдинбурге, девятнадцатилетний Максвелл перебрался в Кембриджский университет, сначала в колледж Святого Петра, потом в более престижный колледж Святой Троицы. Изучение математики там было поставлено на более глубоком уровне, и требования к студентам заметно выше, чем в Эдинбурге. Несмотря на это, Максвеллу удалось показать второй результат на публичном трехступенчатом экзамене по математике на степень бакалавра.

В Кембридже Максвелл много общался с разными людьми, вступил в клуб апостолов, состоявший из 12 членов, объединенных широтой и оригинальностью мышления. Он участвовал в деятельности Рабочего колледжа, созданного для образования простых людей, читал там лекции.

Осенью 1855 года, когда Максвелл закончил учебу, его приняли в состав колледжа Святой Троицы и предложили остаться преподавать. Чуть позже он вошел в Эдинбургское королевское общество - национальное научное объединение Шотландии. В 1856 году Максвелл покинул Кембридж ради профессорского места в Маришальском колледже шотландского города Абердина.

Подружившись с директором колледжа преподобным Дэниэлом Дьюаром, Максвелл познакомился с его дочерью Кэтрин Мэри. Они объявили о помолвке в конце зимы 1858 года, а в июне обвенчались. По воспоминаниям биографа и друга ученого Льюиса Кэмпбелла, их брак оказался примером невероятной преданности. Известно, что Кэтрин помогала мужу в лабораторных исследованиях.

В целом, абердинский период был очень плодотворным в жизни Максвелла. Еще в Кембридже он занялся исследованием строения колец Сатурна, и в 1859 году в свет вышла его монография, где он доказывал, что они представляют собой твердые тела, вращающиеся вокруг планеты. Тогда же ученый написал статью "Пояснения к динамической теории газов", в которой вывел функцию, отражающую распределение молекул газа в зависимости от их скорости, впоследствии названную распределением Максвелла. Это был один из первых примеров статистических законов, которые описывают поведение не одного объекта или отдельной частицы, а поведение множества объектов или частиц. Придуманный исследователем позже "демон Максвелла" - мысленный эксперимент, в котором некое разумное бестелесное существо разделяет молекулы газа по скоростям, - продемонстрировал статистический характер второго закона термодинамики.

В 1860 году несколько колледжей объединили в Абердинский университет и часть кафедр упразднили. Под сокращение попал и молодой профессор Максвелл. Но он недолго оставался без работы, практически сразу его пригласили преподавать в Лондонский королевский колледж, где он пробыл последующие пять лет.

В том же году на собрании Британской ассоциации ученый прочел доклад о своих разработках, касающихся восприятия цвета, за которые позже получил медаль Румфорда от Лондонского королевского общества. Доказывая правоту собственной теории цвета, Максвелл предъявил на суд публики новинку, поразившую ее воображение, - цветную фотографию. До него никто не мог ее получить.

В 1861 году Максвелл получил назначение в Комитет по эталонам, созданный для того, чтобы определить главные электрические единицы.

Кроме того, Максвелл не отказался от исследований упругости твердых тел и за полученные результаты удостоился премии Кейта Эдинбургского королевского общества.

Работая в Лондонском королевском колледже, Максвелл завершил создание своей теории электромагнитного поля. Саму идею поля предложил знаменитый физик Майкл Фарадей, но его знаний не хватало, чтобы представить свое открытие на языке формул. Математическое описание электромагнитных полей стало главной научной проблемой для Максвелла. Опираясь на метод аналогий, благодаря которому было зафиксировано сходство между электрическим взаимодействием и теплопередачей в твердом теле, ученый перенес данные исследований теплоты на электричество и первым смог математически обосновать передачу электрического действия в среде.

1873 год ознаменовался выходом "Трактата об электричестве и магнетизме", чье значение сопоставимо со значением "Математических начал философии" Ньютона. С помощью уравнений Максвелл описал электромагнитные явления, сделал выводы о том, что существуют электромагнитные волны, что они распространяются со скоростью света и сам свет имеет электромагнитную природу.

"Трактат" издали, когда Максвелл уже два года (с 1871) занимал должность главы физической лаборатории Кембриджского университета, чье создание означало признание в ученом сообществе огромной важности экспериментального подхода к исследованиям.

Не менее значимой задачей Максвелл видел популяризацию науки. Для этого он писал статьи для энциклопедии "Британника", работы, где пытался на простом языке объяснить основные представления о материи, движении, электричестве, атомах и молекулах.

В 1879 году здоровье Максвелла сильно пошатнулось. Он знал, что тяжело болен, и его диагноз - рак. Понимая, что обречен, он мужественно переносил боли и спокойно встретил смерть, наступившую 5 ноября 1879 года.

Хотя труды Максвелла получили достойную оценку еще при жизни ученого, но их настоящая значимость стала понятна только годы спустя, когда в ХХ веке понятие поля надежно закрепилось в научном обиходе, а Альберт Эйнштейн заявил, что уравнения Максвелла для электромагнитного поля предшествовали его теории относительности.

Память ученого увековечена в названиях одного из строений Эдинбургского университета, главного корпуса и концертного холла Сэлфордского университета, Центра Джеймса Клерка Максвелла Эдинбургской академии. В Абердине и Кембридже можно найти улицы, названные в его честь. В Вестминстерском аббатстве есть мемориальная плита, посвященная Максвеллу, а посетители картинной галереи Абердинского университета могут увидеть бюст ученого. В 2008 году в Эдинбурге был установлен бронзовый памятник Максвеллу.

Множество организаций и наград также связаны с именем Максвелла. Физическая лаборатория, которой он руководил, учредила стипендию для самых способных аспирантов. Британский Институт физики вручает медаль и премию Максвелла молодым физикам, которые внесли значительный вклад в науку. В Университете Лондона есть должность максвелловского профессора и студенческое общество Максвелла. Созданный в 1977 году, Фонд Максвелла организует конференции по физике и математике.

Наряду с признанием Максвелл был назван самым известным шотландским ученым по итогам опроса 2006 года, всё это свидетельствует о той великой роли, которую он сыграл в истории науки.

"... произошел великий перелом, который навсегда связан с именами Фарадея, Максвелла, Герца. Львиная доля в этой революции принадлежит Максвеллу… После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей... Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона".

Эйнштейн

Афоризмы и цитаты Джеймса Максвелла.
«Когда какое-нибудь явление можно описать как частный случай какого-нибудь общего, приложимого к другим явлениям принципа, то говорят, что это явление получило объяснение»

«…Для развития науки требуется в каждую данную эпоху не только, чтобы люди мыслили вообще, но чтобы они концентрировали свои мысли на той части обширного поля науки, которое в данное время требует разработки»

«Из всех гипотез…выбирайте ту, которая не пресекает дальнейшего мышления об исследуемых вещах»

«Чтобы вполне правильно вести научную работу посредством систематических опытов и точных демонстраций, требуется стратегическое искусство»

«…История науки не ограничивается перечислением успешных исследований. Она должна сказать нам о безуспешных исследованиях и объяснить, почему некоторые из самых способных людей не смогли найти ключа знания и как репутация других дала лишь большую опору ошибкам, в которые они впали»


«Всякий великий человек является единственным в своем роде. В историческом шествии ученых у каждого из них своя определенная задача и свое определенное место»

«Действительный очаг науки - не тома научных трудов, но живой ум человека, и для того чтобы продвигать науку, нужно направить человеческую мысль в научное русло. Это можно сделать различными способами: огласив какое-либо открытие, отстаивая парадоксальную идею, или изобретая научную фразу, или изложив систему доктрины»



Максвелл и теория электромагнитного поля.
Максвелл изучал электрические и магнитные явления, когда многие из них уже были хорошо исследованы. Был создан закон Кулона, закон Ампера, также было доказано, что магнитные взаимодействия связаны действием электрических зарядов. Многие ученые того времени были сторонниками теории дальнодействия, которая утверждает, что взаимодействие происходит мгновенно и в пустом пространстве.

Главную роль в теории близкодействия сыграли исследования Майкла Фарадея (30-е годы XIX века). Фарадей утверждал, что природа электрического заряда основана на окружающем пространстве электрического поля. Поле одного заряда связано с соседним в двух направлениях. Токи взаимодействуют при помощи магнитного поля. Магнитные и электрические поля по Фарадею описаны им в виде силовых линий, которые являются упругими линиями в гипотетической среде - в эфире.

Максвелл объяснил идеи Фарадея в математическом виде, в чем очень нуждалась физика. При введении понятия поля законы Кулона и Ампера стали более убедительными и глубоко осмысленными. В понятии электромагнитной индукции Максвелл сумел рассмотреть свойства самого поля. Под действием переменного магнитного поля в пустом пространстве зарождается электрическое поле с замкнутыми силовыми линиями. Такое явление называется вихревым электрическим полем.
Максвелл показал, что переменное электрическое поле может порождать магнитное поле, на подобии обычного электрического тока. Эту теорию назвали - гипотезой о токе смещения. В дальнейшем поведение электромагнитных полей Максвелл выразил в своих уравнениях.


Справка. Уравнения Максвелла - это уравнения описывающие электромагнитные явления в различных средах и вакуумном пространстве, а также относятся к классической макроскопической электродинамике. Это логический вывод, сделанный с опытов, основанных на законах электрических и магнитных явлений.
Основным выводом уравнений Максвелла является конечность распространения электрических и магнитных взаимодействий, что разграничивало теорию близкодействия и теорию дальнодействия. Скоростные характеристики приблизились к скорости света 300000 км/с. Это дало повод Максвеллу утверждать, что свет это явление, связанное с действием электромагнитных волн.

Молекулярно-кинетическая теория газов Максвелла.

Максвелл внес свою лепту в изучение молекулярно-кинетической теории (сегодня она называется статистической механикой). Ему первому пришла в голову идея о статистическом характере законов природы. Максвелл создал закон распределения молекул по скоростям, а так же ему удалось рассчитать вязкость газов в отношении скоростных показателей и длины свободного пробега молекул газа. Благодаря работам Максвелла мы имеем ряд соотношений термодинамики.


Справка. Распределение Максвелла - это теория распределения по скоростям молекул системы в условиях термодинамического равновесия. Термодинамическое равновесие - это условие поступательного движения молекул описанное законами классической динамики.
Научных труды Максвелла : «Теория теплоты», «Материя и движение», «Электричество в элементарном изложении». Он интересовался и историей науки. В свое время ему удалось опубликовать труды Кавендиша, которые Максвелл дополнил своими комментариями.
Максвелл вел активную работу по изучению электромагнитных полей. Его теория об их существовании получила всемирное признание только спустя десятилетие после его смерти.

Максвелл первый классифицировал материи и присвоил каждой свои законы, которые не сводились к законам механики Ньютона.

О писали многие ученные. Физик Фейнман сказал о Максвелле , что открывший законы электродинамики Максвелл , смотрел через века в будущее.