Когда изобрели кардиография. История электрокардиографии

В.Эйнтховен
Наличие электрических явлений в сердечной мышце впервые
обнаружили два немецких ученых: Р. Келликер и И. Мюллер в
1856 г. В 1873 английский физиолог А. Уоллер впервые
получил запись электрической активности миокарда человека.
Он впервые сформулировал основные положения
электрофизиологических понятий ЭКГ, предположив, что
сердце является диполем. Первым, кто вывел ЭКГ из стен
лабораторий во врачебную практику, был голландский
физиолог Виллем Эйнтховен. После 7 лет упорного труда, он
создал первый электрокардиограф, правда он был очень
громоздким сооружением и весил около 270 кг. Его
обслуживанием было занято 5 сотрудников. Однако,
результаты, полученные Эйтховеном, были революционными.
Впервые в руках врача оказался прибор, который так много
говорит о состоянии сердца. Схема размещения электродов на
руках и ногах предложенная Эйтховеном, используется и по сей
день. В 1924 ему была присвоена Нобелевская премия.

ИСТОРИЯ РАЗВИТИЯ ЭЛЕКТРОКАРДИОГРАФИИ

ПРИНЦИП ЭКГ

Электрокардиографическое отведение
Графически записать кривую линию ЭКГ можно, присоединяя
регистрирующие электроды к различным участкам тела.
Участок (точка) поверхности тела, на которую накладывается
электрод, называется позицией электрода.
Отведение - это способ выявления разности потенциалов
между двумя участками тела.
Отведения классифицируют на однополюсные и
двухполюсные Обычно регистрируют 12 отведений:
- три стандартных от конечностей (I, II, III);
-три усиленных от конечностей (aVR, aVL, aVF);
- - шесть грудных однополюсных отведений (V1, V2, V3,
V4, V5, V6).

Записывая разность потенциалов между двумя точками (правая
рука и левая рука), - Эйнтховен (Einthoven) предложил такую
позицию двух регистрирующих электродов назвать первой
стандартной позицией электродов (или первым стандартным
отведением), обозначая римской цифрой I. Разность
потенциалов, определённая между правой рукой и левой
ногой, получила название второй стандартной позиции
регистрирующих электродов (или второго стандартного отведения) обозначаемой римской цифрой II. При позиции
регистрирующих электродов на левой руке и левой ноге
ЭКГ записывается в третьем (III) стандартном отведении.

Отведения Стандартные

Отведения Стандартные

Мнемоническое правило наложения стандартных
электродов на конечности:
Электроды накладываются, начиная с правой
руки (правый – Right, красный – Red) –
электрод с красной маркировкой.
Далее следуют по часовой стрелке в
следующей последовательности:
Красный, Желтый, Зеленый, Черный.
Запомнить последовательность цветов проще
по первым буквам фразы:
Каждая Женщина Злее Чёрта.

10.

Усиленные однополюсные отведения от
конечностей
Усиленные отведения от конечностей были предложены
Е. Гольдбергером (1942 г.). Они регистрируют разность
потенциалов между одной из конечностей, на которой
установлен активный положительный электрод данного
отведения (правая рука, левая рука или левая нога), и
средним потенциалом двух других конечностей. Таким
образом, в качестве отрицательного электрода в этих
отведениях используют так называемый объединенный
электрод Гольдбергера, который образуется при
соединении через дополнительное сопротивление двух
конечностей.

11.

Предложенные Е. Goldberger «однополюсные» усиленные
отведения от конечностей прочно вошли в программу
электрокардиографического исследования. В кавычки данное
название взято потому, что это отведение на самом деле не
является однополюсным. Во-первых, потому, что
индифферентный электрод не нулевой. Во-вторых,
однополюсные отведения являются двухполюсными, так как
«индифферентный» электрод соединен с отрицательным
полюсом аппарата, а «дифферентный» с положительным, и
определяется разность между их потенциалами.
При «однополюсном» отведении регистрирующий электрод
определяет разность потенциалов между конкретной точкой
электрического поля (к которой он подведён) и гипотетическим
электрическим «нулем».

12. Усиленные однополюсные отведения

+
+
-
-
+
+ активный электрод
- индифферентный

13.

Устанавливая регистрирующий однополюсный
электрод (V) в позицию на правую (Right) руку –
записывают электрокардиограмму в отведении aVR.
При позиции регистрирующего униполярного
электрода на левой (Left) руке ЭКГ записывается в
отведении aVL.
Зарегистрированную электрокардиограмму при
позиции электрода на левой ноге (Foot) обозначают
как отведение aVF.

14. Отведения Стандартные усиленные

15.

Первая буква – «а» в аббревиатурах означающих, «усиленные»
однополюсные отведения от конечностей происходит от
английского слова «augment» ["ɔːgmənt] означающее
«усиленный». Добавляя её к названию каждого из
рассмотренных однополюсных отведений, получаем их полное
название – усиленные однополюсные отведения от конечностей
aVR, aVL и aVF. В их названии каждая буква имеет смысловое
значение:
«а» – усиленный (от augment);
«V» – однополюсный регистрирующий электрод;
«R» – месторасположение электрода на правой (Right) руке;
«L» – месторасположение электрода на левой (Left) руке;
«F» – месторасположение электрода на ноге (Foot).

16.

Отведение aVR, подобно II отведению, "просматривает" весь
миокард по длине. Их оси располагаются по соседству, но в aVR
результирующий вектор сердца, в отличие от II отведения,
направлен от активного электрода. Ввиду близости осей, но с
учетом противоположной полярности, отведение aVR является
почти зеркальным отражением II отведения.
Отведение аVL отслеживает колебания потенциала высоких
отделов боковой стенки левого желудочка.
Отведение aVF, как и III отведение, в равной степени
характеризует электрическую активность и правого
желудочка, и нижних (заднедиафрагмальных) отделов левого
желудочка.
По аналогии с aVR, отведения аVL и aVF тоже находятся в
сопоставимых отношениях со стандартными отведениями:
aVL напоминает I отведение, aVF - III отведение. Это понятно,
так как их оси смежные, а информационные поля сходны.

17.

Отведение aVF выполняет функцию своего рода
арбитра, позволяя устранить встречающуюся
двусмысленность отклонений III отведения.
Сказанное относится к зубцам Q и T. Если в aVF
происходит исправление или нормализация в одних
случаях Q, а в других Т, изменения в III отведении не
являются признаком патологии и могут быть
отнесены на счёт конституциональных или иных
экстракардиальных причин. Если отведение aVF
подтверждает изменения III отведения, их
патологический характер не вызывает сомнений.

18.

Шестиосевая система координат (по Bayley).
Стандартные и усиленные однополюсные отведения от
конечностей дают возможность зарегистрировать
изменения ЭДС сердца во фронтальной плоскости, т. е.
в плоскости, в которой расположен треугольник
Эйнтховена. Для более точного и наглядного
определения различных отклонений во фронтальной
плоскости, в частности для определения положения
электрической оси сердца, была предложена так
называемая шестиосевая система координат . Она получается при совмещении осей трёх
стандартных и трёх усиленных отведений от конечностей, проведённых через электрический центр сердца

19.

Электрический центр делит ось каждого отведения на
положительную и отрицательные части, обращённые,
соответственно, к активному (положительному) или к
отрицательному электроду.
Электрокардиографические отклонения в разных
отведениях от конечностей можно рассматривать как
проекции одной и той же ЭДС сердца на оси данных
отведений. Поэтому, сопоставляя амплитуду и полярность
электрокардиографических комплексов в различных
отведениях, входящих в состав шестиосевой системы
координат, можно достаточно точно определять величину
и направление вектора ЭДС сердца во фронтальной
плоскости

20.

Направление осей отведений принято определять в
градусах. За начало отсчета (0°) условно принимают
радиус, проведённый строго горизонтально из
электрического центра сердца вправо по направлению
к положительному полюсу I стандартного отведения.
Положительный полюс II стандартного отведения
расположен под углом +60°, отведения aVF - под
углом +90°, III стандартного отведения - под углом
+120°, aVL - под углом -30°, a aVR - под углом -150° к
горизонтали. Ось отведения aVL перпендикулярна оси
II стандартного отведения, ось I стандартного
отведения перпендикулярна оси aVF, а ось aVR
перпендикулярна оси III стандартного отведения.

21.

22. Шестиосевая система отведений Бейли

23.

24.

Грудные отведения
Помимо стандартных и однополюсных отведений от
конечностей, в электрокардиографической практике
применяются ещё и грудные отведения, предложенные
только в 1934 году Вильсоном. Кардиолог, снятые по его
предложению униполярные отведения ЭКГ
обозначаются буквой "V".
При записи ЭКГ в грудных отведениях регистрирующий
однополюсный электрод прикрепляется
непосредственно к грудной клетке. Электрическое поле
сердца здесь наиболее сильное, поэтому нет
необходимости усиливать грудные униполярные
отведения. Грудные отведения регистрируют
электрические потенциалы с другой эквипотенциальной
окружности электрического поля сердца.

25.

В отличие от стандартных и усиленных отведений от
конечностей, в грудных отведениях электрические
потенциалы регистрируются с окружности
электрического поля сердца, которая располагается в
горизонтальной плоскости.

26. Грудные отведения

27. Грудные отведения (Ф. Вильсон 1946)

V1 – по правому краю грудины в IV межреберье
V2 – по левому краю грудины в IV межреберье
V3 – на середине расстояния между V2 и V4
V4 – по левой среднеключичной линии в пятом
межреберье
V5 – по передней подмышечной линии на уровне V4
V6 – по средней подмышечной линии на том же уровне
V7 – по задней подмышечной линии на том же уровне

28. Дополнительные отведения:

V7 - на пересечении горизонтального уровня 4-го
отведения и задней подмышечной линии;
V8 - на пересечении горизонтального уровня 4-го
отведения и срединно-лопаточной линии;
V9 - на пересечении горизонтального уровня 4-го
отведения и паравертебральной линии.
Отведения V7, V8, и V9 не нашли своего широкого
применения в клинической практике и используются
для топической диагностики задних инфарктов.

29. Дополнительные Отведения

Левые Грудные
Правые Грудные
По Небу
Чреспищеводная эндограмма
Внутрисердечная эндограмма
Внутрисердечное картирование
(basket-катетер)

30. Левые Грудные Отведения

31. Правые Грудные Отведения

V3R,
V4R,
V5R,
V6R

32.

Кроме общепринятых отведений предложены другие отведения.
Ещё в 1938 году В. Неб предложил снимать три грудных
двухполюсных отведения: D (Dorsalis), A (Anterior) и I
(Inferior). Для записи используют электроды, применяемые для
регистрации стандартных отведений, но с расположением их
на грудной клетке: электрод, обычно устанавливаемый на
правой руке (красная маркировка провода), помещают во
втором межреберье по правому краю грудины; электрод с
левой ноги (зелёная маркировка) переставляют в позицию
грудного отведения V4 (у верхушки сердца), а электрод,
располагающийся на левой руке (жёлтая маркировка),
помещают на том же горизонтальном уровне, что и зелёный
электрод, но по левой задней подмышечной линии (в положение
V7). Если переключатель отведений электрокардиографа
находится в положении I стандартного отведения,
регистрируют отведение «Dorsalis» (D). Перемещая
переключатель на II и III стандартные отведения, записывают
соответственно отведения «Anterior» (А) и «Inferior» (I).

33. Отведения по Небу

34. Отведения по Небу

35. Отведения по Небу

Отведение Dorsalis помогает в
диагностике очаговых изменений
задней стенки ЛЖ
Anterior - передней стенки ЛЖ
Inferior - нижние отделы
переднебоковой стенки
Второе
межреберье справа
от грудины
На уровне
верхушки сердца
по задней
подмышечной
линии
У верхушки сердца

36. Отведение Лиана или S5

применяют для уточнения диагноза сложных
аритмий и при необходимости чёткого выявления
зубца P. Один из электродов помещают на
рукоятке грудины, присоединив к нему провод с
правой руки (красный) - отрицательный. Второй
электрод располагают у основания мечевидного
отростка справа или слева от него в зависимости
от того, при каком положении электрода лучше
выявляется зубец Р, и соединяют его с проводом
от левой руки (жёлтый) - положительный.
Отведение регистрируют при положении
рукоятки коммутатора на I отведении.

37. Отведения по Слопаку-Партилле

…применяют для уточнения изменений в задней стенке при
наличии глубокого зуба Q во III, AVF и II -отведениях.
Электроды размещают следующим образом:
- электрод от левой руки (жёлтый) располагают в месте
проекции верхушечного толчка на заднюю подмышечную
линию (отведение V7);
- электрод от правой руки (красный) помещают поочередно во 2
межреберье в 4 точки: 1 - у левого края грудины; 2 - на
середине расстояния между 1 и 3; 3 - на срединно-ключичной
линии; 4 - по передней аксилярной линии.
ЭКГ регистрируют в переключении первого отведения.
Получают 4 отведения - S1, S2, S3, S4.

38. Чреспищеводная ЭГ

39. Фибрилляция предсердий при ЧП ЭГ

40. АВ-узловая тахикардия при ЧП ЭГ

RP’ = 60 мс

41. WPW при ЧП ЭГ

RP’ = 90 мс

42. Внутрисердечная ЭГ

АВ блокада 1 степени…

43. Внутрисердечная ЭГ

АВБ2 – 1 Венкебах

44. Внутрисердечное картирование

45. Не надо усложнять простое и очевидное! Не надо сочинять то, чего нет! Что вижу – то пою!

46.

47. Интерпретация ЭКГ


Источник ритма

ЧСС (ЧСЖ)
Положение ЭОС
ЭКГ синдромы
ЭКГ в динамике

48. Интерпретация ЭКГ – описательная часть

Вы пробовали оценить ЭКГ в динамике,
используя только тексты заключений врачей,
которые расшифровывали ЭКГ этого
больного до Вас? Вы были уверены в том,
что там было именно то, что написано?
Чтобы Ваше ЭКГ заключение было понятно в
дальнейшем другим врачам без пленки
необходима описательная часть.
Основной принцип ее написания –
«ЧТО ВИЖУ – ТО ПОЮ!»

49. Интерпретация ЭКГ – описательная часть

Описательная часть пишется в единой общепринятой
форме, понятной всем. Главное – никаких лирических
рассуждений типа: умеренные реполяризационные
изменения или нарушения внутрижелудочковой
проводимости или метаболические нарушения…
Если изменения, то – какие?!
Если нарушения, то – их локализация?!
Если Вы в чем-то сомневаетесь, то лучше описать то,
что Вы видите, чем Ваши фантазии на эту тему.
Например, отрицательный Т в III и aVF отведениях. А
норма это или ишемия заднее - диафрагмальных
отделов миокарда ЛЖ, можете порассуждать уже в
истории болезни…

50.

51. Обязательно отображаемые интервалы!

P
PQ
QRS
QT
RR (min – max)
Вольтаж (при изменениях)

52. Цена деления на ЭКГ

Скорость
5 мм
(большая
клеточка)
1 мм
(маленькая
клеточка)
50 мм/с
25 мм/с
0,1 с
0,2 с
0,02 с
0,04 с

53. Источник ритма

Если на ЭКГ продолжается аритмия,
то она указывается как источник ритма.
Например: фибрилляция предсердий.

54. Оценка регулярности сердечных сокращений.

Регулярность сердечных сокращений оценивается
при сравнении продолжительности интервалов R-R"
между последовательно зарегистрированными
сердечными циклами. Интервал R-R" обычно
измеряется между вершинами зубцов R (или S).
Регулярный ритм сердца диагностируется в том
случае, если продолжительность измеренных
интервалов R-R" одинакова, и разброс полученных
величин не превышает ±10% от средней
продолжительности интервалов R-R". В
остальных случаях диагностируется
неправильный (нерегулярный) сердечный ритм.

55. Регулярность ритма

Правильный
ритм одинаковые R-R±10%
от среднего R-R

56. Ритм синусовый, регулярный.

57. Ритм синусовый, нерегулярный.

58.

Подсчёт числа сердечных со ращений (ЧСС)
Для подсчёта ЧСС обычно измеряется интервал R-R" расстояние между вершинами зубцов R (или S), т. е.
длительность одного сердечного цикла.
При регистрации ЭКГ на миллиметровой бумаге подсчитывается
число клеточек одного интервала R-R". Общепринято, что 1 мм
сетки соответствует 0,02 сек (при движении ленты со
скоростью 50 мм/сек).
Подсчёт ЧСС проводится с помощью различных методик, выбор
которых зависит от регулярности ритма сердца.
При правильном ритме ЧСС определяют по формуле:
ЧСС = 60:R-R",
где 60 - число секунд в минуте, R - R" - длительность
интервала, выраженная в секундах. У здорового человека в покое
ЧСС составляет от 60 до 90 в минуту. Повышение ЧСС (более
90 в минуту) называют тахикардией, а урежение (менее 60 в
минуту) - брадикардией.

59. П р и н е п р а в и л ь н о м р и т м е Э К Г во II стандартном отведении записывается в течение 3 секунд. При скорости

движения бумаги 50 мм/сек
трём секундам соответствует отрезок
электрокардиографической кривой длиной 15 см.
Затем, подсчитывают число комплексов QRS,
зарегистрированных за 3 сек (=15 см бумажной
ленты), и полученный результат умножают на 20.

60. ЧСС

ЧСС
= 60 / RR
При неправильном (нерегулярном)
ритме ЧСС подсчитывается минимум
за 3 интервала RR, соответственно
делить уже надо не 60, а 180 (в три
раза больше).
Т.е. ЧСС = 180/RR+RR+RR

61.

Определение направления ЭОС оказывается полезным для
диагностики четырёх из более чем ста состояний, наличие
которых устанавливается на основании ЭКГ:
Блокада передней ветви левой ножки пучка Гиса
(БПВЛНПГ).
Гипертрофия правого желудочка (ГПЖ). Характерным
признаком является отклонение ЭОС вправо. Определение
направления ЭОС мало помогает при подозрении на ГЛЖ,
так как отклонение ЭОС влево не обязательно для
диагностики ГЛЖ.
Желудочковая тахикардия (ЖТ). Некоторые формы ЖТ
характеризуются отклонением ЭОС влево или
неопределённым её положением; но в отдельных случаях
встречается отклонение оси сердца вправо.
Блокада задней ветви левой нож и пучка Гиса (БЗВЛНПГ)
Есть маленькое НО! Дело в том, что обязательным элементом
анализа ЭКГ является определение положения ЭОС.
электрических осей.

62.

63. Положение ЭОС

64. Результирующий вектор

Результирующий вектор возбуждения желудочков
представляет собой сумму трёх моментных векторов
возбуждения: межжелудочковой перегородки,
верхушки и основания сердца. Этот вектор имеет
определённую направленность в пространстве,
который проецируется в трёх плоскостях:
фронтальной, горизонтальной и сагиттальной. В
каждой из них результирующий вектор имеет свою
проекцию.

65.

Электрическая ось сердца (ЭОС).
Обязательным элементом анализа ЭКГ является
определение положения ЭОС. Электрической осью
сердца называется проекция результирующего
вектора возбуждения желудочков во фронтальной
плоскости. Направление ЭОС выражается в
«градусах угла альфа». Угол альфа образуют ЭОС и
горизонтальная линия, проведённая через условный
электрический центр сердца, т.е. смещённая к
центру треугольника Эйнтховена ось I отведения.
За точку отсчёта угла альфа принимается
положительный полюс I отведения. Углы,
расположенные книзу от точки отсчёта,
обозначаются знаком "плюс", кверху от неё -
знаком "минус". В шестиосевой системе координат оси отведений разделяют углы в 30°.

66.

У здоровых людей, в зависимости от особенностей телосложения,
угол альфа колеблется от 0° до +90°. Различают три варианта
конституционально обусловленного положения ЭОС:
- нормальное - угол альфа от +30° до +70°;
- горизонтальное - угол альфа от 0° до +30°;
-вертикальное - угол альфа от +70° до +90°.

67.

Точное отклонение электрической оси сердца
определяют по углу альфа (α).
Способы определения положения ЭОС
Для определения положения ЭОС используют
несколько способов:
1. графический – с использованием различных систем
координат;
2. по таблицам или диаграммам;
3. визуальный.
Точность и доступность этих способов в основном
зависит от ситуации, в которой проводится
расшифровка ЭКГ.

68.

Определение угла α графическим методом
Для точного определения положения электрической оси сердца
графическим методом достаточно вычислить алгебраическую
сумму амплитуд зубцов комплекса QRS в любых двух отведениях
от конечностей, оси которых расположены во фронтальной
плоскости. Обычно для этой цели используют I и III стандартные
отведения. Найти алгебраическую сумму зубцов желудочкового
комплекса достаточно просто: измеряют в миллиметрах
величину каждого зубца одного желудочкового комплекса QRS,
учитывая при этом, что зубцы Q и S имеют знак минус (-),
поскольку находятся ниже изоэлектрической линии, а зубец R –
знак плюс (+). Если какой-либо зубец на электрокардиограмме
отсутствует, то его значение приравнивается к нулю (0).

69.

70.

Положительная или отрицательная величина алгебраической
суммы зубцов QRS в произвольно выбранном масштабе
откладывается на положительную или отрицательную часть оси
соответствующего отведения в шестиосевой системе координат
Бейли.
Например, на ЭКГ, представленной на рис.алгебраическая сумма
зубцов комплекса QRS в I стандартном отведении составляет
+1 мм (Q = -2 мм, R = +6 мм, S = -3 мм). Эту величину
откладывают на положительную часть оси отведения I. Сумма
зубцов в III стандартном отведении равна -3 мм (Q = -1 мм, R
= +3 мм, S = -5 мм); её откладывают на отрицательную часть
этого отведения.
Эти величины фактически представляют собой проекции
искомой ЭОС на оси I и III стандартных отведений. Из концов
этих проекций восстанавливают перпендикуляры к осям
отведений. Точка пересечения перпендикуляров соединяется с
центром системы. Эта линия и является ЭОС (электрической
осью сердца) (α QRS).

71.

72. Графический (точный) способ

Находите R – S в I и
aVF отведениях
Откладываете
полученные
промежутки на
вертикальной и
горизонтальной осях
Пересечение укажет
направление
электрической оси

73. Графический способ

Практически можно
определять ось
используя любые
стандартные
отведения, даже с
отрицательной
разницей R – S
Важно лишь найти
точку пересечения
перпендикуляров к
осям

74.

Определение угла α по диаграмме Дьеда
Разберём пример, приведённый на рис., используя диаграмму Дьеда.
Сопоставляя найденную алгебраическую сумму зубцов, полученную для I и III
стандартных отведений, по диаграмме Дьеда определяют значение угла α. В
этом примере он равен минус 70°.

75.

Табличные способы определения угла α
Определение положения ЭОС с использованием
шести отведений от онечностей
Общепринятый вид, включающий 12 отведений,
элетрокардиограмма приняла в 1942 г. - после
предложения Гольдбергером усиленных отведений от
конечностей.
Правила определения положения ЭОС во фронтальной
плоскости такие: электрическая ось сердца совпадает с
тем из 6 первых отведений, в котором регистрируются
самые высокие положительные зубцы, и
перпендикулярна тому отведению, в котором величина
положительных зубцов равна величине отрицательных
зубцов.

76. По сагиттальной оси

77.

Визуальное определение расположения ЭОС по
трём стандартным отведениям
Такой способ определение положения ЭОС довольно
прост, но может использоваться только для
приблизительной! ориентировки, и в настоящее
время, в основном, применяется скорее как дань
истории, когда Эйнтховеном были предложены
первые три (I, II и III стандартные) отведения.
Ориентировочное представление о расположении
электрической оси сердца можно получить путём
визуального анализа морфологии желудочкового
комплекса в трёх стандартных отведениях
(соотношения амплитуд зубцов R и S).

78.

Визуальное определение расположения электрической оси сердца.
Нормограмма.
На рисунке видно, что амплитуда зубца R во II стандартном
отведении наибольшая. В свою очередь зубец R в I стандартном
отведении превосходит зубец RIII.
Такое соотношение зубцов R в различных стандартных
отведениях определяется как нормальное расположение
электрической оси сердца.
Нормальное расположение электрической оси сердца
оформляется записью: RII>RI>RIII

79.


Левограмма.
На рисунке желудочковый комплекс в I стандартном отведении
представлен R-типом, а комплекс QRS в III стандартном
отведении имеет форму S-типа. В данном случае схематично отклонение электрической оси сердца влево записывается:
RI>RII>RIII и SIII>RIII.

80.

Визуальное определение отклонения электрической оси сердца.
Правограмма.
В этом случае в I стандартном отведении регистрируется S-тип
желудочкового комплекса, а в III отведении R-тип комплекса QRS.
Схематично это условие записывается: RIII>RII>RI и SI>RI.

81.

Визуальное определение угла α в шестиосевой системе
оординат Бейли
Более часто используется другой способ визуального
определения угла α. С этой целью анализируется положение
электрической оси сердца в шестиосевой системе координат
Бейли, где угол между рядом расположенными осями равен
30°. Для применения этого способа необходимо чёткое
представление о взаимном расположении осей всех
отведений от конечностей и их полярности. При этом следует
руководствоваться следующими правилами:
1. Направление ЭОС приблизительно или полностью совпадает
с осью того отведения, в котором алгебраическая сумма зубцов
QRS является наибольшей. Обычно это отведение с мак-симальным R и
минимальным S.
2. В том отведении, ось которого перпендикулярна ЭОС,
должен регистрироваться эквифазный, т.е. равноамплитудный,
или "нулевой" комплекс QRS: R+S=0 или R+(Q+S)=0.
Этот вариант визуального способа при минимальной подготовке позволяет

82.

Существует два зеркальных алгоритма определения
электрической оси сердца во фронтальной плоскости.
Ниже приведён другой (зеркальный) алгоритм:
1. Найти отведение, ось которого перпендикулярна
ЭОС –здесь должен регистрироваться эквифазный
комплекс QRS.
2. Под углом в 90°находится отведение, в котором
алгебраическая сумма зубцов QRS имеет максимальное
положительное значение. Ось этого отведение
полностью или приблизительно совпадает с
направлением ЭОС.

83.

В шестиосевой системе координат Бейли нормальному положению
электрической оси соответствуют два варианта:
При анализе ЭКГ в шести отведениях от конечностей - определяется
нормальное положение ЭОС. На рисунке наиболее высокий зубец R и
максимальная алгебраическая сумма зубцов комплекса QRS регистрируются
во II стандартном отведении, а в отведении aVL – эквифазный комплекс
типа RS (R=S). Это свидетельствует о том, что электрическая ось сердца
расположена под углом α около 60° (совпадает с осью II стандартного
отведения и перпендикулярна оси отведения aVL). Это подтверждается
также примерным равенством амплитуды зубцов R в I и III отведениях, оси
которых в данном случае располагаются под некоторым одинаковым углом к
электрической оси сердца (RII>RI = RIII). Таким образом, на ЭКГ имеется
нормальное положение электрической оси сердца (угол α=60°).

84.

Пример нормального положения ЭОС, когда угол альфа равен
«+30°».
Для того чтобы выявить наиболее высокий "зубец R" (если он
находится в отведении aVR) - необходимо его рассматривать "с
изнанки" – перевернув плёнку и посмотрев её на просвет. В
таком случае будет хорошо видно, что «зубец R» в aVR
наибольший.
В отведении III регистрируется равноамплитудный комплекс
типа RS (R=S).

85.

При вертикальном положении электрической оси сердца, когда угол
α составляет около +90°, максимальная алгебраическая сумма
зубцов комплекса QRS и максимальный положительный зубец R
будут выявляться в отведении aVF, ось которого совпадает с
направлением ЭОС. Комплекс типа RS, где R = S, регистрируется в I
стандартном отведении, ось которого перпендикулярна
направлению электрической оси сердца. В отведении aVL
преобладает отрицательный зубец S, а в отведении III -
положительный зубец R.
Рис. Вертикальное положении ЭОС, когда угол α составляет около
+90°.

86.

При горизонтальном положении электрической оси сердца
(угол α от +30° до 0°) максимальный зубец R будет
фиксироваться в I стандартном отведении, а комплекс типа
RS - в отведении aVF. В отведении III регистрируется
углублённый зубец S, а в отведении aVL - высокий зубец R.
RI>RII>RIII Рис. Горизонтальное положение ЭОС (угол α от +30° до 0°).
Вертикальное и горизонтальное положение в шестиосевой системе
координат располагаются под углом 90°.

87.

Следующей парой взаимно противоположных отведений являются
отклонения вправо и влево.
При ещё более выраженном повороте ЭОС вправо, например, угол α
составляет +120°, как это изображено на рис.
Выраженный поворот ЭОС вправо.
Максимальный зубец R регистрируется в III стандартном
отведении. В отведении aVR записывается комплекс QR, где R=S. В
отведении II и aVF преобладают положительные зубцы R, а в
отведении I и aVL - глубокие отрицательные зубцы S.

88.

При значительном отклонении ЭОС влево (угол α = -30°), как
показано на рис. максимальный положительный зубец R
смещается в отведение aVL, а комплекс QRS типа RS - в отведение II. Высокий зубец R фиксируется также в I отведении, а в
отведениях III и aVF преобладают глубокие отрицательные
зубцы S.
RI>RII>RIII.
Выраженной поворот ЭОС влево.

89. Визуальный (~) способ

Найти отведение с самой большой
разницей R – S (ось этого отведения
будет примерно соответствовать
сагиттальной электрической оси сердца)
Найти отведение с одинаковыми R и S
(ось этого отведения будет примерно
перпендикулярна сагиттальной
электрической оси сердца)

90. Визуальный (~) способ

Максимальный R-S в I, R=S в а, Какая ось?

91. Визуальный (~) способ

Максимальный R-S в III, R=S в I и aVR, Какая ось?

92. Повороты по продольной оси

93. Переходная зона

94. Повороты по продольной оси

Норма
По часовой
Против
часовой
V6
Переходная
зона
N
V3
S
V4
Q
V2

95.






сердца.







<5 мм.

<5 мм.

96. Повороты по продольной оси

97. Повороты по поперечной оси

98. Повороты по поперечной оси

Поворот верхушкой вперед:
– Q в I, II, III
Поворот верхушкой назад:
– S в I, II, III

99.

Электрическая позиция сердца по Вильсону.
Сравнивая формы желудочковых комплексов QRS в усиленных
однополюсных отведениях от конечностей (aVF, aVL) с формами их
в правых (V1-V2) и левых (V5-V6) грудных отведениях.
На этом основании Вильсон выделил 6 электрических позиций
сердца.
1. Промежуточная позиция сердца:
QRS avL напоминает V5-6, QRS aVF напоминает V5-6.
2. Горизонтальная позиция сердца:
QRS avL напоминает V5-6, QRS aVF напоминает V1-2.
3. Вертикальная позиция сердца:
QRS aVL напоминает V1-2, QRS aVF напоминает V5-6.
4. Полугоризонтальная позиция сердца:
QRS aVL напоминает V5-6, QRS aVF <5 мм.
5. Полувертикальная электрическая позиция сердца:
QRS avF напоминает V5-6, QRS avL <5 мм.
6. Электрическая позиция считается неопределённой, когда
отсутствует сходство между aVF и aVL с V1-V2 и V5-V6.

100. ЭКГ СИНДРОМЫ:

Нарушения ритма
Нарушения проводимости
Ишемия, повреждение, некроз
Гипертрофия

101. ЭКГ СИНДРОМЫ:

Нарушения ритма
Нарушения проводимости
Ишемия, повреждение, некроз
Гипертрофия
Синдром ранней реполяризации ЛЖ

102. Нарушения ритма

Синусовая аритмия (RR - > 10%)

103. Нарушения ритма

Синус
тахи
Синус
бради

104. Нарушения ритма

Миграция водителя ритма

105. Нарушения ритма

Узловой ритм

106. Нарушения ритма

Экстрасистолы

107. Нарушения ритма

Экстрасистолы

108. Нарушения ритма

СВТ

109. Нарушения ритма

ФП

110. Нарушения ритма

ТП

111. Нарушения ритма

Градация ЖЭ по
Лаун-Вольф-Райан




1
2
3
4




менее 30 в час
более 30 в час
полиморфные
парные:
А – мономорфные,
Б – полиморфные
– 5 – пробежка ЖТ
(3 и более подряд)

112. Нарушения ритма

113. ЭКГ СИНДРОМЫ:

Нарушения ритма
Нарушения проводимости
Ишемия, повреждение, некроз
Гипертрофия
Синдром ранней реполяризации ЛЖ

ветвь ЛНПГ
Вправо
(>120)
III, aVF
I, aVL

122. Нарушения проводимости (WPW, PQ)

123. АВ тахикардии

АВ - тахикардии
АВ - узловая
WPW
Fast/Slow
Туда – АВ,
Обратно – п. Кента
Slow/Fast
АВ – ортодромная
(узкие QRS)
Туда – п. Кента,
Обратно - АВ
АВ – антидромная
(широкие QRS)
Помнить о «медленном» Кенте

124. WPW

WPW
Нет
Тахикардии
Есть
Тахикардия
Феномен
Синдром
Наблюдение,
Лечение не требуется
Явный
Скрытый
Классические признаки WPW
без тахикардии
Без тахикардии ЭКГ –
вариант нормы

125. Нарушения проводимости (WPW, PQ) – таблица Галлахера

Отведения ЭКГ
Пучки
I
II
III
aVR
aVL
aVF
V1
V2
V3
V4
V5
V6
1
+
+
+(+)
-
+(+)
+
+
+
+(+)
+
+
+
2
+
+
- (+)
-
+(+)
+ (-)
+
+(+)
+(+)
+
+
+
3
+
+ (-)
-
-
+
- (+)
+
+
+
+
+
+
4
+
-
-
-
+
-
+(+)
+
+
+
+
+
5
+
-
-
- (+)
+
-
+
+
+
+
+
+
6
+
-
-
-
+
-
+
+
+
+
+
+
7
+
-
-
+(+)
+
-
+
+
+
+
+
- (+)
8
- (+)
+
+
+(+)
- (+)
+
+
+
+
+
- (+)
- (+)
9
- (+)
+
+
-
- (+)
+
+
+
+
+
+
+
10
+
+
+(+)
-
+
+
+(+)
+
+
+
+
+
Локализация добавочных пучков: 1 - правый передний парасептальный, 2 - правый передний, 3 - правый
боковой, 4 - правый задний, 5 - правый парасептальный, 6 - левый задний парасептальный, 7 - левый
задний, 8 - левый боковой, 9 - левый передний, 10 - левый передний парасептальный.

126. Нарушения проводимости

ЭКС:
– Режим работы
– Магнитный тест Острая – 1 – 2 сут. Гипертрофия ЛП

143. СРР

Элевация ST выпуклостью вниз
Зазубрина в конце QRS
Уменьшение S в левых грудных
отведениях

144. Наводки на ЭКГ

50 Гц
Движение и/или дрожание больного
Прикосновение другого человека к
контактам

145. ЭКГ в динамике

Сравнить все пункты, включая синдромы, с
предыдущими ЭКГ:






P, PQ, QRS, QT, RR (min – max), вольтаж
Источник ритма
Регулярность ритма (пр. или непр.)
ЧСС (ЧСЖ)

ЭКГ синдромы
Нарушения ритма
Нарушения проводимости
Ишемия, повреждение, некроз
Гипертрофия
Синдром ранней реполяризации ЛЖ
Динамика ОИМ

146. Описание ЭКГ – НЕ постановка клинического диагноза!

Однако, некоторые клинические ситуации
необходимо учитывать, анализируя комплекс
увиденных отклонений и синдромов

147. Отдельные особые ситуации требующие анализа

Легочное сердце
Перикардиты
Миокардит
Миокардиодистрофии (не путать с КМП)
Гипо-, гипер- К+, Са++
Дигоксин и другие гликозиды
Особенности детской ЭКГ
Пороки сердца

148. Легочное сердце

Q III – S I
Элевация ST (субэпи повреждение) –
III, aVF, V 1, 2
Отрицательный Т (субэпи ишемия) –
III, aVF, V 1, 2
Депрессия ST (субэндо повреждение) –
I, aVL, V 5, 6 (возможно реципрокно)
Блокада правой ножки пучка Гиса
Гипертрофия правого предсердия (P-pulm)
Быстрая обратная динамика

149. Перикардиты

Элевация ST (субэпи повреждение)
во многих отведениях
Но, НЕТ Q !
Снижение вольтажа (экссудат)
Динамика: элевацию через
несколько дней сменяет
отрицательный Т (субэпи ишемия)
во многих отведениях

150. Аневризма сердца

Застывшая ЭКГ динамика
(элевация ST, субэпи повреждение)
~ 1 месяц

151. Миокардит

Специфических проявлений НЕТ!!!
Помойная яма в кардиологии…
Разнообразие нарушений ритма и
проводимости
– Чаще И над-, И желудочковые
ЭКСТРАСИСТОЛЫ
Но: БОРРЕЛИОЗ – АВ блокады!

152. Миокардиодистрофии

Алкогольная




Аритмии (тахи, экстра, ФП)
Депрессия ST (субэндо поврежд)
Р-pulmonale

Тиреотоксическая
– Тахикардия (в т.ч. ФП)
– Р-mitrale

Дисгормональная (климакс)
– Различные изменения Т (+, -, 0)
– Иногда ЭКГ нормализуется при пробах с К или БАБ

153. Гипо-, гипер- К+, Са++

Гипо-
Калий
1.
2.
3.
4.
Депрессия ST
Различные изменения Т (+, -, 0)
Удлинение QT
Появление U
Гипер1. Готические Т (высокие)
2. Укорочение QT
3. Замедление проводимости
(т.е. бради-, блокады)
5. Желудочковые аритмии
Кальций
То же,
но без изменений Т, ST

154. Этиология гипокалиемии

С-м Кона
С-м Кушинга
Прием стероидов
Прием сердечных гликозидов
Употребление алкоголя

155. Передозировка сердечных гликозидов

Желудочковые нарушения ритма
(в т.ч. аллоритмированные)
Брадикардии и блокады
Корытообразное ST
Двуфазный или отрицательный
ассиметричный Т

156. Особенности детской ЭКГ

ЧСС зависит от
возраста
Допустимы высокие Т
в грудных отведениях
ПБПравойНПГ –
показание к ЭхоКГ
(риск врожд. порока)
У детей нет «Нормы»,
они – растут!!!
Возраст
ЧСС
До 10 сут 140 – 120
До 1 года ~ 120
До 3 лет
120 – 105
До 7 лет
105 – 100
До 12 лет 100 – 80
До 16 лет 80 – 60

157. Пороки сердца

Очень косвенная оценка
(гипертрофии, перегрузка, блокады ножек)
Оптимальные методы
верификации порока – ЭхоКГ,
допплер, вентрикулография, КТ,
ЯМРТ

158. Ваше ЗАКЛЮЧЕНИЕ

Вот здесь Вы можете дать волю
фантазии и написать Ваши лирические
рассуждения по поводу увиденного.
Например: острейшая стадия ОИМ
(а не субэпикардиальное повреждение
в отведениях характеризующих
боковую стенку ЛЖ)

159. Интерпретация ЭКГ

P, PQ, QRS, QT, RR (min – max), вольтаж
Источник ритма
Регулярность ритма (пр. или непр.)
ЧСС (ЧСЖ)
Положение ЭОС (сагиттальная ось)
ЭКГ синдромы





Нарушения ритма
Нарушения проводимости
Ишемия, повреждение, некроз
Гипертрофия
Синдром ранней реполяризации ЛЖ
ЭКГ в динамике
Трактовка отдельных клинических ситуаций
Заключение (Ваши лирические рассуждения)

Электрокардиография

Электрокардиограмма в 12 стандартных отведениях у мужчины 26 лет, без патологии.

Элѐктрокардиогра́фия - методика регистрации и исследования электрических полей, образующихся при работе сердца . Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологической инструментальной диагностики в кардиологии .

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) - графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

Происхождение волны U и других необъяснимых феноменов электрокардиограммы с учётом потенциала течения электролита.

Классическая модель генерации живой клеткой электрического напряжения, созданная Ходжкином и Хаксли, убедительно показала, что в процессе возбуждения клетка генерирует электрический потенциал (ЭП), вследствие движения катионов сквозь клеточную мембрану. Тем не менее, глубоко разработанная трансмембранная теория возникновения электрического потенциала, не во всём находит подтверждение в практике электрокардиографии и это побуждает (учитывая высказывание Гейзенберга о том, что любой выявленный парадокс непременно отрицает какое-то устоявшееся мнение, и новые знания начинаются с попыток объяснить и «закрыть» парадокс), к поиску «новых знаний». В данном случае парадокс преодолён не отрицанием, а существенным добавлением к доказанной общепринятой теории.

Действительно, в графике время - напряжение, каким, по сути, является электрокардиограмма (ЭКГ), отображается электрическая активность миокарда, вследствие трансмембранного движения катионов, однако не всё в графике ЭКГ возможно объяснить потенциалом действия. Манифестирующим несоответствием с теорией является непонятность происхождения массажных волн и волны U. Так как электрический вектор загадочной волны полностью совпадает с интегральным вектором кровенаполнения и время её возникновения с наполнением коронарного русла (под давлением в аорте), естественно предположить участие потенциала течения электролита (ПТ) в генезе волны U. Генерация ПТ легко демонстрируется покачиванием колонки обильно увлажнённого песка). Гидродинамический генез волны U доказан имитацией кровотока в коронарных артериях. Продавливая толчками, физиологический раствор сквозь канюли, вставленные в устья коронарных артерий забитой свиньи, с вколотых в сердце электродов я снимал ЭП соответствующий волне U. Опыты проводил неоднократно. При наличии отчетливо выраженной волны U на исходно записанной ЭКГ свиньи, наибольшая величина ЭП, наблюдается в условиях соблюдения соосности расположения электродов вектору кровенаполнения (интегральный вектор кровенаполнения от основания сердца к верхушке Синельников). Так как генерация потенциала волны U доказана пассивным наполнением миокарда кровью в фазу диастолы, возникает вопрос, а как же на ЭКГ, в таком случае, проявляется потенциал интенсивного, систолического выдавливания крови из миокарда? Затрагивается проблема происхождения волны Т, изменения рисунка которой имеет важнейшее диагностическое значение. Пренебрегая фактами совпадения времени возникновения и формы волны Т с кривой внутрижелудочкового давления, игнорируя конкордантность комплекса qRS и волны Т (процессы деполяризации и реполяризации противоположно направленные) и не принимая во внимание несоответствие площади волны реполяризации Т площади деполяризации qRS, волну Т называют «зубцом реполяризации». Парадокс устраним, если учитывать одновремённую генерацию большего по величине и направленного противоположно потенциалу действия гидродинамического потенциала. В геофизике этот потенциал давно известен как потенциал фильтрации

Электрокардиограмма, отведение V3

Индукция потенциала течения электролита

Моделирование волны U

Отсутствие изменений конечной части желудочкового комплекса при некоронарогенном некрозе миокарда

В процессе искусственного массажа сердца неотключенный электрокардиограф регистрирует напряжение, в виде так называемых массажных волн (МВ), амплитуда которых используется как маркер адекватности проводимого массажа. Поскольку в мертвом сердце отсутствует трансмембранный перенос катионов, МВ - это чистый, без интерференции с потенциалом действия ПТ. Неоднократно проводил искусственные массажи сердца, в том числе открытые массажи сердец животных, и убедился, что амплитуда МВ прямо пропорциональна амплитуде волны Т на прижизненно записанной ЭКГ. В случаях так называемой плоской ЭКГ, когда волна Т практически отсутствует во всех отведениях, даже самый энэргозатратный массаж оказывается «неадекватным». Измерения коронарного синуса подтвердили пропорциональность его диаметра амплитуде волны Т, это ещё один убедительный аргумент доказывающий гидродинамическое происхождение потенциала зубца Т. Таким образом, волна Т, в основном, отражает кровоток в миокарде, в результате «самомассажа» сердца во время систолы. Не смотря на то, что фиброзная ткань не генерирует электрическое напряжение, над проекцией рубца, после перенесенного трансмурального инфаркта миокарда со временем вновь регистрируется ЭП в виде «волны Т». Чтобы исключить возможность объяснения его происхождения над рубцовой зоной гипертрофией миокарда противоположной стенки, создал некоронарогенные инфаркты миокарда кролику (обеспечив анестезию). У крупных животных инфаркт миокарда вызывают высокой перевязкой коронарной артерии, однако, учитывая размеры сердца кролика, пришлось уменьшить количество кардиомиоцитов участвующих в возбуждении, инъекцией в переднюю и заднюю стенку миокарда раствора хлористого кальция. Таким образом, создав некоронарогенный некроз противоположных участков сердечной мышцы, до некоторой степени устранил интерференцию синхронно протекающих процессов реполяризации и ПТ. Опыт подтвердил, что «волна реполяризации» Т не связана с предыдущей деполяризацией (амплитуда комплекса qRS снизилась, а волна Т не изменилась). Находкой оказалось отсутствие девиации сегмента SТ! рис 4. Стало понятно, что известную девиацию изолинии в фазу систолы вызывает асимметрия электрического потенциала течения при локальном нарушении кровотока. Некоронарогенный инфаркт, как показывает опыт, протекает без патагномоничного острой фазе инфаркта миокарда волны Парди, поскольку нет асимметрии ПТ. Это и есть ключ к различению коронарогенного инфаркта миокарда от некоронарогенного, позволяющий дифференцированный подход в лечении инфарктов миокарда. Клиника представляет ещё несколько феноменов, необъяснимых, если находиться на позиции только традиционного взгляда о происхождении ЕП, разрешить вопрос возможно только с учётом роли ПТ. Например: восстановление полярности волны Т над рубцовыми изменениями происходит за счёт реваскуляризации этой области. Годами наблюдающаяся у некоторых пациентов значительное снижение амплитуды волны Т во всех отведениях, (реполяризация есть, а реполяризация отсутствует?) происходит из-за иного соотношения количеств крови, дренируемой по сосудам Thebezius и в коронарный синус. Это доказывается прямой зависимостью амплитуды волны Т от диаметра коронарного синуса. Объяснимо укорочение электрической систолы под воздействием сердечных гликозидов (улучшение инотропной функции). Снижение амплитуды волны Т в одном из отведений указывает на зону, где снижена инотропная функция (чаще всего в результате снижение питания этого участка). Дисперсия интервала QT, альтернация волны Т (сюда можно отнести симптом Хегглина) возникают по причине отсутствия стабильности систолической функции миокарда.

История

Первая отечественная книга по электрокардиографии вышла под авторством русского физиолога А. Самойлова в г. (Электрокардиограмма. Йенна, изд-во Фишер).

Применение

Прибор

Первые электрокардиографы вели запись на фотоплёнке, затем появились чернильные самописцы, теперь, как правило, электрокардиограмма записывается на термобумаге. Полностью электронные приборы позволяют сохранять ЭКГ в компьютере. Скорость движения бумаги составляет обычно 50 мм/с. В некоторых случаях скорость движения бумаги устанавливают на 12,5 мм/с, 25 мм/с или 100 мм/с. В начале каждой записи регистрируется контрольный милливольт. Обычно его амплитуда составляет 10 или, реже, 20 мм/мВ. Медицинские приборы имеют определенные метрологические характеристики, обеспечивающие воспроизводимость и сопоставимость измерений электрической активности сердца .

Электроды

Для измерения разности потенциалов на различные участки тела накладываются электроды. Так как плохой электрический контакт между кожей и электродами создает помехи, то для обеспечения проводимости, на участки кожи в местах контакта наносят токопроводящий гель. Ранее использовались марлевые салфетки, смоченные солевым раствором.

Фильтры

Применяемые в современных электрокардиографах фильтры сигнала позволяют получать более высокое качество электрокардиограммы, внося при этом некоторые искажения в форму полученного сигнала. Низкочастотные фильтры 0,5-1 Гц позволяют уменьшать эффект плавающей изолинии, внося при этом искажения в форму сегмента ST. Режекторный фильтр 50-60 Гц нивелирует сетевые наводки. Антитреморный фильтр низкой частоты (35 Гц) подавляет артефакты, связанные с активностью мышц.

Нормальная ЭКГ

Обычно на ЭКГ можно выделить 5 зубцов: P, Q, R, S, T. Иногда можно увидеть малозаметную волну U. Зубец P отображает процесс охвата возбуждением миокарда предсердий, комплекс QRS - систолу желудочков, сегмент ST и зубец T отражают процессы реполяризации миокарда желудочков. Процесс реполяризации (Repolarization) - фаза, во время которой восстанавливается исходный потенциал покоя мембраны клетки после прохождения через нее потенциала действия. Во время прохождения импульса происходит временное изменение молекулярной структуры мембраны, в результате которого ионы могут свободно проходить через нее. Во время реполяризации ионы диффундируют в обратном направлении для восстановления прежнего электрического заряда мембраны, после чего клетка бывает готова к дальнейшей электрической активности.

Отведения

Каждая из измеряемых разниц потенциалов называется отведением. Отведения I, II и III накладываются на конечности: I - правая рука - левая рука, II - правая рука - левая нога, III - левая рука - левая нога. С электрода на правой ноге показания не регистрируются, он используется только для заземления пациента.

Регистрируют также усиленные отведения от конечностей: aVR, aVL, aVF - однополюсные отведения, они измеряются относительно усреднённого потенциала всех трёх электродов. Заметим, что среди шести сигналов I, II, III, aVR, aVL, aVF только два являются линейно независимыми , то есть сигнал в каждом из этих отведений можно найти, зная сигналы только в каких-либо двух отведениях.

При однополюсном отведении регистрирующий электрод определяет разность потенциалов между конкретной точкой электрического поля (к которой он подведён) и гипотетическим электрическим нулём. Однополюсные грудные отведения обозначаются буквой V.

Отведения Расположение регистрирующего электрода
V 1 В 4-м межреберье у правого края грудины
V 2 В 4-м межреберье у левого края грудины
V 3 На середине расстояния между V 2 и V 4
V 4 В 5-м межреберье по срединно-ключичной линии
V 5 На пересечении горизонтального уровня 4-го отведения и передней подмышечной линии
V 6 На пересечении горизонтального уровня 4-го отведения и средней подмышечной линии
V 7 На пересечении горизонтального уровня 4-го отведения и задней подмышечной линии
V 8 На пересечении горизонтального уровня 4-го отведения и срединно-лопаточной линии
V 9 На пересечении горизонтального уровня 4-го отведения и паравертебральной линии

В основном регистрируют 6 грудных отведений: с V 1 по V 6 . Отведения V 7 -V 8 -V 9 незаслуженно редко используются в клинической практике, так как они дают более полную информацию о патологических процессах в миокарде задней (задне-базальной) стенки левого желудочка.

Для поиска и регистрации патологических феноменов в «немых» участках (см. невидимые зоны) миокарда применяют дополнительные отведения (не входящие в общепринятую систему):

  • Дополнительные задние отведения Вилсона, расположение электродов и соответственно нумерация, по аналогии с грудными отведениями Вилсона, продолжается в левую подмышечную область и заднюю поверхность левой половины грудной клетки. Специфичны для задней стенки левого желудочка.
  • Дополнительные высокие грудные отведения Вилсона, расположение отведений согласно нумерации, по аналогии с грудными отведениями Вилсона, на 1-2 межреберья выше стандартной позиции. Специфичны для базальных отделов передней стенки левого желудочка.
  • Брюшные отведения предложены в г. J.Lamber. Специфичны для переднеперегородочного отдела левого желудочка, нижней и нижнебоковой стенок левого желудочка. В настоящее время практически не используются
  • Отведения по Небу - Гуревичу. Предложены в г. немецким учёным W. Nebh. Три электрода образуют приблизительно равносторонний треугольник, стороны которого соответствуют трём областям - задней стенке сердца, передней и прилегающей к перегородке. При регистрации электрокардиограммы в системе отведений по Небу при переключении регистратора в позицию aVL можно получить дополнительное отведение aVL-Neb, высокоспецифичное в отношении заднего инфаркт миокарда.

Правильное понимание нормальных и патологических векторов деполяризации и реполяризации клеток миокарда позволяют получить большое количество важной клинической информации. Правый желудочек обладает малой массой, оставляя лишь незначительные изменения на ЭКГ, что приводит к затруднениям в диагностике его патологии, по сравнению с левым желудочком.

Электрическая ось сердца (ЭОС)

Электрическая ось сердца - проекция результирующего вектора возбуждения желудочков во фронтальной плоскости (проекция на ось I стандартного электрокардиографического отведения). Обычно она направлена вниз и вправо (нормальные значения: 30°…70°), но может и выходить за эти пределы у высоких людей, лиц с повышенной массой тела, детей (вертикальная ЭОС с углом 70°…90°, или горизонтальная - с углом 0°…30°). Отклонение от нормы может означать как наличие каких либо патологий (аритмии, блокады, тромбоэмболия), так и нетипичное расположение сердца (встречается крайне редко). Нормальная электрическая ось называется нормограммой. Отклонения её от нормы влево или вправо - соответственно левограммой или правограммой.

Другие методы

Внутрипищеводная электрокардиография

Активный электрод вводится в просвет пищевода. Метод позволяет детально оценивать электрическую активность предсердий и атриовентрикулярного соединения. Важен при диагностике некоторых видов блокад сердца .

Векторкардиография

Регистрируется изменение электрического вектора работы сердца в виде проекции объемной фигуры на плоскости отведений.

Прекардиальное картирование

Холтеровское мониторирование

Синоним - суточное мониторирование ЭКГ по Холтеру. На теле пациента, который ведет обычный образ жизни, закрепляется регистрирующий блок, записывающий электрокардиографический сигнал от одного, двух, трёх или более отведений в течение суток или более. Дополнительно регистратор может иметь функции мониторирования артериального давления (СМАД), двигательной и дыхательной активности пациента. Одновременная регистрация нескольких параметров является перспективной в диагностике заболеваний сердечно-сосудистой системы.

Стоит упомянуть о семисуточном мониторировании ЭКГ по Холтеру, которое даёт исчерпывающую информацию о электрической деятельности сердца.

Результаты записи передаются в компьютер и обрабатываются врачом при помощи специального программного обеспечения.

Гастрокардиомониторирование

Одновременная запись электрокардиограммы и гастрограммы в течение суток. Технология и прибор для гастрокардиомониторирования аналогичны технологии и прибору для холтеровского мониторирования, только, кроме записи ЭКГ по трём отведениям, дополнительно записываются значения кислотности в пищеводе и (или) желудке , для чего используется рН-зонд , введённый пациенту трансназально. Применяется для дифференциальной диагностики кардио- и гастрозаболеваний.

Электрокардиография высокого разрешения

Метод регистрации ЭКГ и её высокочастотных, низкоамплитудных потенциалов, с амплитудой порядка 1 - 10 мкВ и с применением многоразрядных АЦП (16 - 24 бита).

Отражение в культуре

Изображение зубцов ЭКГ настолько распространилось, что их очень часто можно видеть на логотипах компаний или по телевидению, где они часто означают приближение смерти или экстремальные ситуации.

Литература

  • Зудбинов Ю.И. Азбука ЭКГ. - Издание 3. - Ростов-на-Дону: «Феникс», 2003. - 160 с. - 5000 экз. - ISBN 5-222-02964-6
  • Мясников А. Л. Экспериментальные некрозы миокарда.. - М. Медицина., 1963.
  • Синельников Р. Д Атлас анатомии человека. - М. Медицина., 1979. - Т. 2.
  • Brawnwald L. D Heart disease. - 1992. - С. 122.
  • Спасский К. В. Про роль потенціалу фільтрації в походженні массажних хвиль та хвилі U, електрокардіограми, його вплив напараметри кінцевої частини шлуночкового комплексу.. - Наукові записки Острозької академії, 1998. - Т. 1.
  • Спасский К. В Роль потенциала фильтрации в происхождении волн реполяризации и массажных волн.. - Минск: Медико-социальная экспертиза и реабилитация. Выпуск №3. часть №2., 2001.
  • Спасский К. В Роль потенціалу плину у формуванні хвиль кінцевої частини шлуночкового комплексу ЄКГ. - Минск: Вісник університету „Україна”., 2007.

В настоящее время в клинической практике широко используется метод электрокардиографии (ЭКГ). ЭКГ отражает процессы возбуждения в сердечной мышце — возникновение и распространение возбуждения.

Существуют различные способы отведения электрической активности сердца, которые отличаются друг от друга расположением электродов на поверхности тела.

Клетки сердца, приходя в состояние возбуждения, становятся источником тока и вызывают возникновение поля в окружающей сердце среде.

В ветеринарной практике при электрокардиографии применяют разные системы отведений: наложение металлических электродов на кожу в области груди, сердца, конечностей и хвоста.

Электрокардиограмма (ЭКГ) — периодически повторяющаяся кривая биопотенциалов сердца, отражающая протекание процесса возбуждения сердца, возникшего в синусном (синусно-предсердный) узле и распространяющегося по всему сердцу, регистрируемая с помощью электрокардиографа (рис. 1).

Рис. 1. Электрокардиограмма

Отдельные ее элементы — зубцы и интервалы — получили специальные наименования: зубцы Р, Q , R , S , Т интервалы Р, PQ , QRS , QT, RR ; сегментыPQ , ST,TP , характеризующие возникновение и распространение возбуждения по предсердиям (Р), межжелудочковой перегородке (Q), постепенное возбуждение желудочков (R), максимальное возбуждения желудочков (S), реполяризацию желудочков (S) сердца. Зубец P отражает процесс деполяризации обоих предсердий, комплексQRS - деполяризацию обоих желудочков, а его длительность — суммарную продолжительность этого процесса. Сегмент ST и зубец Г соответствуют фазе реполяризации желудочков. Продолжительность интервалаPQ определяется временем, за которое возбуждение проходит предсердия. Продолжительность интервала QR-ST- длительность «электрической систолы» сердца; она может не соответствовать длительности механической систолы.

Показателями хорошей тренированности сердца и больших потенциальных функциональных возможностей развития лактации у высокопродуктивных коров являются малая или средняя частота сердечного ритма и высокий вольтаж зубцов ЭКГ. Высокий сердечный ритм при высоком вольтаже зубцов ЭКГ — признак большой нагрузки на сердце и уменьшения его потенциальных возможностей. Уменьшение вольтажа зубцовR и T, увеличение интерваловP - Q и Q-Tсвидетельствуют о снижении возбудимости и проводимости системы сердца и низкой функциональной активности сердца.

Элементы ЭКГ и принципы ее общего анализа

— метод регистрации разности потенциалов электрического диполя сердца в определенных участках тела человека. При возбуждении сердца возникает электрическое поле, которое можно зарегистрировать на поверхности тела.

Векторкардиография - метод исследования величины и направления интегрального электрического вектора сердца в течение сердечного цикла, значение которого непрерывно меняется.

Телеэлектрокардиография (радиоэлектрокардиография электротелекардиография) — метод регистрации ЭКГ, при котором регистрирующее устройство значительно удалено (от нескольких метров до сотен тысяч километров) от обследуемого человека. Данный метод основан на использовании специальных датчиков и приемно-передающей радиоаппаратуры и используется при невозможности или нежелательности проведения обычной электрокардиографии, например, в спортивной, авиационной и космической медицине.

Холтеровское мониторирование — суточное мониторирование ЭКГ с последующим анализом ритма и других электрокардиографических данных. Суточное мониторирование ЭКГ наряду с большим объемом клинических данных позволяет выявить вариабельность ритма сердца, что в свою очередь является важным критерием функционального состояния сердечно-сосудистой системы.

Баллистокардиография - метод регистрации микроколебаний тела человека, обусловленных выбрасыванием крови из сердца во время систолы и движением крови по крупным венам.

Динамокардиография - метод регистрации смещения центра тяжести грудной клетки, обусловленный движением сердца и перемещением массы крови из полостей сердца в сосуды.

Эхокардиография (ультразвуковая кардиография) — метод исследования сердца, основанный на записи ультразвуковых колебаний, отраженных от поверхностей стенок желудочков и предсердий на границе их с кровью.

Аускультация — метод оценки звуковых явлений в сердце на поверхности грудной клетки.

Фонокардиография - метод графической регистрации тонов сердца с поверхности грудной клетки.

Ангиокардиография - рентгенологический метод исследования полостей сердца и магистральных сосудов после их катетеризации и введения в кровь рентгеноконтрастных веществ. Разновидностью данного метода является коронарография — рентгеноконтрастное исследование непосредственно сосудов сердца. Данный метод является «золотым стандартом» в диагностике ишемической болезни сердца.

Реография — метод исследования кровоснабжения различных органов и тканей, основанный на регистрации изменения полного электрического сопротивления тканей при прохождении через них электрического тока высокой частоты и малой силы.

ЭКГ представлена зубцами, сегментами и интервалами (рис. 2).

Зубец Р в нормальных условиях характеризует начальные события сердечного цикла и располагается на ЭКГ перед зубцами желудочкового комплекса QRS . Он отражает динамику возбуждения миокарда предсердий. Зубец Р симметричен, имеет уплощенную вершину, его амплитуда максимальна во II отведении и составляет 0,15-0,25 мВ, длительность — 0,10 с. Восходящая часть зубца отражает деполяризацию преимущественно миокарда правого предсердия, нисходящая — левого. В норме зубец Р положителен в большинстве отведений, отрицателен в отведении aVR , в III и V1 отведениях он может быть двухфазным. Изменение обычного места положения зубцаР на ЭКГ (перед комплексом QRS ) наблюдается при аритмиях сердца.

Процессы реполяризации миокарда предсердий на ЭКГ не видны, так как они накладываются на более высокоамплитудные зубцы QRS-комплекса.

Интервал PQ измеряется от начала зубца Р до начала зубца Q . Он отражает время, проходящее от начала возбуждения предсердий до начала возбуждения желудочков или другимисловами время, затрачиваемое на проведение возбуждения по проводящей системе к миокарду желудочков. Его нормальная длительность составляет 0,12-0,20 с и включает время атрио- вентрикулярной задержки. Увеличение длительности интервала PQ более 0,2 с может свидетельствовать о нарушении проведения возбуждения в области атриовентрикулярного узла, пучке Гиса или его ножках и трактуется как свидетельство наличия у человека признаков блокады проведения 1-й степени. Если у взрослого человека интервал PQ меньше 0,12 с, то это может свидетельствовать о существовании дополнительных путей проведения возбуждения между предсердиями и желудочками. У таких людей имеется опасность развития аритмий.

Рис. 2. Нормальные значения параметров ЭКГ во II отведении

Комплекс зубцов QRS отражает время (в норме 0,06-0,10 с) в течение которого в процесс возбуждения последовательно вовлекаются структуры миокарда желудочков. При этом первыми возбуждаются сосочковые мышцы и наружная поверхность межжелудочковой перегородки (возникает зубец Q длительностью до 0,03 с), затем основная масса миокарда желудочков (зубец длительность 0,03-0,09 с) и в последнюю очередь миокард основания и наружная поверхность желудочков (зубец 5, длительность до 0,03 с). Поскольку масса миокарда левого желудочка существенно больше массы правого, то изменения электрической активности, именно в левом желудочке, доминируют в желудочковом комплексе зубцов ЭКГ. Поскольку комплекс QRS отражает процесс деполяризации мощной массы миокарда желудочков, то амплитуда зубцов QRS обычно выше, чем амплитуда зубца Р, отражающего процесс деполяризации относительно небольшой массы миокарда предсердий. Амплитуда зубца R колеблется в разных отведениях и может достигать до 2 мВ в I, II, III и в aVF отведениях; 1,1 мВ в aVL и до 2,6 мВ в левых грудных отведениях. Зубцы Q и S в некоторых отведениях могут не проявляться (табл. 1).

Таблица 1. Границы нормальных значений амплитуды зубцов ЭКГ во II стандартном отведении

Зубцы ЭКГ

Минимум нормы, мВ

Максимум нормы, мВ

Сегмент ST регистрируется вслед за комплексом ORS . Его измеряют от конца зубца S до начала зубца Т. В это время весь миокард правого и левого желудочков находится в состоянии возбуждения и разность потенциалов между ними практически исчезает. Поэтому запись на ЭКГ становится почти горизонтальной и изоэлектрической (в норме допускается отклонение сегментаST от изоэлектрической линии не более чем на 1 мм). СмещениеST на большую величину может наблюдаться при гипертрофии миокарда, при тяжелой физической нагрузке и указывает на недостаточность кровотока в желудочках. Существенное отклонение ST от изолинии, регистрируемое в нескольких отведениях ЭКГ, может быть предвестником или свидетельством наличия инфаркта миокарда. ПродолжительностьST на практике не оценивается, так как она существенно зависит от частоты сокращений сердца.

Зубец Т отражает процесс реполяризации желудочков (длительность — 0,12-0,16 с). Амплитуда зубца Т весьма вариабельна и не должна превышать 1/2 амплитуды зубца R . Зубец Г положителен в тех отведениях, в которых записывается значительной амплитуды зубец R . В отведениях, в которых зубец R низкой амплитуды или не выявляется, может регистрироваться отрицательный зубец T (отведения AVR и VI).

Интервал QT отражает длительность «электрической систолы желудочков» (время от начала их деполяризации до окончания реполяризации). Этот интервал измеряют от начала зубца Q до конца зубца Т. В норме в покое он имеет длительность 0,30-0,40 с. Длительность интервала ОТ зависит от частоты сердечных сокращений, тонуса центров автономной нервной системы, гормонального фона, действия некоторых лекарственных веществ. Поэтому за изменением длительности этого интервала следят с целью предотвращения передозировки некоторых сердечных лекарственных препаратов.

Зубец U является не постоянным элементом ЭКГ. Он отражает следовые электрические процессы, наблюдаемые в миокарде некоторых людей. Диагностического значения не получил.

Анализ ЭКГ основан на оценке наличия зубцов, их последовательности, направления, формы, амплитуды, измерении длительности зубцов и интервалов, положении относительно изолинии и расчете других показателей. По результатам этой оценки делают заключение о частоте сердечных сокращений, источнике и правильности ритма, наличии или отсутствии признаков ишемии миокарда, наличии или отсутствии признаков гипертрофии миокарда, направлении электрической оси сердца и других показателях функции сердца.

Для правильного измерения и трактовки показателей ЭКГ важно, чтобы она была качественно записана в стандартных условиях. Качественной является такая ЭКГ-запись, на которой отсутствуют шумы и смещение уровня записи от горизонтального и соблюдены требования стандартизации. Электрокардиограф является усилителем биопотенциалов и для установки на нем стандартного коэффициента усиления подбирают такой его уровень, когда подача на вход прибора калибровочного сигнала в 1 мВ, приводит к отклонению записи от нулевой или изоэлектрической линии на 10 мм. Соблюдение стандарта усиления позволяет сравнивать ЭКГ, записанные на любых типах приборов, и выражать амплитуду зубцов ЭКГ в миллиметрах или милливольтах. Для правильного измерения длительности зубцов и интервалов ЭКГ запись должна производиться при стандартной скорости движения диаграммной бумаги, пишущего устройства или скорости развертки на экране монитора. Большинство современных электрокардиографов даст возможность регистрировать ЭКГ при трех стандартных скоростях: 25, 50 и 100 мм/с.

Проверив визуально качество и соблюдение требований стандартизации записи ЭКГ, приступают к оценке ее показателей.

Амплитуду зубцов измеряют, принимая за точку отсчета изоэлектрическую, или нулевую, линию. Первая регистрируется в случае одинаковой разности потенциалов между электродами (PQ — от окончания зубца Р до начала Q, вторая — при отсутствии разности потенциалов между отводящими электродами (интервал TP)). Зубцы, направленные вверх от изоэлектрической линии, называют положительными, направленные вниз, — отрицательными. Сегментом называют участок ЭКГ между двумя зубцами, интервалом — участок, включающий сегмент и один или несколько прилежащих к нему зубцов.

По электрокардиограмме можно судить о месте возникновения возбуждения в сердце, последовательности охвата отделов сердца возбуждением, скорости проведения возбуждения. Следовательно, можно судить о возбудимости и проводимости сердца, но не о сократимости. При некоторых заболеваниях сердца может возникать разобщение между возбуждением и сокращением сердечной мышцы. В этом случае насосная функция сердца может отсутствовать при наличии регистрируемых биопотенциалов миокарда.

Интервал RR

Длительность сердечного цикла определяют по интервалу RR , который соответствует расстоянию между вершинами соседних зубцов R . Должную величину (норму) интервала QT рассчитывают по формуле Базетта:

где К - коэффициент, равный 0,37 для мужчин и 0,40 для женщин; RR — длительность сердечного цикла.

Зная длительность сердечного цикла, легко рассчитать частоту сокращений сердца. Для этого достаточно разделить временной интервал 60 с на среднюю величину длительности интервалов RR .

Сравнивая продолжительность ряда интервалов RR можно сделать заключение о правильности ритма или наличии аритмии в работе сердца.

Комплексный анализ стандартных отведений ЭКГ позволяет также выявлять признаки недостаточности кровотока, обменных нарушений в сердечной мышце и диагностировать ряд заболеваний сердца.

Тоны сердца - звуки, возникающие во время систолы и диастолы, являются признаком наличия сердечных сокращений. Звуки, генерируемые работающим сердцем, можно исследовать методом аускультации и регистрировать методом фоно- кардиографии.

Аускультапия (прослушивание) может осуществляться непосредственно ухом, приложенным к грудной клетке, и с помощью инструментов (стетоскоп, фонендоскоп), усиливающих или фильтрующих звук. При аускультации хорошо слышны два тона: I тон (систолический), возникающий в начале систолы желудочков, II тон (диастолический), возникающий в начале диастолы желудочков. Первый тон при аускультации воспринимается более низким и протяженным (представлен частотами 30-80 Гц), второй — более высоким и коротким (представлен частотами 150-200 Гц).

Формирование I тона обусловлено звуковыми колебаниями, вызываемыми захлопыванием створок АВ-клапанов, дрожанием связанных с ними сухожильных нитей при их натяжении и сокращением миокарда желудочков. Некоторый вклад в происхождение последней части I тона может вносить открытие полулунных клапанов. Наиболее четко I тон слышен в области верхушечного толчка сердца (обычно в 5-м межреберье слева, на 1-1,5 см левее среднеключичной линии). Прослушивание его звучания в этой точке особенно информативно для оценки состояния митрального клапана. Для оценки состояния трехстворчатого клапана (перекрывающего правое АВ-отверстие) более информативно прослушивание 1 тона у основания мечевидного отростка.

Второй тон лучше прослушивается во 2-м межреберье слева и справа от грудины. Первая часть этого тона обусловлена захлопыванием аортального клапана, вторая — клапана легочного ствола. Слева лучше прослушивается звучание клапана легочного ствола, а справа — аортального клапана.

При патологии клапанного аппарата во время работы сердца возникают апериодические звуковые колебания, которые создают шумы. В зависимости от того, какой клапан поврежден, они накладываются на определенный тон сердца.

Более детальный анализ звуковых явлений в сердце возможен но записанной фонокардиограмме (рис. 3). Для регистрации фонокардиограммы используется электрокардиограф в комплекте с микрофоном и усилителем звуковых колебаний (фонокардиографической приставкой). Микрофон устанавливается в тех же точках поверхности тела, в которых ведется ау- скультация. Для более достоверного анализа тонов и шумов сердца фонокардиограмму всегда регистрируют одновременно с электрокардиограммой.

Рис. 3. Синхронно записанные ЭКГ (сверху) и фонокарднограмма (снизу).

На фонокардиограмме кроме I и II тонов могут регистрироваться III и IV тоны, обычно не прослушиваемые ухом. Третий тон появляется в результате колебаний стенки желудочков при их быстром наполнении кровью во время одноименной фазы диастолы. Четвертый тон регистрируется во время систолы предсердий (пресистолы). Диагностическое значение этих тонов не определено.

Возникновение I тона у здорового человека всегда регистрируется в начале систолы желудочков (период напряжения, конец фазы асинхронного сокращения), а его полная регистрация совпадает по времени с записью на ЭКГ зубцов желудочкового комплекса QRS . Начальные небольшие по амплитуде низкочастотные колебания I тона (рис. 1.8,а)представляют собой звуки, возникающие при сокращении миокарда желудочков. Они регистрируется практически одновременно с зубцом Q на ЭКГ. Основная часть I тона, или главный сегмент (рис. 1.8, б), представлена высокочастотными звуковыми колебаниями большой амплитуды, возникающими при закрытии АВ-клапанов. Начало регистрации основной части I тона запаздывает по времени на 0,04-0,06 от начала зубца Q на ЭКГ (Q - I тон на рис. 1.8). Конечная часть I тона (рис. 1.8,в)представляет собой небольшие по амплитуде звуковые колебания, возникающие при открытии клапанов аорты и легочной артерии и звуковые колебания стенок аорты и легочной артерии. Длительность I тона — 0,07-0,13 с.

Начало II тона в нормальных условиях совпадает по времени с началом диастолы желудочков, запаздывая на 0,02-0,04 с к окончанию зубца Г на ЭКГ. Тон представлен двумя группами звуковых осцилляций: первая (рис. 1.8, а) вызвана закрытием аортального клапана, вторая (Р на рис. 3) — закрытием клапана легочной артерии. Длительность II тона — 0,06-0,10 с.

Если по элементам ЭКГ судят о динамике электрических процессов в миокарде, то по элементам фонокардиограммы — о механических явлениях в сердце. Фонокардиограмма представляет информацию о состоянии клапанов сердца, начале фазы изометрического сокращения и расслабления желудочков. По расстоянию между I и II тоном определяют длительность «механической систолы» желудочков. Увеличение амплитуды II тона может указывать на повышенное давление в аорте или легочном стволе. Однако в настоящее время более детальную информацию о состоянии клапанов, динамике их открытия и закрытия и других механических явлениях в сердце получают при ультразвуковом исследовании сердца.

УЗИ сердца

Ультразвуковое исследование (УЗИ) сердца, или эхокардиография , является инвазивным методом исследования динамики изменения линейных размеров морфологических структур сердца и сосудов, позволяющим рассчитать скорость этих изменений, а также изменений объемов полостей сердца и крови в процессе осуществления сердечного цикла.

В основе метода лежит физическое свойство звуков высокой частоты в диапазоне 2-15 МГц (ультразвука) проходить через жидкие среды, ткани тела и сердца, отражаясь при этом от границ любых изменений их плотности или от границ раздела органов и тканей.

Современный ультразвуковой (УЗ) эхокардиограф включает такие блоки, как генератор ультразвука, УЗ-излучатель, приемник отраженных УЗ-волн, визуализации и компьютерного анализа. Излучатель и приемник УЗ конструктивно объединены в едином устройстве, называемом УЗ-датчиком.

Эхокардиографическое исследование осуществляется посредством посылки с датчика внутрь тела по определенным направлениям коротких серий УЗ-волн, генерируемых прибором. Часть УЗ-волн, проходя через ткани тела, поглощается ими, а отраженные волны (например, от поверхностей раздела миокарда и крови; клапанов и крови; стенки сосудов и крови), распространяются в обратном направлении к поверхности тела, улавливаются приемником датчика и преобразуются в электрические сигналы. После компьютерного анализа этих сигналов на экране дисплея формируется УЗ-изображение динамики механических процессов, протекающих в сердце во время сердечного цикла.

По результатам расчета расстояний между рабочей поверхностью датчика и поверхностями разделов различных тканей или изменениями их плотности, можно получить множество визуальных и цифровых эхокардиографических показателей работы сердца. Среди этих показателей динамика изменений размеров полостей сердца, размеров стенок и перегородок, положения створок клапанов, размеров внутреннего диаметра аорты и крупных сосудов; выявление наличия уплотнений в тканях сердца и сосудах; расчет конечно-диастолического, конечно-систолического, ударного объемов, фракции выброса, скорости изгнания крови и наполнения кровью полостей сердца и др. УЗИ сердца и сосудов является в настоящее время одним из наиболее распространенных, объективных методов оценки состояния морфологических свойств и насосной функции сердца.

В его честь коллеги составили сборник научных трудов, где была опубликована первая в мире электрокардиограмма, снятая Виллемом Эйнтховеном. К этому дню создатель ЭКГ шёл уже много лет, побуждаемый одновременно любовью к науке и необходимостью вернуть банковский кредит.

Кредит, которому обязаны все сердечники мира, был нужен, чтобы откупиться от распределения. Вышло так: Эйнтховен рано потерял отца, который служил колониальным врачом в Семаранге на острове Ява. Правительство Нидерландов оплачивало учёбу таких сирот в Утрехтском университете при условии, что они также станут работать в колониях. Круг профессий узок: врач, бухгалтер, учитель.

Начало карьеры Эйнтховена

Поскольку Эйнтховена тянуло к естественным наукам, он избрал медицину. Но уже во время практики понял, что рождён не врачом, а скорее физиком. Сперва он пытался примирить эти начала, специализируясь на офтальмологии как самой точной из медицинских наук. Диплом его уже был с открытием. Речь шла об известной оптической иллюзии: если на стене рядом пятна разных цветов, красное и синее, то одно из них кажется более близким. Позднее Кандинский написал об этом целую теорию, на которой зиждилось абстрактное искусство: мол, есть цвета агрессивные, которые как будто стремятся к зрителю (жёлтый, к примеру), а есть «уходящие», как бы отодвигающиеся вглубь картины, вроде синего.

Первый серийный электрокардиограф, который выпускался в Кембридже с 1908 года под наблюдением Эйнтховена.

Диплом с отличием

Электродов с гелем и присосками ещё не изобрели. Для гарантированного контакта с кожей пациент опускал конечности в подсоленную воду.

Снималась разница потенциалов между вершинами так называемого «треугольника Эйнтховена»: правая рука - левая рука (I отведение), правая рука - нога (II отведение), левая рука - нога (III отведение). Сейчас принято накладывать электрод на левую ногу, фотография запечатлела эксперимент с правой.

На верхней поверхности станины расположены основные узлы прибора, в порядке слева направо: источник света, струнный гальванометр, фотокамера (на ней лежит правая рука оператора).

Научный руководитель думал, что дело тут в разной длине волны, но студент Эйнтховен доказал иное. Зрачки у разных людей слегка смещены от центра радужки. Те, у кого зрачки чуть ближе к вискам, и среди них Кандинский, воспринимают синий как «уходящий». А те, чьи зрачки смещены к носу – наоборот.

Работа блестящая, диплом с отличием. И теперь молодого человека ждали колонии.

Эйнтховен - ученый

Однако тут вышел на пенсию завкафедрой гистологии и физиологии Лейденского университета, и впечатлённые открытием Эйнтховена учёные выдвинули его на вакантное место. Всё хорошо, только правительство предъявило Виллему счёт на 6000 гульденов за обучение и грант на работу по оптике. Эта сумма равнялась жалованью профессора за полтора года. И всё же Эйнтховен предпочёл заплатить и стать учёным, чем торчать в далёкой колонии, где каждый день приходится делать одно и то же.

Изобретение как новый социальный уровень

Кредит оказал громадное влияние на всю его жизнь. Была семья, требовавшая больших расходов, и наука, отнимавшая всё время. Поэтому приходилось жить гораздо скромнее коллег. Другие профессора обставляли лаборатории со вкусом за свой счёт. А заходивших к Эйнтховену поражали голые стены. Когда наш герой создал электрокардиографию и в его лабораторию началось паломничество со всего мира, жена в героическом усилии сделать интерьер побогаче повесила всюду кружевные шторки, за которые профессору было неудобно перед гостями. Собственно, и главное своё изобретение Виллем сделал, чтобы вырваться из бедности.

Выступление Уоллера

На четвёртый год своего заведования кафедрой Эйнтховен увидел выступление Огастуса Уоллера, читавшего лекции по физиологии в лондонской больнице Сент-Мэри, той самой, где рожают женщины из британской королевской семьи.

Уоллер наглядно демонстрировал, что сердце - источник слабых токов, импульсы которых регулярно повторяются. Делал он это с помощью капиллярного электрометра. В тонком стеклянном капилляре встречаются ртуть и серная кислота. Электрический ток меняет поверхностное натяжение ртути и граница двух жидкостей ползает по капилляру. Токи сердца самые слабые – в 100 миллионов раз меньше тока в электрической розетке, так что сдвиги видны только в сильную лупу. Тем не менее, они есть, и можно заснять их на движущуюся фотоплёнку. Получается кривая изменения электрического поля сердца.

Феномен демонстрировал бульдог Уоллера по кличке Джимми. Он смирно стоял на столе, его лапы помещались в разных ёмкостях с солёной водой, от которых шли провода к прибору. Опыт привлёк всеобщее внимание. В парламенте тут же нашлись депутаты, желавшие привлечь Уоллера к ответственности за жестокое обращение с животными. Но тот показал на себе, что исследование совершенно безвредно.

Первые работы Виллема Эйнтховена по электрокардиографии

Вверху слева: Виллем Эйнтховен (1860-1927) в 1903 году в своей лаборатории, на заднем плане - команда, обслуживавшая его первый прибор;

Вверху справа: «электрокардиография до ЭКГ», то есть показания ртутного электрометра, регистрирующего изменения электрического поля сердца человека. Чёрно-белый силуэт - линия колебания уровня ртути в капилляре на границе с серной кислотой, ниже - та же кардиограмма, пересчитанная Эйнтховеном с поправкой на инерцию тяжёлой ртути (1895 год), с придуманными им обозначениями зубцов кардиограммы.

Правда, и пользы тоже не было. Ясно, что больные сердца работают не так, как здоровые, но кривая получалась слишком пологой – ртуть тяжела, у неё большая инерция, которая скрадывает все пики на кардиограмме. Уоллер опустил руки, но ему же не надо было отдавать кредит. Эйнтховен взялся употребить прибор в клинике. За пять лет он разработал математический метод коррекции показаний электрометра. Могучие расчёты, с дифференцированием и интегрированием, позволяли воссоздать истинный облик зубцов кардиограммы. В 1895 году Эйнтховен дал им названия, которые они носят до сих пор: зубец P (соответствует возбуждению предсердий), Q (срабатывает межжелудочковая перегородка), высокий зубец R (возбуждение левого желудочка), S и T (возбуждение и расслабление желудочков). Конечно, всякий раз высчитывать кривую для каждого больного нереально – калькуляторов-то не было. Эйнтховен не унывал, надеясь, что пока он осмысляет значение зубцов, люди что-нибудь изобретут.

Изобретение Клемана Адера

И тут в историю кардиологии ворвался человек, не имеющий к медицине никакого отношения. Звали его Клеман Адер. Ему тоже понадобились деньги. Инженер Адер мечтал создать летающую машину тяжелее воздуха. Он сделал планер, похожий на летучую мышь, и разработал лёгкую паровую машину в качестве двигателя. А чтобы оплатить её производство, изобрёл чуткий прибор для регистрации сигналов, передающихся по подводным телеграфным кабелям. Длина лежащих на дне морском кабелей громадная, сопротивление большое, и токи слабые, хоть и посильней, чем в нашем сердце.

Адер придумал струнный гальванометр. Действие его основано на законе Ампера: провод под током в магнитном поле отклоняется. И тем сильней, чем больше ток и мощнее поле. Дёргающаяся от точек и тире проволочка то и дело закрывает отверстие, которое снимается на движущуюся плёнку. Благодаря Адеру скорость передачи сигналов через Атлантику выросла с 400 до 600 в минуту. Правда, сделанный на гонорар за это достижение в 1897 году «авьон» рухнул, пролетев несколько десятков метров – Адер не придумал для него систему управления (с этой задачей справились позднее братья Райт). Зато Эйнтховен приспособил струнный гальванометр для регистрации сигналов сердца.

Лишь проволока Адера не годилась – она была слишком толста. Виллем заменил её посеребрённой кварцевой нитью диаметром всего 2 микрона. Изготавливалась она по экзотической технологии: человек с водородной горелкой плавил кварц, в расплав окуналась стрела, которую другой человек выпускал из лука, так что нить вытягивалась и остывала на лету. Получалась струна, колебавшаяся от сердечных токов так, что выходила вполне современная электрокардиограмма. К большому удовольствию Эйнтховена, она в точности совпала с его расчётами.

Начало заработков

Теперь можно переходить от удовольствий к заработкам: выпускать приборы для диагностики болезни сердца. Эйнтховен обратился в мюнхенскую компанию «Эдельманн». Там с радостью взяли чертежи, и скоро прибор был готов, но тут выяснилось, что никаких отчислений Виллему по немецким законам не полагается. Гальванометр изобрёл Адер, токи сердца засёк Уоллер. Эйнтховен вообще ни при чём.

Выручили голландца связисты: они с удовольствием покупали гальванометры его конструкции для телеграфного сообщения с колониями. В том числе и с теми, от работы в которых Виллем откупался. Контракт с Эдельманном был разорван, но немцы выпустил несколько десятков электрокардиографов. Купили их университеты, где работали учёные, заметившие публикации Эйнтховена.

Деятели науки и техники, создававшие электрокардиографию вместе с Эйнтховеном

Вверху слева: Огастус Дезире Уоллер (1856-1922, стоит справа) демонстрирует в Лондонском Королевском обществе колебания сердца своего бульдога Джимми, 1889 год. Гравюра из Illustrated London News, иллюстрация к статье к 20-летию первой кардиограммы, 1909.

Вверху справа: французский изобретатель Клеман Адер (1841-1925), который в 1897 году изобрёл струнный гальванометр для телеграфистов, чтобы получить средства на создание своего летательного аппарата «Аквилон» (Авьон-III).

Внизу слева: русский, а затем советский физиолог Александр Филиппович Самойлов (1867-1930), сподвижник и личный друг Эйнтховена. Ввёл аббревиатуру ЭКГ, первым заметил, что аномальный зубец P указывает на порок сердца. Ввёл в практику анализ всех трёх стандартных отведений. Самойлов создал первые в России и Москве лаборатории ЭКГ, лично возглавлял центральную лабораторию, развёрнутую в Боткинской больнице.

Внизу справа: британский кардиолог Томас Люьис (1881-1945), сподвижник и личный друг Эйнтховена. Первым засёк на ЭКГ аритмию и большое количество других патологий, признан «отцом клинической электрофизиологии». Обнаружил явление сужения сосудов как реакции на ранение, а также (увы, на собственном примере) роль курения в возникновении сердечно-сосудистых заболеваний.

Самойлов и Эйнтховен

Первым стал профессор Казанского университета Александр Самойлов. Он очень похож на Эйнтховена: тоже рано потерял отца, разочаровался в медицине (поработав на холерной эпидемии 1892 года), ушёл в физиологию. Самойлов сразу же познакомился с Эйнтховеном и они стали друзьями. В Казани впервые был диагностирован по кардиограммепорок сердца, и в первый раз прозвучала аббревиатура "ЭКГ".

К 20-летию первой кардиограммы Самойлов послал Эйнтховену шуточное поздравление, которое просил зачитать вслух струнному гальванометру, так как тот «умеет хорошо и много писать (но не всегда достаточно ясно и порой слишком много) – читать же он совсем не может».

Вот отрывок из этого письма:

«Я почти влюблён в Вас и если я хоть один день не писал с Вами, то чувствую, чего-то не хватает. Я откровенный человек и должен Вам сознаться, что бывали моменты, когда я Вас, уважаемый струнный гальванометр, хотел бы разбить на 1000 кусков… Ваши металлические части никогда меня не раздражали, но струна! Когда, наконец, приступаешь к опыту, то оказывается, что струна не хочет больше проводить или же начинает дрожать, как будто её кто-то испугал или у неё приступ малярии (мы пробовали раз хину, но это не помогло)». А дальше – комплименты юбиляру.

Эйнтховен ответил в том же духе: «Струнный гальванометр в восторге от похвалы, высказанной в его адрес… Он ответил мне, что затруднения, касающиеся струн, могут быть устранены, если выписывать их из Америки, где механики изготовляют их прекрасно. Но во время чтения гальванометр вдруг рассвирепел: «Как это я не умею читать? Это невыносимая ужасная клевета! Разве я не читаю самые сокровенные тайны человеческого сердца?»

Всё это говорилось о первой машине Эйнтховена, занимавшей две комнаты и требовавшей пять человек обслуги. Много с тех пор утекло воды и клетчатой фотобумаги. Эйнтховен получил Нобелевскую премию. Потом не стало его, не стало Самойлова, появились осцилляторы, электролампы, затем транзисторы. Но только спустя 80 лет промышленность породила прибор, который по чувствительности и точности был сравним с той первой громадной машиной, изготовленной кустарным способом.

В разговорах с деятелями советского правительства Самойлов любил приводить этот пример как иллюстрацию отношений науки и промышленности: «..все завоевания техники можно сравнить лишь с крохами со стола науки. Мы должны развивать науку, иначе наступит крах не только науки, но и техники».

Михаил Шифрин

История 1842 — Итальянский учёный Карло Маттеучи – электричество связано с биением сердца. 1876 — Ирландский учёный Marey анализирует электрическую работу сердца лягушки. 1895 — William Einthoven изобретает ЭКГ. 1906 — используя струнный гальванометр Эйнтховен диагностирует некоторые заболевания сердца.

История 1924 – Нобелевская премия по физиологии/медицине вручается Эйнтховену за его работы по ЭКГ. 1938 – кардиологические Общества США и Великобритании вводят грудные отведения (по Wilson). 1942 — Goldberger на основании однополярных отведений Wilson создаёт усиленные отведения от конечностей (av. F, av. L, av. R).

Что такое ЭКГ? ЭКГ – представление электрических событий сердечного цикла. Каждое событие имеет определённую отличительную форму. Изучение формы сигнала позволяет оценить функции сердца (автоматизм и т. д.) .

Что можно установить при помощи ЭКГ? Аритмии Ишемию миокарда Перикардит Гипертрофию камер сердца Электролитные нарушения Лекарственную токсичность (алкалоиды наперстянки).

Деполяризация Сокращение любой мышцы связано с электрическими изменениями, называемыми деполяризацией. Эти изменения могут быть определены с помощью электродов на поверхности тела.

Водители ритма сердца СА-узел – Главный водитель ритма с частотой генерации 60 — 100 ударов в минуту. АВ-узел – Второстепенный водитель ритма с частотой генерации 40 — 60 ударов в минуту. Проводящая система желудочков –частота генерации 20 — 45 ударов в минуту.

Электрический импульс, который двигается по направлению к электроду, образует положительное (позитивное) отклонение (зубец) от изолинии.

PQRST Зубец P — деполяризация предсердий Комплекс QRS – деполяризация желудочков Зубец T – реполяризация желудочков

PR (PQ) — интервал Деполяризация предсердий + Задержка в АВ-соединении

Бумага для записи ЭКГ Горизонтально – Один малый квадрат — 0. 04 сек. – Один большой квадрат — 0. 20 сек Вертикально – Один большой квадрат — 0. 5 м. В.

Отведения ЭКГ Измеряют разницу электрического потенциала между двумя точками. 1. Биполярные отведения: две различные точки на теле. 2. Униполярные отведения: Одна точка на теле и виртуальная референтная точка с нулевым электрическим потенциалом, расположенная в центре сердца.

Отведения ЭКГ Стандартная ЭКГ имеет 12 отведений: 3 стандартных отведений от конечностей; 3 усиленных отведения от конечностей 6 грудных отведений.

Правило 1 PR (PQ) — интервал должен быть от 120 до 200 мс (0, 12 – 0, 2 сек)

Правило 6 R- зубец должен увеличиваться от V 1 до V 4 ; S- зубец должен расти от V 1 до V 3 и исчезать в V 6.

Правило 7 ST –сегмент должен быть на изоэлектрической линии, кроме V 1 и V 2 , где он может быть поднят.

Правило 8 P -зубцы должны быть высокими в I, II, и V 2 — V 6.

Правило 9 Не должно быть зубца Q или допускается малый Q, по ширине не более 0. 04 секунд, в I, II, V 2 -V

Правило 10 T -зубец должен быть направлен вверх в I, II, V 2 — V 6.

P -зубец Всегда положительный в отведениях I и II, AVF Наиболее выражен во II Всегда отрицательный в отведении a. VR. Высота 0, 5 -2, 5 мм Продолжительность 0, 07 -0. 1 Как правило двухфазный в V

Время внутреннего отклонения предсердий Время от начала возбуждения предсердий до охвата возбуждением максимального количества волокон. Измеряется от начала зубца до перпендикуляра, опущенного на изолинию из самой высокой точки. Норма для ПП (III, V 1, a. VF) – не более 0, 04 сек, Для ЛП (I, a. VL, V 5 -V 6) – не более 0,

Увеличение правого предсердия Высокие (> 2. 5 mm), острые P -зубцы (лёгочный P)

Зазубренный (‘M’ -образный) P -зубец (митральный P) в отведениях от конечностей. Увеличение левого предсердия

Интервал PQ (PR) Период распространения возбуждения по всей проводящей системе сердца. Норма – от 0, 12 до 0, 20 сек при нормальной ЧСС (до 0, 21 при брадикардии).

Короткий PR -интервал WPW -синдром (Wolff-Parkinson-White) Добавочный путь (пучок Кента) обеспечивает раннюю деполяризацию желудочков (дельта-волна и короткий PR -интервал).

QRS -комплекс Непатологические Q -зубцы могут присутствовать в I, III, a. VL, V 5, и V 6 R -зубец в V 6 меньше, чем в V 5 Глубина S -зубца не должна превышать 30 mm Патологический Q -зубец > 2 мм глубиной и > 1 мм шириной или > 25% амплитуды последующего зубца R.

Гипертрофия левого желудочка Критерии Sokolow и Lyon S в V 1+ R в V 5 или V 6 > 35 mm R -зубец от 11 до 13 mm (1. 1 до 1. 3 m. V) или более в a. VL.

ST -сегмент ST -сегмент находится на изоэлектрической линии. Подъём (элевация) или опущение (депрессия) ST -сегмента на 1 мм или более Точка J – точка между комплексом QRS и сегментом ST.

Разнообразные формы подъёма сегмента ST при остром инфаркте миокарда Goldberger AL. Goldberger: Clinical Electrocardiography: A Simplified Approach. 7 th ed: Mosby Elsevier; 2006.

Т-зубец Нормальный Т-зубец несколько асимметричен, первая половина имеет постепенный наклон, в отличие от второй. Должен быть не меньше 1/8 , но не больше, чем 2/3 амплитуды зубца R. Амплитуда зубца Т редко превышает 10 мм. Аномальные зубцы T – симметричны, высокие, заострённые, двухфазные или инвертированные. Т-зубец того же направления, что и QRS.

QT- интервал 1. Суммарная продолжительность деполяризации и реполяризации. 2. QT -интервал уменьшается во времени при увеличении ЧСС. 4. QT -интервал должен быть от 0. 35 до 0. 45 сек

Определение ЧСС Правило 300/

Правило 300 При правильном ритме рассчитайте число больших квадратов между двумя комплексами QRS и 300 разделите на это число (если маленькие квадраты, то 1500).

Какова ЧСС? (300 / 6) =

Какова ЧСС? (300 / ~ 4) = ~

Какова ЧСС? (300 / 1. 5) =

Правило 300 № больших квадратов Частота

Правило 10 секунд Возьмите 10 секундную запись ЭКГ; Рассчитайте число сердечных комплексов; Полученное число умножьте на 6; Используется для неправильных ритмов!

Расчёт ЧСС