Суммарное уравнение окисления масляной кислоты. Бета-окисление

Гидролиз триглицеридов осуществляет панкреатическая липаза. Ее оптимум рН=8, она гидролизует ТГ преимущественно в положениях 1 и 3, с образованием 2 свободных жирных кислот и 2-моноацилглицерола (2-МГ). 2-МГ является хорошим эмульгатором. 28% 2-МГ под действием изомеразы превращается в 1-МГ. Большая часть 1-МГ гидролизуется панкреатической липазой до глицерина и жирной кислоты.В поджелудочной железе панкреатическая липаза синтезируется вместе с белком колипазой. Колипаза образуется в неактивном виде и в кишечнике активируется трипсином путем частичного протеолиза. Колипаза своим гидрофобным доменом связывается с поверхностью липидной капли, а гидрофильным способствует максимальному приближению активного центра панкреатической липазы к ТГ, что ускоряет их гидролиз.

Бурая жировая ткань

Количество

Мало у взрослого человека, много у новорожденного

Локализация

В чистом виде: около почек и щитовидной железы.

Смешанная жировая ткань: между лопатками, на грудной клетке и плечах.

Кровоснабжение

Очень хорошее

Строение адипоцитов

В цитоплазме много мелких капелек жира, ядро и органеллы расположены в центре клетки, имеется много митохондрий и цитохромов.

термогенез

Окисление происходит в матриксе митохондрий. Сначала жирная кислота активируется: 1 .В цитоплазме каждой кислота активируется с использованием КоА-8Н и энергии АТФ. 2. Активная жирная кислота- ацил-КоА - из цитозоля транспортируется в матрикс митохондрий (МХ). КоА-8Н остается в цитозоле, а остаток жирной кислоты - ацил- соединяется с карнитином (от лат.- сагшз- мясо) - карнитин выделен из мышечной ткани) с образованием ацил-карнитина, который поступает в межмембранное пространство МХ. Их межмембранного пространства митохондрий комплекс ацил-карнитин переносится в матрикс МХ. При этом карнитин остается в межмембранном пространстве. В матриксе ацил соединяется с КоА-8Н. 3. Окисление. В матриксе МХ образуется активная жирная кислота, которая в дальнейшем подвергается реакциям окисления до конечных продуктов. При бета- окислении окисляется группа-СН2- в бета- положении жирной кислоты до группы-С-. При этом на двух стадиях происходит дегидрирование: при участии ацилдегидрогеназы (флавиновый фермент, водород переносится на убихинон) и бета-оксиацилдегидрогеназа (акцептор водорода НАД+). Затем бета -кетоацил-КоА при действии фермента тиолазы, распадается на ацетил КоА и ацил-КоА, укороченный на 2 углеродных атома по сравнению с исходным. Этот ацил-КоА вновь подвергается бета-окислению. Многократное повторение этого процесса приводит к полному распаду жирной кислоты до ацил-КоА. Окисление жирных кислот. Включает 2 этапа: 1.последовательное отщепление от С-конца кислоты двухуглеродного фрагмента в виде ацетил-КоА; 2.окисление ацетил-КоА в цикле Кребса до СО2 и Н2О. Энергетическая ценность окисления жирных кислот. Стеариновая кислота(С 18) проходит 8 циклов окисления с образованием 9 ацетил-КоА.В каждом цикле окисления образуется 8*5 АТФ=40 АТФ, ацетил-КоА дает 9*12 АТФ=108 АТФ. Итого:148 АТФ, но 1 АТФ расходуется на активацию жирной кислоты в цитозоле, поэтому итог 147 АТФ

    β - окисление высших жирных кислот (ВЖК). Энергетическая эффективность процесса (для предельных и непредельных жирных кислот). Влияние тканевого окисления ВЖК на утилизацию глюкозы тканями.

β-окисление - специфический путь катаболизма ЖК с неразветвленной средней и короткой углеводородной цепью. β-окисление протекает в матриксе митохондрий, при котором от С конца ЖК последовательно отделяется по 2 атома С в виде Ацетил-КоА. β-окисление ЖК происходит только в аэробных условиях и является источником большого количества энергии.β-окисление ЖК активно протекает в красных скелетных мышцах, сердечной мышце, почках и печени. ЖК не служат источником энергии для нервных тканей, так как ЖК не проходят через гематоэнцефалический барьер, как и другие гидрофобные вещества.β-окисление ЖК увеличивается в постабсорбтивный период, при голодании и физической работе. При этом концентрация ЖК в крови увеличивается в результате мобилизации ЖК из жировых ткани.

Активация ЖК

Активация ЖК происходит в результате образования макроэргической связи между ЖК и HSКоА с образованием Ацил-КоА. Реакцию катализирует фермент Ацил-КоА синтетаза:

RCOOH + HSKoA + АТФ → RCO~SКоА + АМФ+ PPн

Пирофосфат гидролизуется ферментом пирофосфатазой: Н 4 Р 2 О 7 + Н 2 О → 2Н 3 РО 4

Ацил-КоА синтетазы находятся как в цитозоле (на внешней мембране митохондрий), так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к ЖК с различной длиной углеводородной цепи.

Транспорт ЖК . Транспорт ЖК в матрикс митохондрий зависит от длины углеродной цепи.

ЖК с короткой и средней длиной цепи (от 4 до 12 атомов С) могут проникать в матрикс митохондрий путём диффузии. Активация этих ЖК происходит ацил-КоА синтетазами в матриксе митохондрий.ЖК с длинной цепью, сначала активируются в цитозоле (ацил-КоА синтетазами на внешней мембране митохондрий), а затем переносятся в матрикс митохондрий специальной транспортной системой с помощью карнитина. Карнитин поступает с пищей или синтезируется из лизина и метионина с участием витамина С.

В наружной мембране митохондрий фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I) катализирует перенос ацила с КоА на карнитин с образованием ацилкарнитина;

Ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью карнитинацилкарнитинтранслоказы на внутреннюю поверхность внутренней мембраны митохондрий;

Фермент карнитинацилтрансфераза II катализирует перенос ацила с карнитина на внутримитохондриальный HSКоА с образованием Ацил-КоА;

Свободный карнитин возвращается на цитозольную сторону внутренней мембраны митохондрий той же транслоказой.

Реакции β-окисление ЖК

1.​ β-окисление начинается с дегидрирования ацил-КоА ФАД-зависимой Ацил-КоА дегидрогеназой с образованием двойной связи (транс) между α- и β-атомами С в Еноил-КоА. Восстановленный ФАДН 2 окисляясь в ЦПЭ, обеспечивает синтез 2 молекул АТФ;

2.​ Еноил-КоА гидратаза присоединяет воду к двойной связи Еноил-КоА с образованием β-оксиацил-КоА;

3.​ β-оксиацил-КоА окисляется НАД зависимой дегидрогеназой до β-кетоацил-КоА. Восстановленный НАДН 2 , окисляясь в ЦПЭ, обеспечивает синтез 3 молекул АТФ;

4.​ Тиолаза с участием HКоА отщепляет от β-кетоацил-КоА Ацетил-КоА. В результате 4 реакций образуется Ацил-КоА, который короче предыдущего Ацил-КоА на 2 углерода. Образованный Ацетил-КоА окисляясь в ЦТК, обеспечивает синтез в ЦПЭ 12 молекул АТФ.

Затем Ацил-КоА снова вступает в реакции β-окисления. Циклы продолжаются до тех пор, пока Ацил-КоА не превратится в Ацетил-КоА с 2 атома С (если ЖК имела четное количество атомов С) или Бутирил-КоА с 3 атомами С (если ЖК имела нечетное количество атомов С).

Энергетический баланс окисления насыщенных жк с четным количеством атомов углерода

При активации ЖК затрачивается 2 макроэргической связи АТФ.

При окислении насыщенной ЖК с четным количеством атомов С образуются только ФАДН 2 , НАДН 2 и Ацетил-КоА.

За 1 цикл β-окисления образуется 1 ФАДН 2 , 1 НАДН 2 и 1 Ацетил-КоА, которые при окислении дают 2+3+12=17 АТФ.

Количество циклов при β-окислении ЖК = количество атомов С в (ЖК/2)-1. Пальмитиновая кислота при β-окислении проходит (16/2)-1 = 7 циклов. За 7 циклов образуется 17*7=119 АТФ.

Последний цикл β-окисления сопровождается образованием дополнительной Ацетил-КоА, которая при окислении дает 12 АТФ.

Таким образом, при окислении пальмитиновой кислоты образуется: -2+119+12=129 АТФ.

Суммарное уравнение β-окисления, пальмитоил-КоА:

С 15 Н 31 СО-КоА + 7 ФАД + 7 НАД + + 7 HSKoA → 8 CH 3 -CO-KoA + 7 ФАДН 2 + 7 НАДН 2

Энергетический баланс окисления насыщенных жк с нечетным количеством атомов углерода

β-окисление насыщенной ЖК с нечетным количеством атомов С в начале идет также как и с четным. На активацию затрачивается 2 макроэргической связи АТФ.

ЖК с 17 атомами С проходит при β-окислении 17/2-1 = 7 циклов. За 1 цикл из 1 ФАДН 2 , 1 НАДН 2 и 1 Ацетил-КоА образуется 2+3+12=17 АТФ. За 7 циклов образуется 17*7=119 АТФ.

Последний цикл β-окисления сопровождается образованием не Ацетил-КоА, а Пропионил-КоА с 3 атомами С.

Пропионил-КоА карбоксилируется с затратой 1 АТФ пропионил-КоА-карбоксилазой с образованием D-метилмалонил-КоА, который после изомеризации, превращается сначала в L-метилмалонил-КоА, а затем в Сукцинил-КоА. Сукцинил-КоА включается в ЦТК и при окислении дает ЩУК и 6 АТФ. ЩУК может поступать в глюконеогенез для синтеза глюкозы. Дефицит витамина В 12 приводит к накоплению в крови и выделению с мочой метилмалонила. При окислении ЖК образуется: -2+119-1+6=122 АТФ.

Суммарное уравнение β-окисления ЖК с 17 атомами С:

С 16 Н 33 СО-КоА + 7 ФАД + 7 НАД + + 7 HSKoA → 7 CH 3 -CO-KoA + 1 C 2 H 5 -CO-KoA + 7 ФАДН 2 + 7 НАДН 2

Энергетический баланс окисления ненасыщенных жк с четным количеством атомов углерода

Около половины ЖК в организме человека ненасыщенные. β-окисление этих кислот идёт обычным путём до тех пор, пока двойная связь не окажется между 3 и 4 атомами С. Затем фермент еноил-КоА изомераза перемещает двойную связь из положения 3-4 в положение 2-3 и изменяет цис-конформацию двойной связи на транс-, которая необходима для β-окисления. В этом цикле β-окисления, так как двойная связь в ЖК уже имеется, первая реакция дегидрирования не происходит и ФАДН 2 не образуется. Далее циклы β-окисления продолжаются, не отличаясь от обычного пути.

Энергетический баланс рассчитывается также как и для насыщенных ЖК с четным количеством атомов С, только на каждую двойную связь недосчитывают 1 ФАДН 2 и соответственно 2 АТФ.

Суммарное уравнение β-окисления пальмитолеил-КоА:

С 15 Н 29 СО-КоА + 6 ФАД + 7 НАД + + 7 HSKoA → 8 CH 3 -CO-KoA + 6 ФАДН 2 + 7 НАДН 2

Энергетический баланс β-окисления пальмитолеиновой кислоты: -2+8*12+6*2+7*3=127 АТФ.

Голод, физическая нагрузка → глюкагон, адреналин → липолиз ТГ в адипоцитах → ЖК в крови → β-окисление в аэробных условиях в мышцах, печени → 1) АТФ; 2) АТФ, НАДH 2 , Ацетил-КоА, (ЖК) → ↓ гликолиз → экономию глюкозы, необходимую для нервной ткани, эритроцитов и т.д.

Пища → инсулин → гликолиз → Ацетил-КоА → синтез малонил-КоА и ЖК

Синтез малонил-КоА → малонил-КоА → ↓ карнитинацилтрансферазы I в печени → ↓ транспорт ЖК в матрикс митохондрий → ↓ ЖК в матриксе → ↓ β-окисление ЖК

    Биосинтез ВЖК. Строение пальмитатсинтазного комплекса. Химизм и регуляция процесса.

Синтез пальмитиновой кислоты

Образование малонил-КоА

Первая реакция синтеза ЖК - превращение ацетил-КоА в малонил-КоА. Это регуляторная реакция в синтезе ЖК катализируется ацетил-КоА-карбоксилазой.

Ацетил-КоА-карбоксилаза состоит из нескольких субъединиц, содержащих биотин.

Реакция протекает в 2 стадии:

1)​ СО 2 + биотин + АТФ → биотин-СООН + АДФ + Фн

2)​ ацетил-КоА + биотин-СООН → малонил-КоА + биотин

Ацетил-КоА-карбоксилаза регулируется несколькими способами:

3)​ Ассоциация/диссоциация комплексов субъединиц фермента. В неактивной форме ацетил-КоА-карбоксилаза представляет собой комплексы, состоящих из 4 субъединиц. Цитрат стимулирует объединение комплексов, в результате чего активность фермента увеличивается. Пальмитоил-КоА вызывает диссоциацию комплексов и снижение активности фермента;

2)​ Фосфорилирование/дефосфорилирование ацетил-КоА-карбоксилазы. Глюкагон или адреналин через аденилатциклазную систему стимулируют фосфорилирование субъединиц ацетил-КоА карбоксилазы, что приводит к ее инактивации. Инсулин активирует фосфопротеинфосфатазу, ацетил-КоА карбоксилаза дефосфорилируется. Затем под действием цитрата происходит полимеризация протомеров фермента, и он становится активным;

3)​ Длительное потребление богатой углеводами и бедной липидами пищи приводит к увеличению секреции инсулина, который индукцирует синтез ацетил-КоА-карбоксилазы, пальмитатсинтазы, цитратлиазы, изоцитратдегидрогеназы и ускоряет синтез ЖК и ТГ. Голодание или богатая жирами пища приводит к снижению синтеза ферментов и, соответственно, ЖК и ТГ.

Образование пальмитиновой кислоты

После образования малонил-КоА синтез пальмитиновой кислоты продолжается на мультиферментном комплексе - синтазе жирных кислот (пальмитоилсинтетазе) .

Пальмитоилсинтаза - это димер, состоящий из двух идентичных полипептидных цепей. Каждая цепь имеет 7 активных центров и ацилпереносящий белок (АПБ). В каждой цепи есть 2 SH-гpyппы: одна SH-гpyппa принадлежит цистеину, другая - остатку фосфопантетеиновой кислоты. SH-группа цистеина одного мономера расположена рядом с SH-группой 4-фосфопантетеината другого протомера. Таким образом, протомеры фермента расположены «голова к хвосту». Хотя каждый мономер содержит все каталитические центры, функционально активен комплекс из 2 протомеров. Поэтому реально синтезируются одновременно 2 ЖК.

Этот комплекс последовательно удлиняет радикал ЖК на 2 атома С, донором которых служит малонил-КоА.

Реакции синтеза пальмитиновой кислоты

1)​ Перенос ацетила с КоА на SH-группу цистеина ацетилтрансацилазным центром;

2)​ Перенос малонила с КоА на SH-группу АПБ малонилтрансацилазным центром;

3)​ Кетоацилсинтазным центром ацетильная группа конденсируется с малонильной с образованием кетоацила и выделением СО 2 .

4)​ Кетоацил восстанавливается кетоацил-редуктазой до оксиацила;

5)​ Оксиацил дегидратируется гидратазой в еноил;

6)​ Еноил восстанавливается еноилредуктазой до ацила.

В результате первого цикла реакций образуется ацил с 4 атомами С (бутирил). Далее бутирил переносится из позиции 2 в позицию 1 (где находился ацетил в начале первого цикла реакций). Затем бутирил подвергается тем же превращениям и удлиняется на 2 атома С (от малонил-КоА).

Аналогичные циклы реакций повторяются до тех пор, пока не образуется радикал пальмитиновой кислоты, который под действием тиоэстеразного центра гидролитически отделяется от ферментного комплекса, превращаясь в свободную пальмитиновую кислоту.

Суммарное уравнение синтеза пальмитиновой кислоты из ацетил-КоА и малонил-КоА имеет следующий вид:

CH 3 -CO-SKoA + 7 HOOC-CH 2 -CO-SKoA + 14 НАДФН 2 → C 15 H 31 COOH + 7 СО 2 + 6

Н 2 О + 8 HSKoA + 14 НАДФ +

Синтез ЖК из пальмитиновой и других ЖК

Удлинение ЖК в элонгазных реакциях

Удлинение ЖК называется элонгацией. ЖК могут синтезироваться в результате удлинение в ЭПР пальмитиновой кислоты и других более длинных ЖК. Для каждой длины ЖК существуют свои элонгазы. Последовательность реакций аналогична синтезу пальмитиновой кислоты, однако в данном случае синтез идет не на АПБ, а на КоА. Основной продукт элонгации в печени - стеариновая кислота. В нервных тканях образуются ЖК с длинной цепью (С=20-24), необходимые для синтеза сфинголипидов.

Синтез ненасыщенных ЖК в десатуразных реакциях

Включение двойных связей в радикалы ЖК называется десатурацией. Десатурация ЖК происходит в ЭПР в монооксигеназных реакциях, катализируемых десатуразами.

Стеароил-КоА-десатураза – интегральный фермент, содержит негеминовое железо. Катализирует образование 1 двойной связи между 9 и 10 атомами углерода в ЖК. Стеароил-КоА-десатураза переносит электроны с цитохрома b 5 на 1 атом кислород, при участии протонов этот кислород образует воду. Второй атом кислорода включается стеариновую кислоту с образованием её оксиацила, который дегидрируется до олеиновой кислоты.

Десатуразы ЖК, имеющиеся в организме человека, не могут образовывать двойные связи в ЖК дистальнее девятого атома углерода, поэтому ЖК семейства ω-3 и ω-6 не синтезируются в организме, являются незаменимыми и обязательно должны поступать с пищей, так как выполняют важные регуляторные функции. Основные ЖК, образующиеся в организме человека в результате десатурации - пальмитоолеиновая и олеиновая.

Синтез α-гидрокси ЖК

В нервной ткани происходит синтез и других ЖК - α-гидроксикислот. Оксидазы со смешанными функциями гидроксилируют С 22 и С 24 кислоты с образованием цереброновой кислоты обнаруживаемой только в липидах мозга.

Процесс окисления жирных кислот складывается из следующих основных этапов.

Активация жирных кислот. Свободная жирная кислота независимо от длины углеводородной цепи является метаболически инертной и не может подвергаться никаким биохимическим превращениям, в том числе окислению, пока не будет активирована. Активация жирной кислоты протекает на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима A (HS-KoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-КоА-синтетазой:

В результате реакции образуется ацил-КоА, являющийся активной формой жирной кислоты.

Первая стадия дегидрирования. Ацил-КоА в митохондриях прежде всего подвергается ферментативному дегидрированию, при этом ацил-КоА теряет 2 атома водорода в α- и β-положениях, превращаясь в КоА-эфир ненасыщенной кислоты.

Стадия гидратации. Ненасыщенный ацил-КоА (еноил-КоА) при участии фермента еноил-КоА-гидратазы присоединяет молекулу воды. В результате образуется β-оксиацил-КоА (или 3-гидроксиацил-КоА):

Вторая стадия дегидрирования. Образовавшийся β-оксиацил-КоА (3-гидроксиацил-КоА) затем дегидрируется. Эту реакциюкатализируют НАД + -зависимые дегидрогеназы:

Тиолазная реакция. представляет собой расщепление 3-оксоацил-КоА с помощью тиоловой группы второй молекулы КоА. В результате образуется укороченный на два углеродных атома ацил-КоА и двууглеродный фрагмент в виде ацетил-КоА. Данная реакция катализируется ацетил-КоА-ацилтрансферазой (β-ке-тотиолазой):

Образовавшийся ацетил-КоА подвергается окислению в цикле трикар-боновых кислот, а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-КоА.

Баланс энергии. При каждом цикле β-окисления образуются одна молекула ФАДН 2 и одна молекула НАДН. Последние в процессеокисления в дыхательной цепи и сопряженного с ним фосфорилирования дают: ФАДН 2 – 2 молекулы АТФ и НАДН – 3 молекулы АТФ, т.е. в сумме за один цикл образуется 5 молекул АТФ. При окислении пальмитиновой кислоты образуется 5 х 7 = 35 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА, каждая из которых, «сгорая» в цикле трикарбоновых кислот, дает 12 молекул АТФ, а 8 молекул ацетил-КоА дадут 12 х 8 = 96 молекул АТФ.

Таким образом, всего при полном β-окислении пальмитиновой кислоты образуется 35 + 96 = 131 молекула АТФ. С учетом одноймолекулы АТФ, потраченной в самом начале на образование активной формы пальмитиновой кислоты (пальмитоил-КоА), общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131 – 1 = 130 молекул АТФ.

Углеводы составляют основную часть пищевого рациона человека и обеспечивают значительную часть энергетических потребностей организ­ма. При сбалансированном питании суточное количество углеводов в среднем в 4 раза превышает количество белков и жиров.

Роль углеводов в питании:

1. Углеводы выполняют энергетическую функцию. При окислении 1 г углеводов освобождается 4.1 ккал энергии. Глюкоза, до которой рас­щепляется основная часть углеводов, является основным энергетиче­ским субстратом в организме.

2. Мышечная деятельность сопровождается значительным потреблением глюкозы. При физической работе углеводы расходуются в первую очередь, и только при истощении их запасов (гликоген) в обмен включаются жиры.

3. Углеводы необходимы для нормальной функции центральной нервной системы, клетки которой весьма чувствительны к недостатку глюкозы в крови.

4. Углеводы выполняют структурную функцию. Простые углеводы слу­жат источником образования гликопротеидов, которые составляют ос­нову соединительной ткани.

5. Углеводы принимают участие в обмене белков и жиров. Из углеводов могут образовываться жиры.

6. Углеводы растительного происхождения (целлюлоза, пектиновые ве­щества) стимулируют моторику кишечника, способствуют выведению накаливающихся в нем токсических продуктов.

Источниками углеводов служат преимущественно растительные продукты, особенно мучные изделия, крупы, сладости. В большинстве продуктов углеводы представлены в виде крахмала и в меньшей степени в виде дисахаридов (молоко, сахарная свекла, фрукты и ягоды). Для лучше­го усвоения углеводов необходимо, чтобы большая их часть поступала в организм в виде крахмала.

Крахмал постепенно расщепляется в желудочно-кишечном тракте до глюкозы, которая поступает в кровь небольшими порциями, что улучшает ее утилизацию и поддерживает постоянный уровень сахара в крови. При введении сразу больших количеств Сахаров концентрация глюкозы в кро­ви резко возрастает, и она начинается выделяться с мочой. Наиболее благоприятными считаются такие условия, когда 64% углеводов потреб­ляются в виде крахмала, а 36% - в виде Сахаров.

Норма потребления углеводов зависит от интенсивности труда. При физической работе углеводы требуются в большем количестве. В среднем на 1 кг массы тела требуется 4-6-8 г углеводов в сутки, т.е. примерно в 4 раза больше, чем белков и жиров.

Избыточное потребление углеводов может приводить к тучности и излишней перегрузке ЖКТ, т.к. растительная пища, богатая углеводами, обычно более объемистая, вызывает чувство тяжести, ухудшает общую усвояемость продуктов питания.

Недостаток углеводов в пище также нежелателен из-за опасности развития гипогликемических состояний. Углеводная недостаточность, как правило, сопровождается общей слабостью, сонливостью, снижением памяти, умственной и физической работоспособности, головной болью, снижением усвояемости белков, витаминов, ацидозом и др. В связи с этим количество углеводов в суточном рационе не должно быть меньше 300 г

К группе углеводов тесно примыкают встречающиеся в большинстве растительных продуктов плохо усвояемые организмом человека вещества - пектиновые вещества (неусвояемые углеводы) и клетчатка.

Пектиновые вещества - это растительные желирующие вещества, обладающие высокой сорбционной (поглощающей) способностью. Они благоприятно действуют при лечении заболеваний органов пищеварения, ожогов и язв, а также обладают способностью обезвреживать некоторые ядовитые вещества (особенно активно выводят из организма соли тяжёлых металлов, например соединения свинца).

Много пектиновых веществ в апельсинах, яблоках, чёрной смородине и других фруктах и ягодах.

Клетчатка (другие названия - грубые растительные, или неперевариемые, или пищевые, или диетические, волокна) - это полисахарид, входящий в состав массивных оболочек клеток растительной пищи. Имеет волокнистую, довольно грубую структуру.

Обычные источники пищевых волокон - отруби, хлеб, крупы (особенно гречневая и овсяная). Большие их количества содержатся во многих овощах, фруктах, листьях и стеблях растений; особенно много - в оболочках зерен и в кожуре плодов. При консервировании овощей и плодов пищевые волокна полностью сохраняются (кроме соков без мякоти).

Не обладая высокой калорийностью, большинство овощей и фруктов, тем не менее, благодаря высокому содержанию неусвояемых углеводов, способствуют быстрому и довольно стойкому чувству насыщения: поскольку пищевые волокна обладают способностью впитывать много жидкости, они набухают в желудке, заполняют часть его объема - и в результате насыщение происходит быстрее. Сами же волокна не несут в организм ни единой калории.

Ценность волокон и в том, что, являясь довольно объёмистой составляющей ежедневного питания, человеческим организмом они не перевариваются. Наличие большого количества клетчатки несколько снижает общую усвояемость пищи. Однако и полное ее отсутствие вредно отзывается на работе желудочно-кишечного тракта.

Клетчатка вызывает правильную перистальтику (движение стенок) кишечника и тем самым способствует передвижению пищи по пищеварительному каналу и выведению из организма неусвоенных пищевых веществ.

Необходимое количество клетчатки в пище обеспечивается правильным сочетанием животных и растительных продуктов в суточном рационе.

После расщепления клетчатка, как и другие полисахариды, превращается в сахара. Однако в пищеварительном тракте человека отсутствуют ферменты, которые могли бы осуществить подобное расщепление. Только незначительная часть ее может подвергнугься перевариванию под влиянием находящихся в кишечнике микроорганизмов, основная же масса без изменений удаляется из организма. Благодаря этой внешней бесполезности клетчатка и пектины получили название балластных веществ.

Балластные вещества выполняют важную функцию и в процессе пищеварения: волокна ферментируются кишечными бактериями и буквально помогают перетирать пищу; раздражая нервные окончания кишечных стенок, они усиливают перистальтику. Если пища бедна балластными веществами, нарушается двигательная активность кишечника, поэтому, чтобы избежать этих нарушении рекомендуется использовать грубую пищу, богатую клетчаткой.

Помимо этого пищевые волокна обладают способностью стимулировать обмен веществ, поскольку волокна препятствуют всасыванию токсинов, поступающих с пищей или образующихся в процессе её переработки, и служат своего рода метелкой: продвигаясь по пищеварительному тракту, они прихватывают с собой все, что налипло на стенки, и выводят из организма.

Ещё одно достоинство пищевых волокон - они имеют свойство снижать уровень эндогенного холестерина (это такой холестерин, который не попадает к нам с пищей, а вырабатывается самим организмом в печени из желчных кислот, поступающих в печень из кишечника).

Гемицеллюлоза: как и клетчатка, или целлюлоза, входит в состав клеточных оболочек зерновых продуктов, и небольших количествах содержится в мякоти фруктов и овощей. Она способна удерживать воду и связывать металлы.

    Окисление жирных кислот (бета окисление). Роль HS Ko в этом процессе. Энергия полного окисления стеориновой кислоты до CO 2 c H 2 O . Рассчитать количество образуемых при окислении молекул АТФ.

Активация ЖК происходит в цитоплазме, а бета-окисление - в митохондриях.

Ацил-КоА не может проходить через мембрану митохондрий. Поэтому имеется специальный механизм транспорта ЖК из цитоплазмы в митохондрию при участии вещества "карнитин". Во внутренней мембране митохондрий есть специальный транспортный белок, обеспечивающий перенос. Благодаря этому ацилкарнитин легко проникает через мембрану митохондрий.

По строению цитоплазматическая и митохондриальная карнитинацилтрасферазы различны, отличаются они друг от друга и кинетическими характеристиками. Vmax цитоплазматической ацилкарнитинтрансферазы ниже, чем Vmax митохондриального фермента, а также ниже Vmax ферментов -окисления. Поэтому цитоплазматическая ацилкарнитинтрансфераза является ключевым ферментом распада жирных кислот.

Если жирная кислота попадает в митохондрию, то она обязательно подвергнется катаболизму до ацетил-КоА.

Наиболее компактным «топливом», удовлетворяющим энергетические потребности организма, являются жирные кислоты, что определяется особенностями их химической структуры. В расчете на 1 моль полное окисление жирных кислот высвобождает в несколько раз больше пригодной для использования химической энергии, чем окисление углеводов; например, при окислении 1 моль пальмитиновой кислоты образуется 130 моль АТФ, тогда как при окислении 1 моль глюкозы образуется 38 моль АТФ. В расчете на единицу веса выход энергии различается также более чем в два раза (9 ккал на 1 г жиров против 4 ккал на 1 г углеводов или белков). В основе этого высокого выхода энергии лежит та же причина, которая делает бензин, нефть и другие нефтяные продукты таким эффективным топливом для выработки тепловой и механической энергии, а именно высокая степень восстановленности углерода в длинных алкильных цепях. Основная часть молекулы жирной кислоты состоит из повторяющихся звеньев (СН2)n, т. е. структуры, максимально обогащенной водородом. Как мы видели из предыдущего изложения, энергия, запасаемая в ходе биологических окислительных процессов, образуется в основном в связи с контролируемым переносом электронов от атомов водорода дыхательной цепи, сопряженным с фосфорилирова-нием АДФ до АТФ. Поскольку жирные кислоты построены в основном из углерода и водорода и, таким образом, содержат в своем составе значительно меньше атомов кислорода, чем углеводы, окисление жирных кислот сопровождается поглощением пропорционально большего количества кислорода и, следовательно, образованием большего количества АТФ при окислительном фосфорилировании.

Установлено, что окисление жирных кислот наиболее интенсивно протекает в печени, почках, скелетных и сердечных мышцах, в жировой ткани. В мозговой ткани скорость окисления жирных кислот весьма незначительна, т.к. основным источником энергии в мозговой ткани служит глюкоза.

β-Окисление - специфический путь катаболизма жирных кислот, при котором от карбоксильного конца жирной кислоты последовательно отделяется по 2 атома углерода в виде ацетил-КоА. Метаболический путь - β-окисление - назван так потому, что реакции окисления жирной кислоты происходят у β-углеродного атома. Реакции β-окисления и последующего окисления ацетил-КоА в ЦТК служат одним из основных источников энергии для синтеза АТФ по механизму окислительного фосфорилирования. β-Окисление жирных кислот происходит только в аэробных условиях.

Активация жирных кислот

Перед тем, как вступить в различные реакции, жирные кислоты должны быть активированы, т.е. связаны макроэргической связью с коферментом А:

RCOOH + HSKoA + АТФ → RCO ~ КоА + АМФ + PPi.

Реакцию катализирует фермент ацил-КоА син-тетаза. Выделившийся в ходе реакции пирофосфат гидролизуется ферментом пирофосфатазой: Н 4 Р 2 О 7 + Н 2 О → 2 Н 3 РО 4 .

Выделение энергии при гидролизе макроэргической связи пирофосфата смещает равновесие реакции вправо и обеспечивает полноту протекания реакции активации.

Ацил-КоА синтетазы находятся как в цитозоле, так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к жирным кислотам с различной длиной углеводородной цепи. Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут проникать в матрикс митохондрий путём диффузии. Активация этих жирных кислот происходит в матриксе митохондрий. Жирные кислоты с длинной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активируются ацил-КоА синтетазами, расположенными на внешней мембране митохондрий.

Распад активированных жирных кислот происходит в соответствии с гипотезой b - окисления Ф. Кноопа, предложеннойой в 1904 г. b - окисление протекает внутри митохондрий

β-Окисление жирных кислот - специфический путь катаболизма жирных кислот, протекающий в матриксе митохондрий только в аэробных условиях и заканчивающийся образованием ацетил-КоА. Водород из реакций β-окисления поступает в ЦПЭ, а ацетил-КоА окисляется в цитратном цикле, также поставляющем водород для ЦПЭ. Поэтому β-окисление жирных кислот - важнейший метаболический путь, обеспечивающий синтез АТФ в дыхательной цепи.

β-Окисление начинается с дегидрирования ацил-КоА FAD-зависимой ацил-КоА дегидрогеназой с образованием двойной связи между α- и β-атомами углерода в продукте реакции - еноил-КоА. Восстановленный в этой реакции кофермент FADH 2 передаёт атомы водорода в ЦПЭ на кофермент Q. В результате синтезируются 2 молекулы АТФ (рис. 8-27). В следующей реакции р-окисления по месту двойной связи присоединяется молекула воды таким образом, что ОН-группа находится у β-углеродного атома ацила, образуя β-гидроксиацил-КоА. Затем β-гидроксиацил-КоА окисляется NАD + -зависимой дегидрогеназой. Восстановленный NADH, окисляясь в ЦПЭ, обеспечивает энергией синтез 3 молекул АТФ. Образовавшийся β-кетоацил-КоА подвергается тиолитическому расщеплению ферментом тиолазой, так как по месту разрыва связи С-С через атом серы присоединяется молекула кофермента А. В результате этой последовательности из 4 реакций от ацил-КоА отделяется двухуглеродный остаток - ацетил-КоА. Жирная кислота, укороченная на 2 атома углерода, опять проходит реакции дегидрирования, гидратации, дегидрирования, отщепления ацетил-КоА. Эту последовательность реакций обычно называют "циклом β-окисления", имея в виду, что одни и те же реакции повторяются с радикалом жирной кислоты до тех пор, пока вся кислота не превратится в ацетильные остатки.

β-Окисление жирных кислот.

Процесс b-окисления является циклическим. За каждый оборот цикла от жирной кислоты отщепляется 2 углеродных атома в виде ацетильного остатка.

После этого укороченный на 2 углеродных атома ацил-КоА снова подвергается окислению (вступает в новый цикл реакций b-окисления). Образующийся Ацетил-КоА может дальше вступить в цикл трикарбоновых кислот.Нужно уметь рассчитывать энергетический выход при распаде жирных кислот. Представленная формула верна для любой насыщенной жирной кислоты, содержащей n углеродных атомов.При распаде ненасыщенных жирных кислот образуется меньше АТФ. Каждая двойная связь в жирной кислоте - это потеря 2-х молекул АТФ. b-окисление наиболее интенсивно протекает в мышечной ткани, почках, печени. В результате b-окисления ЖК образуется Ацетил-КоА. Скорость окисления определяется скоростью процессов липолиза. Ускорение липолиза характерно для состояния углеводного голодания и интенсивной мышечной работы. Ускорение b-окисления наблюдается во многих тканях, в том числе и в печени. В печени образуется больше Ацетил-КоА, чем ей требуется. Печень - "орган-альтруист" и поэтому печень отправляет глюкозу в другие ткани.

Печень стремится направить в другие ткани и свой собственный Ацетил-КоА, но не может, так как для Ацетил-КоА клеточные мембраны непроницаемы. Поэтому в печени из Ацетил-КоА синтезируются специальные вещества, которые называются "кетоновые тела". Кетоновые тела - это особая транспортная форма ацетил-КоА.

Молекула жирной кислоты расщепляется в митохондрии путем постепенного отщепления двууглеродных фрагментов в виде ацетилкоэнзима А (ацетил-КоА).

С17Н35СООН + 26 О2 = 18 СО2 + 18 Н2О.

при окислении стеариновой кислоты клетка получит 146 молекул АТФ.

«Свободными жирными кислотами» (СЖК) называют жирные кислоты, находящиеся в неэстерифицированной форме; иногда их называют неэстерифицированными жирными кислотами (НЖК). В плазме крови длинноцепочечные СЖК образуют комплекс с альбумином, а в клетке - с белком, связывающим жирные кислоты, который называют Z-белком; фактически они никогда не бывают свободными. Короткоцепочечные жирные кислоты лучше растворяются в воде и находятся либо в виде неионизированной кислоты, либо в виде аниона жирной кислоты.

Активация жирных кислот

Так же как и в случае метаболизма глюкозы, жирная кислота прежде всего должна превратиться в активное производное в результате реакции, протекающей с участием АТР, и только после этого она способна взаимодействовать с ферментами, катализирующими дальнейшее превращение. В процессе окисления жирных кислот эта стадия является единственной, требующей энергии в виде АТР. В присутствии АТР и кофермента А фермент ацил-СоА-синтетаза (тиокиназа) катализирует превращение свободной жирной кислоты в «активную жирную кислоту» или ацил-СоА, которое осуществляется за счет расщепления одной богатой энергией фосфатной связи.

Присутствие неорганической пирофосфатазы, которая расщепляет богатую энергией фосфатную связь в пирофосфате, обеспечивает полноту протекания процесса активации. Таким образом, для активации одной молекулы жирной кислоты в итоге расходуются две богатые энергией фосфатные связи.

Ацил-СоА-синтетазы находятся в эндоплазмати-ческом ретикулуме, а также внутри митохондрий и на их наружной мембране. В литературе описан ряд ацил-СоА-синтетаз; они специфичны к жирным кислотам с определенной длиной цепи.

Роль карнитина в окислении жирных кислот

Карнитин является широко распространенным соединением,

особенно много его в мышцах. Он образуется из лизина и метионина в печени и почках. Активация низших жирных кислот и их окисление могут происходить в митохондриях независимо от карнитина, однако длинноцепочечные ацил-СоА-производные (или СЖК) не могут проникать в митохондрии и окисляться, если предварительно не образуют ацилкарнитин-производных. На наружной стороне внутренней мембраны митохондрий имеется фермент карнитин-пальмитоилтрансфераза I, который переносит длинноцепочечные ацильные группы на карнитин с образованием ацилкарнитина; последний способен проникать в митохондрии, где находятся ферменты, катализирующие процесс (-окисления.

Возможный механизм, объясняющий участие карнитина в окислении жирных кислот в митохондриях, приведен на рис. 23.1. Кроме того, в митохондриях находится другой фермент - карнитин-ацетилтрансфераза, который катализирует перенос короткоцепочечных ацильных групп между СоА и карнитином. Функция этого фермента пока не ясна.

Рис. 23.1. Роль карнитина в переносе длинноцепочечных жирных кислот через внутреннюю мембрану митохондрий. Длиннопепочечный ацил-СоА не способен проходить через внутреннюю мембрану митохондрий, в то время как такой способностью обладает ацилкарнитин, образую цийся при Действии карнитин-пальмитонлтрансферазы I. Карнитин-ацилкарнитин-фанслоказа является транспортной системой. осуществляющей перенос молекулы ацилкарнитина через внутреннюю мембрану митохондрии, сопряженный с выходом мопскулы свободного карнитина. Затем при действии карнитин-пальмитоилтрансферазы 11, локализованной на внутренней поверхности внутренней мембраны митохондрии, ацилкарнитин взаимодействует с СоА. В результате в митохондриальном матриксе вновь образуется ацил-СоА. а карнитин высвобождается.

Возможно,

он облегчает транспорт ацетильных групп через мембрану митохондрий.

b-Окисление жирных кислот

Общее представление дает рис. 23.2. При 13-окислении жирных кислот 2 атома углерода одновременно отщепляются от карбоксильного конца молекулы ацил-СоА. Углеродная цепь разрывается

Рис. 23.2. Схема -окисления жирных кислот.

между атомами углерода в положениях , откуда и возникло название -окисление. Образующиеся двухуглеродные фрагменты представляют собой ацетил-СоА. Так, в случае пальмитоил-СоА образуется 8 молекул ацетил-СоА.

Последовательность реакций

Ряд ферментов, известных под общим названием «оксидазы жирных кислот», находятся в митохондриальном матриксе в непосредственной близости от дыхательной цепи, локализованной во внутренней мембране митохондрий. Эта система катализирует окисление ацил-СоА до ацетил-СоА, которое сопряжено с фосфорилированием ADP до АТР (рис. 23.3).

После проникновения ацильного фрагмента через мембрану митохондрий при участии карнитиновой транспортной системы и переноса ацильной группы от карнитина на происходит отщепление двух атомов водорода от углеродных атомов в положениях катализируемое ацил-СоА-дегидрогеназои. Продуктом этой реакции является . Фермент представляет собой флавопротеин, его простетической группой служит FAD. Окисление последнего в дыхательной цепи митохондрий происходит при участии другого флавопротеина. названного электронпереносящим флавопротеином [см. с. 123). Далее происходит гидратация двойной связи, в результате чего образуется 3-гидроксиацил-СоА. Эта реакция катализируется ферментом А2-еноил-СоА-гидратазой. Затем 3-гидроксиацил-ОоА дегидрируется по 3-му атому углерода с образованием 3-кетоацил-СоА; эта реакция катализируется 3-гидроксиацил-СоА-дегидрогеназой при,участии в качестве кофермента NAD. 3-Кетоацил-СоА расщепляется между вторым и третьим атомами углерода 3-кетотиолазой или ацетил-СоА-ацнлтрансферазой с образованием ацетил-СоА- и ацил-СоА-производного, которое на 2 атома углерода короче исходной молекулы ацил-СоА. Это тиолитическое расщепление требует участия еще одной молекулы Образующийся укороченный ацил-СоА вновь вступает в цикл Р-окисления, начиная с реакции 2 (рис. 23.3). Таким путем длинноцепочечные жирные кислоты могут полностью расщепляться до ацетил-СоА (С2-фрагментов); последние в цикле лимонной кислоты, который протекает в митохондриях, окисляются до

Окисление жирных кислот с нечетным числом атомов углерода

b-Окисление жирных кислот с нечетным числом атомов углерода заканчивается на стадии образования трехуглеродного фрагмента - пропионил-СоА, который затем превращается в являющийся интермедиатом цикла лимонной кислоты (см. также рис. 20.2).

Энергетика процесса окисления жирных кислот

В результате переноса электронов по дыхательной цепи от восстановленного флавопротеина и NAD синтезируется по 5 богатых энергией фосфатных связей (см. гл. 13) на каждые 7 (из 8) молекул ацетил-СоА, образующихся при b-окислении пальмитиновой кислоты Всего образуется 8 молекул ацетил-СоА, и каждая из них, проходя через цикл лимонной кислоты, обеспечивает синтез 12 богатых энергией связей. Всего в расчете на молекулу пальмитата по этому пути генерируется 8 х 12 = 96 богатых энергией фосфатных связей. Если учесть две связи, необходимые для активации

(см. скан)

Рис. 23.3. Р Окисление жирных кислот. Длинноцепочечный ацит СоА последовательно укорачивается, проходя цикт за циклом ферментативные реакции 2-5; в результате каждого цикла происходит отщепление ацетил-СоА, катализируемое тиолазой (реакция 5). Когда остается четырехуглеродный ацильный радикал, то из него в результате реакции 5 образуются две молекулы ацетил-СоА.

жирной кислоты, то в общей сложности получим 129 богатых энергией связей на 1 моль или кДж. Поскольку свободная энергия сгорания пальмитиновой кислоты составляет то на долю энергии, запасаемой в виде фосфатных связей при окислении жирной кислоты, приходится около 40%.

Окисление жирных кислот в пероксисомах

В пероксисомах -окисление жирных кислот происходит в модифицированном виде. Продуктами окисления в данном случае являются ацетил-СоА и , последняя образуется на стадии, катализируемой связанной с флавопротеином дегидрогеназой. Этот путь окисления непосредственно не сопряжен с фосфорилированием и образованием АТР, но он обеспечивает расщепление жирных кислот с очень длинной цепью (например, ); он включается при диете, богатой жирами, или приеме гиполипидемических лекарственных препаратов, таких, как клофибрат. Ферменты пероксисом не атакуют жирные кислоты с короткими цепями, и процесс Р-окисления останавливается при образовании октаноил-СоА. Октаноильные и ацетильные группы удаляются затем из пероксисом в виде октаноилкарнитина и ацетилкарнитина и окисляются в митохондриях.

а- и b-Окисление жирных кислот

Окисление является основным путем катаболизма жирных кислот. Однако недавно было обнаружено, что в тканях мозга происходит -окисление жирных кислот, т. е. последовательное отщепление одноуглеродных фрагментов от карбоксильного конца молекулы. В этом процессе участвуют интермедиаты, содержащие он не сопровождается образованием богатых энергией фосфатных связей.

Окисление жирных кислот в норме весьма незначительно. Этот тип окисления, катализируемый гидроксилазами при участии цитохрома с. 123), протекает в эндоплазматическом -Группа превращается в --группу, которая затем окисляется до -СООН; в результате образуется дикарбоновая кислота. Последняя расщепляется путем Р-окисления обычно до адипиновой и субериновой кислот, которые затем удаляются с мочой.

Клинические аспекты

Кетоз развивается при высокой скорости окисления жирных кислот в печени, особенно в тех случаях, когда оно происходит на фоне недостатка углеводов (см. с. 292). Подобное состояние возникает при приеме пищи, богатой жирами, голодании, сахарном диабете, кетозе у лактирующих коров и токсикозе беременности (кетозе) у овец. Ниже приводятся причины, вызывающие нарушение процесса окисления жирных кислот.

Недостаток карнитина встречается у новорожденных, чаще всего недоношенных детей; он обусловлен либо нарушением биосинтеза карнитина; либо его «утечкой» в почках. Потери карнитина могут происходить при гемодиализе; больные, страдающие органической ацидурией, теряют большое количество карнитина, который экскретируется из организма в форме конъюгатов с органическими кислотами. Для восполнения потерь этого соединения некоторые пациенты нуждаются в особой диете, включающей продукты, содержащие карнитин. Признаками и симптомами недостатка карнитина являются приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса - окисления жирных кислот, уменьшение образования кетоновых тел, сопровождающееся повышением содержания СЖК в плазме крови, мышечная слабость (миастения), а также накопление липидов. При лечении внутрь принимают препарат карнитина. Симптомы недостатка карнитина очень сходны с симптомами синдрома Рейе (Reye), при котором, однако, содержание карнитина является нормальным. Причина синдрома Рейе пока неизвестна.

Снижение активности карнитинпальмитоилтрансферазы печени приводит к гипогликемии и понижению содержания кетоновых тел в плазме крови, а снижение активности карнитин-пальмитоилтраисферазы мышц - к нарушению процесса окисления жирных кислот, в результате чего периодически возникает мышечная слабость и развивается миоглобинурия.

Ямайская рвотная болезнь возникает у людей после употребления в пищу незрелых плодов аки (Blig-hia sapida), которые содержат токсин гипоглицнн, инактивирующий ацил-СоА-дегидрогеназу, в результате чего ингибируется процесс -окисления.

В эукариотических клетках β-окисление происходит исключительно в аэробных условиях в матриксе митохондрий или пероксисомах , у растений этот процесс осуществляется в глиоксисомах .

Все реакции многостадийного окисления ускоряются специфическими ферментами. β-Окисление высших жирных кислот является универсальным биохимическим процессом, протекающим во всех живых организмах. У млекопитающих этот процесс происходит во многих тканях, в первую очередь в печени , почках и сердце . Ненасыщенные высшие жирные кислоты (олеиновая, линолевая, линоленовая и др.) предварительно восстанавливаются до предельных кислот.

Помимо β-окисления, которое является основным процессом деградации жирных кислот у животных и человека, существуют ещё α-окисление и ω-окисление. α-Окисление встречается как у растений , так и у животных, однако, весь процесс происходит в пероксисомах . ω-Окисление менее распространено среди животных (позвоночные), встречается главным образом у растений . Процесс ω-окисления происходит в эндоплазматическом ретикулуме (ЭР).

β-Окисление было открыто в 1904 году немецким химиком (Franz Knoop ) в опытах с кормлением собак различными жирными кислотами, в которых один атом водорода на концевом атоме ω-С углерода метильной группы -CH 3 был замещен на фенильный радикал -С 6 H 5 .

Францем Кноопом было выдвинуто предположение, что окисление молекулы жирной кислоты в тканях организма происходит в β-положении. В результате от молекулы жирной кислоты последовательно отщепляются двууглеродные фрагменты со стороны карбоксильной группы .

Теория β-окисления жирных кислот, предложенная Ф. Кноопом, в значительной мере послужила основой современных представлений о механизме окисления жирных кислот .

Жирные кислоты, которые образовались в клетке путём гидролиза триацилглицеридов или поступившие в неё из крови должны быть активированы, так как сами по себе они являются метаболическими инертными веществами, и вследствие этого не могут быть подвержены биохимическим реакциям, включая и окисление. Процесс их активирования происходит в цитоплазме при участии АТФ , кофермента A (HS-СoA) и ионов Mg 2+ . Реакция катализируется ферментом ацил-КоА-синтетазой жирных кислот с длинной цепью (Long-chain-fatty-acid-CоА ligase , КФ), процесс является эндергоническим , то есть протекает за счёт использования энергии гидролиза молекулы АТФ :

ацил-КоА-синтетазы находятся как в цитоплазме , так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к жирным кислотам с различной длиной углеводородной цепи. Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут проникать в матрикс митохондрий путём диффузии . Активация этих жирных кислот происходит в матриксе митохондрий .

Жирные кислоты с длинной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активируются ацил-КоА-синтетазами, расположенными на внешней стороне внешней мембраны митохондрий.

Выделившийся в ходе реакции пирофосфат гидролизуется ферментом пирофосфатазой (КФ):

При этом происходит сдвиг равновесия реакции в сторону образования ацил-КоА .

Поскольку процесс активации жирных кислот происходит в цитоплазме, то далее необходим транспорт ацил-КоА через мембрану внутрь митохондрии.

Транспортировка жирных кислот с длинной цепью через плотную митохондриальную мембрану осуществляется посредством карнитина . В наружной мембране митохондрий находится фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I , CPT1, КФ), катализирующий реакцию с образованием ацилкарнитина (ацильная группа переносится с атома серы КоА на гидроксильную группу карнитина с образованием ацилкарнитина (карнитин-СOR)), который диффундирует через внутреннюю митохондриальную мембрану :

Образовавшийся ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью фермента карнитин-ацилкарнитин-транслоказы (CACT) .

После прохождения ацилкарнитина (карнитин-СOR) через мембрану митохондрии происходит обратная реакция - расщепление ацилкарнитина при участии КоА-SH и фермента митохондриальной карнитинацил-КоА-трансферазы или карнитинацилтрансферазы II (карнитин-пальмитоилтрансфераза II , CPT2, КФ):

Таким образом, ацил-КоА становится доступным для ферментов β-окисления. Свободный карнитин возвращается на цитоплазматическую сторону внутренней мембраны митохондрии той же транслоказой .

Процесс трансмембранного переноса жирных кислот может ингибироваться малонил-КоА .

В матриксе митохондрии происходит окисление жирных кислот в цикле Кнооппа - Линена. В нём участвуют четыре фермента, которые последовательно действуют на ацил-КоА. Конечным метаболитом данного цикла является ацетил-КоА . Сам процесс состоит из четырёх реакций.

Образовавшийся ацетил-КоА подвергается окислению в цикле Кребса, а ацил-КоА, укоротившийся на два углеродных атома, снова многократно проходит весь путь β-окисления вплоть до образования бутирил-КоА (4-углеродное соединение), который в свою очередь окисляется до 2 молекул ацетил-КоА. ФАДH 2 и НАДH·H поступают прямо в дыхательную цепь .

Для полной деградации длинноцепочечной жирной кислоты цикл должен многократно повторяться, так, например, для стеарил-CоА (С 17 Н 35 СО~SКоА) необходимы восемь циклов .

Особенности окисления жирных кислот с нечётным числом углеродных атомов

В результате окисления жирных кислот с нечётным числом углеродных атомов образуются не только ацетил-КоА, ФАД H 2 и НАДH , но и одна молекула пропионил-КоА (C 2 H 5 -CO~SКоА).

При окислении жирных кислот, имеющих две (-С=C-C-C=C-) и более ненасыщенные связи, требуется ещё один дополнительный фермент β-гидроксиацил-КоА-эпимераза (КФ).

Скорость окисления ненасыщенных жирных кислот много выше, чем насыщенных, что обусловлено наличием двойных связей. Например, если взять за эталон скорость окисления насыщенной стеариновой кислоты , то скорость окисления олеиновой в 11, линолевой в 114, линоленовой в 170, а арахидоновой почти в 200 раз выше, чем стеариновой .

В результате переноса электронов по ЭТЦ от ФАД H 2 и НАДH синтезируется по 5 молекул АТФ (2 от ФАДH 2 , и 3 от НАДH). В случае окисления пальмитиновой кислоты проходит 7 циклов β-окисления (16/2-1=7), что ведёт к образованию 5 7=35 молекул АТФ. В процессе β-окисления пальмитиновой кислоты образуется n молекул ацетил-КоА, каждая из которых, при полном сгорании в цикле трикарбоновых кислот, даёт 12 молекул АТФ, а 8 молекул дадут 12 8 = 96 молекул АТФ.

Таким образом, всего при полном окислении пальмитиновой кислоты образуется 35+96=131 молекула АТФ. Однако с учётом одной молекулы АТФ , которая гидролизуется до АМФ , то есть тратятся 2 макроэргические связи или две АТФ, в самом начале на процесс активирования (образования пальмитоил-CоА) общий энергетический выход при полном окислении одной молекулы пальмитиновой кислоты в условиях животного организма составит 131-2=129 молекул .

Суммарное уравнение окисления пальмитиновой кислоты выглядит следующим образом:

Формула для расчёта общего количества АТФ которые генерируются в результате процесса β-окисления:

Энергетический расчёт β-окисления для некоторых жирных кислот представлен в виде таблицы.

Помимо β-окисления жирных кислот, происходящего в митохондриях существует и внемитохондриальное окисление. Жирные кислоты, имеющие бóльшую длину цепи (от С 20), не могут быть окислены в митохондриях из-за наличия плотной двойной мембраны, которая воспрепятствует процессу переноса их через межмембранное пространство. Поэтому окисление длиноцепочечных жирных кислот (С 20 -С 22 и более) происходит в пероксисомах . В пероксисомах процесс β-окисления жирных кислот протекает в модифицированном виде. Продуктами окисления в данном случае являются ацетил-КоА, октаноил-КоА и пероксид водорода Н 2 О 2 . Ацетил-КоА образуется на стадии, катализируемой ФАД-зависимой дегидрогеназой. Ферменты пероксисом не атакуют жирные кислоты с короткими цепями, и процесс β-окисления останавливается при образовании октаноил-КоА.

Данный процесс не сопряжён с окислительным фосфорилированием и генерацией АТФ и поэтому октаноил-КоА и ацетил-КоА переходят с КоА на карнитин и направляются в митохондрии, где окисляются с образованием АТФ .

Активация пероксисомального β-окисления происходит при избыточном содержании в потребляемой пищи жирных кислот начиная с С 20 , а также при приёме гиполипидемических лекарственных препаратов.

Скорость β-окисления зависит также от активности фермента карнитин-пальмитоилтрансферазы I (CPTI). В печени этот фермент ингибируется малонил-КоА, веществом, образующимся при биосинтезе жирных кислот .

В мышцах карнитин-пальмитоилтрансфераза I (CPTI) также ингибируется малонил-КоА. Хотя мышечная ткань не синтезирует жирные кислоты, в ней имеется изофермент ацетил-КоА-карбоксилазы, синтезирующий малонил-КоА для регуляции β-окисления. Данный изофермент фосфорилируется протеинкиназой А , которая активируется в клетках под действием адреналина , и АМФ-зависимой протеинкиназой и таким образом происходит его ингибирование; концентрация малонил-КоА снижается. Вследствие этого, при физической работе, когда в клетке появляется АМФ , под действием адреналина активируется β-окисление, однако, его скорость зависит ещё и от доступности кислорода. Поэтому β-окисление становится источником энергии для мышц только через 10-20 минут после начала физической нагрузки (так называемые аэробные нагрузки), когда приток кислорода к тканям увеличивается .

Дефекты карнитиновой транспортной системы проявляются в ферментопатиях и дефицитных состояний карнитина в организме человека.

Наиболее распространены дефицитные состояния, связанные с потерей карнитина во время некоторых состояний организма:

Признаками и симптомами недостатка карнитина являются приступы гипогликемии, возникающие из-за снижения глюконеогенеза в результате нарушения процесса β-окисления жирных кислот, уменьшение образования кетоновых тел, сопровождающееся повышением содержания свободных жирных кислот (СЖК) в плазме крови, мышечная слабость (миастения), а также накопление липидов .

Генетические нарушения ацил-КоА-дегидрогеназ жирных кислот средней цепи

В митохондриях имеется 3 вида ацил-КоА-дегидрогеназ , окисляющих жирные кислоты с длинной, средней или короткой цепью радикала. Жирные кислоты по мере укорочения радикала в процессе β-окисления могут последовательно окисляться этими ферментами. Генетический дефект (КФ) - MCADD (сокр. от М edium-c hain a cyl-СоА d ehydrogenase d eficiency) наиболее распространён по сравнению с другими наследственными заболеваниями - 1:15 000. Частота дефектного гена ACADM , кодирующего ацил-КоА-дегидрогеназы жирных кислот со средней длиной цепи, среди европейской популяции - 1:40. Это кома и возможен летальный исход. Большую опасность болезнь представляет у детей, так как среди них наблюдается самая большая летальность (до 60 %) .

Генетические нарушения ацил-КоА-дегидрогеназ жирных кислот с очень длинной углеродной цепью

Дикарбоновая ацидурия заболевание, связанное с повышенной экскрецией С 6 -С 10 -дикарбоновых кислот и возникающей на этом фоне гипогликемии , однако, не связанная с повышением содержания кетоновых тел. Причиной данного заболевания является MCADD. При этом нарушается β-окисление и усиливается ω-окисление длинноцепочечных жирных кислот, которые укорачиваются до среднецепочечных дикарбоновых кислот , выводимых из организма .

Синдром Цельвегера или цереброгепаторенальный синдром, редкое наследственное заболевание описано американским педиатром Хансом Цельвегером (англ. H.U. Zellweger ), которое проявляется в отсутствии пероксисом во всех тканях организма. Вследствие этого в организме, особенно в мозгу накапливаются полиеновые кислоты (С 26 -С 38), представляющие собой длиноцепочечные жирные кислоты . Примерная заболеваемость нарушениями биогенеза пероксисом спектра синдрома Цельвегера составляет 1:50 000 новорождённых в США и 1:500 000 новорождённых в Японии. Для синдрома характерны: пренатальная задержка роста; мышечная гипотония; затруднение сосания; арефлексия; долихоцефалия; высокий лоб; круглое плоское лицо; одутловатые веки; гипертелоризм; монголоидный разрез глаз; катаракта ; пигментная ретинопатия или дисплазия зрительного нерва; колобома радужки; низко расположенные ушные раковины; микрогнатия ; расщелина неба; латеральное или медиальное искривление пальцев; поражение печени (гепатомегалия (увеличение объёма печени), дисгинезия внутрипеченочных протоков, цирроз печени); поликистоз почек; нередко - тяжёлые, несовместимые с жизнью аномалии лёгких и пороки сердца; задержка психомоторного развития; судороги ; стойкая желтуха. При патоморфологическом исследовании выявляют задержку миелинизации нейронов; накопление липидов в астроцитах; в печени, почках и мозге уменьшено содержание плазмогенов; в клетках печени и других тканях организма снижено количество пероксисом, большинство пероксисомных ферментов неактивны. В крови повышена активность трансаминаз и отмечается стойкая гипербилирубинемия . В присутствии гипоглицина происходит накопление главным образом бутирил-КоА, который гидролизуется до свободной масляной кислоты (бутирата). Масляная кислота в избытке попадает в