Момент инерции для прямоугольника сопромат. Решение задач по сопромату

Результат расчетов зависит не только от площади сечения, поэтому при решении задач по сопромату не обойтись без определения геометрических характеристик фигур : статических, осевых, полярного и центробежного моментов инерции. Обязательно необходимо уметь определять положение центра тяжести сечения (от положения центра тяжести зависят перечисленные геометрические характеристики). К дополнению к геометрическим характеристикам простых фигур: прямоугольника, квадрата, равнобедренного и прямоугольного треугольников, круга, полукруга . Указаны центр тяжести и положение главных центральных осей, и определены относительно них геометрические характеристики при условии, что материал балки однородный.

Геометрические характеристики прямоугольника и квадрата

Осевые моменты инерции прямоугольника (квадрата)

Геометрические характеристики прямоугольного треугольника

Осевые моменты инерции прямоугольного треугольника

Геометрические характеристики равнобедренного треугольника

Осевые моменты инерции равнобедренного треугольника

05-12-2012: Адольф Сталин

Было бы неплохо объяснить на наглядном примере для особо одаренных, типа меня, что такое момент инерции и с чем его едят. На специализированных сайтах как-то всё очень запутанно, а у Дока есть явный талант довести информацию, быть может не самую сложную, но очень грамотно и понятно

05-12-2012: Доктор Лом

В принципе, что такое момент инерции и откуда он взялся, достаточно подробно объяснено в статье "Основы сопромата, расчетные формулы", здесь лишь повторюсь: "W - это момент сопротивления поперечного сечения балки, другими словами, площадь сжимаемой или растягиваемой части сечения балки, умноженная на плечо действия равнодействующей силы". Момент сопротивления необходимо знать для расчетов конструкции на прочность, т.е. по предельным напряжениям. Момент инерции необходимо знать для определения углов поворота поперечного сечения и прогиба (смещения) центра тяжести поперечного сечения, так как максимальные деформации возникают в самом верхнем и в самом нижнем слое изгибаемой конструкции, то определить момент инерции можно, умножив момент сопротивления на расстояние от центра тяжести сечения до верхнего или нижнего слоя, поэтому для прямоугольных сечений I=Wh/2. При определении момента инерции сечений сложных геометрических форм сначала сложная фигура разбивается на простейшие, затем определяются площади сечения этих фигур и моменты инерции простейших фигур, затем площади простейших фигур умножаются на квадрат расстояния от общего центра тяжести сечения до центра тяжести простейшей фигуры. Момент инерции простейшей фигуры в составе сложного сечения равен моменту инерции фигуры + квадрат расстояния умноженный на площадь. Затем полученные моменты инерции суммируются и получается момент инерции сложного сечения. Но это максимально упрощенные формулировки (хотя, соглашусь, все равно выглядит достаточно мудрено). Со временем напишу отдельную статью.

20-04-2013: Petr

Не нужно полностью доверять поданной в сайтах информации. Её никто по-хорошему не проверяет. И ссылки на неё не даются. Так в Таблице 1. "Формы сечения, площади сечений, моменты инерции и моменты сопротивления для конструкций достаточно простых геометрических форм" для тонкостенной трубы дается определение, что отношение диаметра к толщине оболочки должно быть больше 10. По другим источникам - должно быть больше 20!!! (Н.М. Беляев. Сопротивление материалов. М.1996. стр.160. или Н.И.Безухов. Основы теории упругости, пластичности и ползучести.М.1961.стр.390)

21-04-2013: Доктор Лом

Верно. Доверять нельзя. Но логическое мышление пока никто не отменял. Самый правильный вариант - рассчитывать момент инерции или момент сопротивления для любой трубы по формулам, приведенным для обычной трубы (на 1 пункт выше). Формулы, приводимые для тонкостенной трубы, в любом случае будут приближенными и годятся только для первичного расчета и об этом забывать нельзя.
Впрочем параметры максимально допустимой толщины стенки исправил.

25-06-2013: Саня

требуется определить момент инерции для сложного нестандартного сечения. сечение: прямоугольник с двумя пазами. внешне похоже на букву "Ш". не получается найти какую либо информацию. буду признателен за какую нибудь информацию

25-06-2013: Доктор Лом

Посмотрите статью "Расчет прочности потолочного профиля для гипсокартона" (http://сайт/item249.html)
там в частности определяется момент инерции тоже не совсем простого сечения.

04-11-2014: Доктор Лом

Формула из приведенного вами источника неправильная (ею можно пользоваться только для приблизительных вычислений) и проверить это легко.
Чтобы определить момент инерции сечения трубы, достаточно вычесть из момента инерции стержня круглого сечения (тут при вычислениях используется наружный диаметр трубы) момент инерции отверстия (внутренний диаметр, ведь внутри трубы никакого материала нет, на то она и труба). После простейших математических преобразований мы получим формулу момента инерции трубы, приведенную в таблице.
А для того, чтобы определить момент сопротивления, нужно момент инерции разделить на максимальное расстояние от центра тяжести до самой дальней точки сечения, соответственно на D/2, или умножить на 2/D.
В итоге получить указанную вами формулу невозможно и чем толще будет стенка трубы, тем больше будет погрешность при использовании этой формулы.

04-11-2014: Радик

Спасибо, док!

11-11-2014: Ильгам

Не смог найти инфо о том в каких единицах (мм, см, м) все значения в формулах.
Попробовал посчитать Wz для уголка 210х90мм (если у швел.24П срезать верхнюю полку), получилось 667,5 см3, при условии что все значения в см.
Для примера, у швел.24П (до срезания полки) Wx(Wz)=243 см3.

11-11-2014: Доктор Лом

Это общие формулы. В каких единицах подставите значения, в таких и получите результат, только само собой уже в кубических. Но если начали подставлять, например, в сантиметрах, то так и нужно продолжать.
У швеллера без полки момент сопротивления по умолчанию не может быть больше чем у целого швеллера. Для приблизительного определения момента сопротивления швеллера без полки вы можете воспользоваться формулами для неравнополочного уголка (только для определения Wz, для Wy эти формулы не подойдут).

04-01-2015: Valerij

Если сечение трубы ослаблено несколькими значительными отверстиями, как учесть это при расчёте момента инерции и момента сопротивления? Труба 32.39см и в ней 9 отв. диам.2.8см в сечении(шаг отвермтий 10см. по длине трубы).

05-01-2015: Доктор Лом

Для определения момента инерции вам нужно вычесть из момента инерции трубы момент инерции вашего отверстия. Для этого нужно определить площадь сечения отверстия и затем умножить ее на квадрат расстояния до центра трубы плюс собственный момент инерции отверстия. Больше подробностей в статье "Моменты инерции поперечных сечений".
Если расчет не требует особой точности и диаметр отверстия в 5 и более раз меньше диаметра трубы (вроде ваш случай, если 32.39 - это наружный диаметр), то сегмент отверстия можно привести к прямоугольнику. Если отверстие не сквозное, то следует дополнительно определить положение центра тяжести трубы с отверстием для того, чтобы потом вычислить новое значение момента сопротивления.
Но и это еще не все. Вам следует учесть, что возле отверстий возникают значительные локальные напряжения.

09-10-2015: Борис

Неравноплечий уголок.При вычислении Wy не y,а H-y

09-10-2015: Доктор Лом

Не пойму, о чем вы. Определение момента сопротивления относительно оси у в таблицах вообще не приводится.

09-10-2015: Борс

Для треугольников при вычислении Wzп h в квадрате.

09-10-2015: Борис

09-10-2015: Доктор Лом

Все верно. Теперь понял, о чем вы. Более корректно было бы указать момент сопротивления для верхней и для нижней части сечения, а я указал только для нижней. Ну а при определении момента сопротивления треугольников банально пропущен квадрат.
Исправил. Спасибо за внимательность.

28-04-2016: Jama

Здравствуете! Кто может помочь о правильности расчета http://ej.kubagro.ru/2011/02/pdf/19.pdf
я не могу понят откуда значение берется момент сопротивления. Помогите пожалуйста! 21-03-2017: игорь

здравствуйте,Сергей. я прочитал некоторые ваши статьи,очень интересно и понятно(в основном).я хотел бы рассчитать балку двутаврового сечения,но не могу найти Ix и Wx. дело в том что она не стандартная,я её буду делать сам,из дерева.можете ли вы мне помочь? я оплачу.только я не смогу оплатить электронными средствами т.к. не знаю как этим пользоваться.

21-03-2017: Доктор Лом

Игорь, я отправил вам письмо.

30-08-2017: Али

Уважаемый доктор, желаю вам всего найлучшего. Помогите пожалуйста, какими формулами нужны для подбора и проверки на прочность балку следующих сечений,:Швеллер,уголок и бульбовый профиль, имея допускаемый момент сопротивления W=58,58cm3. спасибо большое и жду вашу помощь.

31-08-2017: Доктор Лом

Посмотрите статью "Расчет стальных однопролетных балок с шарнирными опорами при изгибе согласно СП 16.13330.2011", там все достаточно подробно расписано.

13-11-2017: Абдуахад

Здравствуйте пожалуйста подскажите почему Ql^2/8 почему деленная на 8 и почему иногда делим на 6 и 24 итд подскажите пожалуйста только это не понял

1.Осевые моменты инерции относительно взаимно перпендикулярных осей x0y (совпадающих со сторонами треугольника) (рис.2.17).

Для определения момента инерции относительно оси х выделим элементарную площадку в виде полоски бесконечно малой ширины , параллельной оси х , на расстоянии у от нее. Площадь площадки . Длину полоски b(y) определим из подобия треугольников с основаниями b(y) и b , откуда . Тогда . Подставляя это

соотношение в выражение для I x (2.21) и устанавливая пределы интегрирования «0-h », получим

.

Аналогично определяется I y .

2. Центробежный момент инерции относительно осей x0y (совпадающих со сторонами треугольника)

Центробежный момент инерции, согласно определению, равен

Используем ту же элементарную площадку, что и ранее (см. рис.2.17). В качестве координаты х примем координату центра тяжести элементарной площадки

.

Подставляем это выражение, а также формулу для dA под интеграл и интегрируем в пределах от 0 до h

Таким образом, формулы для моментов инерции сечения, в виде прямоугольного треугольника, относительно осей, совпадающих с катетами, имеют вид

Заметим, что для рассматриваемого сечения больший интерес представляют моменты инерции относительно центральных осей (ЦО), параллельных катетам треугольника.

3. Моменты инерции относительно взаимно перпендикулярных ЦО x с сy с (параллельных сторонам треугольника)

Формулы для моментов инерции прямоугольного треугольника относительно осей x с сy с (см. рис.2.17) легко получить, используя выражения (2.24), а также теорему о параллельном переносе осей, согласно которой:

осевые моменты инерции ; ;

центробежный момент инерции .

Здесь: а , е – координаты центра тяжести сечения в системе координат x0y

Подставляя эти выражения, а также соотношения (2.24) в приведенные выше формулы, получим

(2.25)

Отметим, что ориентация сечения относительно осей оказывает влияние на знак центробежного момента инерции. Для рассматриваемой ориентации оказалось, что <0. Действительно, на рис.2.17 видно, что большая часть сечения лежит в области с отрицательным произведением координат х ´у (вторая и четвертая координатные четверти). Это и обусловливает отрицательный знак полученного центробежного момента инерции. Ниже приведены схемы с различной ориентацией прямоугольного треугольника относительно ЦО, параллельных сторонам, для которых указан знак .

Введем декартову прямоугольную систему координат O xy . Рассмотрим в плоскости координат произвольное сечение (замкнутую область) с площадью A (рис. 1).

Статическими моментами

Точка C с координатами (x C , y C)

называется центром тяжести сечения .

Если оси координат проходят через центр тяжести сечения, то статические моменты сечения равны нулю:

Осевыми моментами инерции сечения относительно осей x и y называются интегралы вида:

Полярным моментом инерции сечения относительно начала координат называется интеграл вида:

Центробежным моментом инерции сечения называется интеграл вида:

Главными осями инерции сечения называются две взаимно перпендикулярные оси, относительно которых I xy =0. Если одна из взаимно перпендикулярных осей является осью симметрии сечения, то I xy =0 и, следовательно, эти оси - главные. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями инерции сечения

2.Теорема Штейнера-Гюйгенса о параллельном переносе осей

Теорема Штейнера-Гюйгенса (теорема Штейнера).
Осевой момент инерции сечения I относительно произвольной неподвижной оси x равен сумме осевого момента инерции этого сечения I с относительной параллельной ей оси x * , проходящей через центр масс сечения, и произведения площади сечения A на квадрат расстояния d между двумя осями.

Если известны моменты инерции I x и I y относительно осей x и y, то относительно осей ν и u, повернутых на угол α, моменты инерции осевые и центробежный вычисляют по формулам:

Из приведенных формул видно, что

Т.е. сумма осевых моментов инерции при повороте взаимно перпендикулярных осей не меняется, т.е.оси u и v, относительно которых центробежный момент инерции сечения равен нулю, а осевые моменты инерции І u и I v имеют экстремальные значения max или min, называют главными осями сечения. Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями сечения . Для симметричных сечений оси их симметрии всегда являются главными центральными осями. Положение главных осей сечения относительно других осей определяют, используя соотношение:

где α 0 – угол, на который надо развернуть оси x и y, чтобы они стали главными (положительный угол принято откладывать против хода часовой стрелки, отрицательный – по ходу часовой стрелки). Осевые моменты инерции относительно главных осей называются главными моментами инерции :

знак плюс перед вторым слагаемым относится к максимальному моменту инерции, знак минус – к минимальному.

Осевым (или экваториальным) моментом инерции сечения относительно некоторой оси называется взятая по всей его площади F сумма произведений элементарных площадок на квадраты их расстояний от этой оси, т. е.

Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей его площади F сумма произведений элементарных площадок на квадраты их расстояний от этой точки, т. е.

Центробежным моментом инерции сечения относительно некоторых двух взаимно перпендикулярных осей называется взятая по всей его площади F сумма произведений элементарных площадок на их расстояния от этих осей, т.е.

Моменты инерции выражаются в и т.д.

Осевые и полярные моменты инерции всегда положительны, так как в их выражения под знаки интегралов входят величины площадок (всегда положительные) и квадраты расстояний этих площадок от данной оси или полюса.

На рис. 9.5, а изображено сечение площадью F и показаны оси у и z. Осевые моменты инерции этого сечения относительно осей у :

Сумма этих моментов инерции

и, следовательно,

Таким образом, сумма осевых моментов инерции сечения относительно двух взаимно перпендикулярных осей равна полярному моменту инерции этого сечения относительно точки пересечения указанных осей.

Центробежные моменты инерции могут быть положительными, отрицательными или равными нулю. Так, например, центробежный момент инерции сечения, показанного на рис. 9.5, а, относительно осей у и положителен, так как для основной части этого сечения, расположенной в первом квадранте, значения , а следовательно, и положительны.

Если изменить положительное направление оси у или на обратное (рис. 9.5,б) или повернуть обе эти оси на 90° (рис. 9.5, в), то центробежный момент инерции станет отрицательным (абсолютная величина его не изменится), так как основная часть сечения будет тогда располагаться в квадранте, для точек которого координаты у положительны, а координаты z отрицательны. Если изменить положительные направления обеих осей на обратные, то это не изменит ни знак, ни величину центробежного момента инерции.

Рассмотрим фигуру, симметричную относительно одной или нескольких осей (рис. 10.5). Проведем оси так, чтобы хотя бы одна из них (в данном случае ось у) совпадала с осью симметрии фигуры. Каждой площадке расположенной справа от оси соответствует в этом случае такая же площадка расположенная симметрично первой, но слева от оси у. Центробежный момент инерции каждой пары таких симметрично расположенных площадок равен:

Следовательно,

Таким образом, центробежный момент инерции сечения относительно осей, из которых одна или обе совпадают с его осями симметрии, равен нулю.

Осевой момент инерции сложного сечения относительно некоторой оси равен сумме осевых моментов инерции составляющих его частей относительно этой же оси.

Аналогично центробежный момент инерции сложного сечения относительно любых двух взаимно перпендикулярных осей равен сумме центробежных моментов инерции составляющих его частей относительно этих же осей. Также и полярный момент инерции сложного сечения относительно некоторой точки равен сумме полярных моментов инерции составляющих его частей относительно той же точки.

Следует иметь в виду, что нельзя суммировать моменты инерции, вычисленные относительно различных осей и точек.