Связь гибкости макромолекул с их химическим строением. Факторы, определяющие кинетическую гибкость макромолекул

Размер макромолекулы зависит также от так называемого исключенного объема . Это объем полимера, из которого данная полимерная молекула исключает все другие молекулы, что является результатом действия сил отталкивания между ними.

Термодинамическая гибкость определяется разностью конечного и начального состояния энергии DU = U 1 – U 2 и зависит от химического строения макромолекулы, природы и размера заместителя . Наибольшей равновесной гибкостью характеризуются полидиметилсилоксан, затем идут виниловые полимеры, которые обладают большой равновесной гибкостью, не изменяющейся даже при введении такого заместителя, как фенил. Очень гибкоцепными являются простые и сложные алифатические полиэфиры, что обусловлено низким потенциалом торможения вращения вокруг связей С–С и С–О–С. В цепях полиамидов вращение сильно заторможено. Поэтому алифатические полиамиды могут обладать равновесной гибкостью только в том случае, если амидные группы разделены большим числом метиленовых групп (не менее четырех). Еще большей жесткостью обладают ароматические полиамиды. Наибольшей термодинамической жесткостью характеризуются биополимеры, имеющие конформацию спирали, стабилизированной развитой системой внутримолекулярных водородных связей.

Кинетическая гибкость цепи зависит от величины потенциального барьера, молекулярной массы, температуры, степени сшивания (для сетчатых полимеров). Кинетическая гибкость, т. е. скорость изменения конформаций может быть увеличена в результате воздействия на макромолекулу внешних сил.

Потенциальный барьер вращения (U 0). Величина U 0 определяется взаимодействием атомов и атомных группировок соседних звеньев и зависит от полярности заместителей. Поворот вокруг какой-либо одной связи в макромолекуле вызывает пространственное перемещение значительного числа близлежащих атомов. Эти перемещения в той или иной степени будут влиять на величину потенциального барьера.

У карбоцепных полимеров наименее полярными являются предельные углеводороды. У них внутри- и межмолекулярные взаимодействия невелики, а также малы значения U0 и ΔU, следовательно, полимеры обладают высокой кинетической и термодинамической гибкостью . Примеры: ПЭ, ПП, ПИБ.



При введении полярных групп возможны три случая по влиянию на гибкость:

Полярные группы близко расположены и между ними возможны сильные взаимодействия. Переход такими полимерами из одного пространственного положения в другое требует преодоления больших U0, поэтому цепи таких полимеров кинетически жесткие (ПАН, ПВХ, ПВС, ПС, ПММА).

Полярные группы расположены в цепи редко и взаимодействия между ними не проявляются. Значения U0 и ΔU невелики и полимеры имеют высокую кинетическую и термодинамическую гибкость . полихлоропрен –CH 2 –CCl=CH–CH 2 –

Полярные группы расположены так, что электрические поля взаимно компенсируются . При этом суммарный дипольный момент макромолекулы равен нулю. Поэтому низки значения U0 и ΔU и полимеры имеют большую кинетическую и термодинамическую гибкость. ПТФЭ

У гетероцепных полимеров вращение возможно вокруг связей С–О, С–N, Si–O, C–C. Значения U0 для этих связей невелики и цепи обладают достаточной кинетической гибкостью. Примеры: простые и сложные полиэфиры, полиамиды, полиуретаны (если уретановые группы разделены большим числом метиленовых групп), силоксановые каучуки.

Однако гибкость гетероцепных полимеров может ограничиваться межмолекулярными взаимодействиями за счёт образования Н-связей (например, у целлюлозы, полиамидов). Целлюлоза является одним из жесткоцепных полимеров. Увеличение числа полярных и больших по размеру заместителей или уменьшение числа метиленовых групп между эфирными и уретановыми группами приводит к уменьшению кинетической гибкости.

Таким образом, наиболее гибкоцепные полимеры характеризуются малыми величинами термодинамических и кинетических сегментов, а у наиболее жесткоцепных оба эти параметра велики. В то же время, макромолекулы могут обладать значительной термодинамической и малой кинетической гибкостью, например макромолекулы с гибкой основной цепью и объемными или полярными заместителями. В этом случае клубок «заторможен» в одном из конформационных состояний. Такие полимеры, как полистирол, поливинилхлорид, полиметилметакрилат и др. обладают высокой термодинамической гибкостью и низкой кинетической гибкостью.

Молекулярная масса не оказывает существенного влияния на величину потенциального барьера вращения, так как он определяется только взаимодействием соседних звеньев. Поэтому все полимергомологи имеют одинаковый потенциальный барьер вращения. Увеличение молекулярной массы повышает степень свернутости макромолекулы. Поэтому длинные линейные макромолекулы обладают большей кинетической гибкостью по сравнению с короткими. По мере увеличения молекулярной массы возрастает число конформаций, которое может принимать макромолекула и, гибкость цепей увеличивается.

Пространственная сетка, образованная химическими связями между макромолекулами, всегда ограничивает их подвижность. Чем больше химических связей между макромолекулами, тем меньше гибкость цепей, т.е. с увеличением густоты пространственной сетки гибкость уменьшается. Примером является снижение гибкости цепей с увеличением числа сшивок в ряду резол<резитол<резит.

Температура . Изменение температуры практически не приводит к изменению потенциального барьера вращения. Но с повышением температуры возрастает кинетическая энергия макромолекулы, и появляется возможность преодоления потенциального барьера. Когда кинетическая энергия макромолекулы становится равной или превышает величину U 0 , звенья начинают вращаться. Скорость поворота звеньев и интенсивность их крутильных колебаний возрастают, кинетическая гибкость возрастает.

Гибкость цепи оказывает большое влияние на свойства полимеров и определяет области их использования. Например, кинетическая гибкость приводит к возникновению у полимеров такого уникального и технически важного свойства, как высокоэластичность, кроме того, она обусловливает способность макромолекул к ориентации, что имеет огромное значение при формировании волокон. Термодинамическая гибкость проявляется в процессах кристаллизации, плавления и растворения полимеров.

Размеры макромолекул

Каждая конформация макромолекулы имеет определенные размеры. Для любой конформации, которую принимает макромолекула, характеристикой ее длины L является расстояние между концами цепи r . Если макромолекула полностью развернута (конформация струны), без нарушения валентных углов, то длина такой молекулы называется контурной или гидродинамической . Она связана с длиной мономерного звена соотношением: L = N ×b 0 . Для предельно свернутой макромолекулы , а любых промежуточных положений .

Для свободно сочлененной цепи расстояние между концами макромолекулярного клубка r может изменяться от 0 до L (длины полностью развернутой цепи), положение каждого звена не зависит от положения предыдущего, т.е. отсутствует корреляция в расположении звеньев.

Размер макромолекулы оценивают среднеквадратичным расстоянием между ее концами.

При допущении полной свободы вращения длина макромолекулы определяется из соотношения:

,

где – средний квадрат длины макромолекулы; n – степень полимеризации; l – длина повторяющегося звена; β – угол, дополняющий валентный до 180°.

Из этого уравнения видно, что длина макромолекулы , т.е. расстояние между ее концами, пропорциональна корню квадратному из степени полимеризации .

Формула является приближенной, поскольку свободное вращение практически никогда не осуществляется. В реальных макромолекулах положения звеньев в пространстве взаимосвязаны. Но несмотря на заторможенность вращения одного звена относительно другого, конформация может изменяться очень сильно как под действием тепловых флуктуаций, так и при действии механической силы. Более того, даже если потенциальный энергетический барьер настолько велик, что полностью преодолеть его невозможно, отдельных колебаний относительно положения равновесия (т.е. в минимуме потенциальной энергии) достаточно для того, чтобы макромолекула существенно изменила свою конформацию.

Длина макромолекулы, в которой вращение отдельных звеньев заторможено, существенно большедлины макромолекулы, в которой вращение отдельных звеньев совершенно свободно. Это следует из выражения:

,

где – средний косинус угла заторможенного вращения.

Отношение среднеквадратичных расстояний между концами реальной цепи и цепи со свободным вращением обозначается буквой s:

Очевидно, что чем больше заторможено внутреннее вращение, т.е. чем меньше угол вращения j, тем больше и s. Следовательно, параметр s («параметр жесткости ») является количественной мерой равновесной (термодинамической) гибкости макромолекулярной цепи.

Наиболее универсальной мерой оценки термодинамической гибкости цепи является величина статистического сегмента (сегмента Куна ).

Понятие сегмента макромолекулы (сегмента цепи) является фундаментальным в науке о полимерах. Под воздействием тепловой, механической и электрической энергии перемещаются именно сегменты макромолекул, а не только отдельные атомные группы. Невозможно и одновременное перемещение макромолекулы как единого целого из-за ее большой молекулярной массы.

Под сегментом понимают отрезок цепи, Макромолекула каждого полимера характеризуется определен­ной среднестатистической конформацией (которая определяется интенсивностью теплового движения, позволяющего преодоле­вать барьер вращения), а также гибкостью (которая, в свою очередь, характеризуется величиной статистического сегмента).

положение которого не зависит от положения соседних отрезков.

Добавить Тугов с.46

Чтобы раскрыть смысл понятия сегмента Куна, рассмотрим особенности молекулярных движений в полимерах. Несмотря на то, что в реальных макромолекулах не существует свободного вращения, и каждый атом цепи совершает по отношению к своему соседу лишь вращательные колебания , при достаточной удаленности этих атомов друг от друга возможен полный оборот одного из них относительно другого . Если поворот вокруг каждой валентности составит, например, 36°, то третий атом относительно первого повернется на 72°, четвертый – на 108° и т.д. У одиннадцатого атома этот угол составит 360°. Таким образом, в результате сложения вращательных колебаний атомов цепи достигается свободное вращение одиннадцатого атома относительно первого . Для упрощения расчетов нередко реальную макромолекулу, состоящую из атомов и звеньев с заторможенным движением , представляют состоящей из ряда сегментов (А ), совершающих по отношению друг к другу свободное вращение .

Понятие «сегмент» является условным . Физических границ между сегментами в макромолекуле нет . Размеры сегментов не являются строго определенными, они изменяются в зависимости от расположения соседних молекул, флуктуации теплового движения и т.д. Поэтому длину сегмента следует рассматривать как некоторую среднюю величину (среднестатистический сегмент ). При этом следует не забывать об условности понятия сегмента и о том, что на самом деле его не существует .

Каждый сегмент состоит из s повторяющихся звеньев, следовательно, число сегментов N связано со степенью полимеризации n соотношением:

Длина максимально вытянутой цепи без нарушения валентных углов называется контурной или гидродинамической длиной цепи L. Она связана с длиной сегмента А соотношением:

Число конформаций, которые может принять цепь, или термодинамическая вероятность существования цепи W, выражается формулой Гаусса:

,

Распределение макромолекул по значениям расстояний между концами цепи является гауссовым, поэтому клубок, образуемый макромолекулой, часто называют гауссовым клубком . Графически уравнение выражается кривой, представленной на рис. Из рисунка видно, что предельно вытянутое состояние (r=L) и предельно свернутое состояние (r=0) характеризуется небольшими значениями W, т.е. эти состояния маловероятны. Наиболее вероятным является расстояние r 0 , соответствующее максимальному значению W.

Среднеквадратичное расстояние между концами цепи связано с сегментом Куна уравнением:

где А – длина сегмента; L – длина полностью развернутой цепи (без нарушения валентных углов).

Физический смысл величины А заключается в том, что она представляет собой среднюю длину приблизительно прямолинейного сегмента цепи.

Гибкость макромолекулы связана с величиной сегмента: чем меньше величина сегмента, тем больше гибкость молекулы . Таким образом, более жесткая цепь характеризуется большей длиной сегмента . Например, более гибкая макромолекула полиэтилена характеризуется меньшей длиной сегмента, чем более жесткая молекула поливинилхлорида.

Различают два понятия гибкости цепи полимера - термодинамическую и кинетическую гибкость.

Термодинамическая гибкость - это способность цепи изгибаться под влиянием теплового движения. Определяется термодинамическая разностью потенциальных энергий двух соседних состояний ΔU (рис. 2.4). Характеризует вероятность конформационного перехода.

Кинетическая гибкость цепи отражает скорость перехода цепи из одного энергетического состояния в другое. Определяется энергией активации, т.е. величиной потенциального барьера U 0 (рис. 2.4).


Простейшей моделью, предложенной для описания физических свойств, в том числе гибкости цепи, полимеров является модель свободно-сочлененной цепи (рис. 2.5). В такой цепи нет жестко зафиксированных валентных углов и реализуется свободное вращение молекул. Гибкость цепи обусловливает сворачивание макромолекул в растворах полимеров в клубки. Важным параметром такого клубка может служить расстояние между концами свернутой цепи h . Естественно, вероятность реализации W (h ) конформаций с линейно вытянутой цепочкой (h max = длине вытянутой цепочки) и нахождением концов цепи в одной точке (h min = 0) ничтожно мала. Промежуточные значения вероятности распределяются (рис. 2.5) по известному закону (рис. 2.6):

Среднеквадратическое расстояние свободно сочленённой цепи

(2.3)

Следует отметить, что модель свободно-сочленённой цепи является лишь грубым приближением к реальной цепи и недостаточна для её описания. В полимерных цепях валентные углы между связями достаточно жестко зафиксированы и вращение звеньев не является свободным.

Рассмотрим цепочку простейшей полимерной молекулы - полиэтилена (рис. 2.7). Обозначим угол между осями соседних углеродов Θ . Тогда угол валентный равен π - Θ = 109°28’. Соседние звенья уже могут занимать произвольное положение в пространстве и перемещаются только по поверхности конуса раствором 2Θ .

Очевидно, что этим возможным положениям звена будут соответствовать разные значения потенциальной энергии U(φ) .

Достаточно длинная цепь с фиксированными валентными углами также может сворачиваться в клубок. Очевидно, такую цепь можно мысленно разбить на независимые статистические элементы (будем в дальнейшем называть их сегменты ), положения которых в пространстве уже не коррелированы между собой. Общий вид распределения при этом не меняется, только N и A (рис. 2.8) определяют теперь число и длину сегментов.



Учёт заторможенности внутреннего вращения и фиксированных валентных углов приводит к тому, что выражение для среднего квадрата расстояний между концами реальной цепи принимает вид

В случае свободного внутреннего вращения η = 0, и цепь будет наиболее гибкой; при η = 1 цепь будет максимально жёсткой. Величину можно рассматривать как меру термодинамической гибкости реальной цепи.

(2.6)

Значения σ и А (сегмент Куна) для некоторых полимеров приведены в табл. 2.2.

Таблица 2.2. Равновесная гибкость полимеров

Полимер Сегмент Куна, A Число мономерных остатков в сегменте
Полидиметилсилоксан 1,4-1,6 14,0 4,9
Полибутадиен 1,7 - -
Натуральный каучук 1,7 - -
Полиизобутилен 2,2 18,3 7,3
Полиэтилен 2,3-2,4 20,8 8,3
Полистирол 2,2-2,4 20,0 7,9
Поливинилхлорид 2,8 29,6 11,7
Полиметилметакрилат 2,2 15,1 6,0
Полигексилметакрилат 2,4 21,7 8,6
Полиметилакрилат - -
Полицетилакрилат - -
Полиоктадецилакрилат - -
Производные целлюлозы 4,0-4,5 100-250 -
Полиалкилизоцианаты - -
Поли-n-бензамид -
Биополимеры - -

20.09.11 11:10

Отклонения от равновесного состояния на коротких участках цепи вызывают на длинных участках проявление такого свойства полимера, как гибкость.

Количественными характеристиками гибкости макромолекулы могут служить персистентная длина, статистический сегмент, среднеквадратичное расстояние между концами цепи, средний квадрат радиуса инерции макромолекулы.

Среднеквадратичное расстояние между концами цепи . Конформация полимерного клубка постоянно меняется, отклоняется от равновесной. Расстояние между концами цепи при этом меняется. Чтобы узнать, какое расстояние между концами цепи наиболее часто реализуется, надо взять все значения, полученные в ходе измерений, и поделить на число измерений – т.е. найти среднее значение (рис. 8):

Рис. 8 Расстояние между концами цепи (слева) и радиус инерции (справа) в представлении свободно-сочлененной модели цепи

Зная длину жесткого сегмента l N и количество таких сегментов в цепи N , можно рассчитать , используя разные приближения при описании механизмов гибкости макромолекулы. Свободно-сочлененная модель. Полимерная цепь представляется в виде отрезков – сегментов, моделирующих жесткий участок цепи, последовательно соединенных шарнирными сочленениями (рис. 9).


Вращение жестких участков на шарнирах свободно. Для такой модели

Модель с фиксированными валентными углами b . Отличается от предыдущей модели тем, что между двумя соседними сегментами фиксируется угол. Вращение вокруг осей остается свободным. В таком случае

Поворотно-изомерная модель . В этой модели, кроме фиксированных валентных углов, появляется заторможенное внутреннее вращение,определяемое величиной торсионного угла

Для идеального клубка, зная можно вычислить

Средние размеры макромолекулы также можно выразить через контурную длину цепи L . Контурная длина цепи определяется числом мономерных звеньев или СПЗ, образующих макромолекулу. Если поделить цепь на жесткие участки равной длины, т о

Отсюда можно записать, используя свободно-сочлененную модель

Такая модель справедлива для оценки термодинамической гибкости макромолекул гибкоцепных полимеров (l N £ 100 Å или 10 нм).

Из выражений (1), (2) можно найти величину наименьшего жесткого участка цепи (сегмента Куна ) :

Исходя из выражения (3), для объема клубка можно записать

Гауссово распределение расстояний между концами цепи

Типичная конформация полимерного клубка имеет очевидное сходство с траекторией движения броуновской частицы (рис. 9б).

Вектор r , определяющий расстояние между концами цепи, сильно флуктуирует из-за теплового движения. Рассмотрим распределение вероятности вектора r между концами цепи из N сегментов для свободно-сочлененной модели идеальной цепи. Так как каждый сегмент дает независимый вклад в r , то, по аналогии с траекторией броуновской частицы, для величины r будет справедливо гауссово распределение (поэтому идеальный клубок часто называют гауссовым клубком)

1. Особенности строения полимеров. Причины гибкости макромолекул. Образование ассоциатов

Высокомолекулярными соединениями называют вещества, имеющие относительную молекулярную массу приблизительно от 10000 до нескольких миллионов. ВМС, состоящие из большого числа повторяющихся одинаковых звеньев, называются полимерами.

Молекулы полимеров могут быть линейными и разветвленными. Именно линейные формы макромолекул определяют типичные свойства полимеров: каучукоподобная эластичность, способность образовывать прочностные пленки и нити, набухать, давать при растворении вязкие растворы.

Разветвление у макромолекул сильно влияет на их гибкость. Короткие и часто расположенные боковые цепи увеличивают жесткость молекул. На гибкость макромолекулы могут влиять молекулы растворителя или пластификаторы.

Гибкость углеводородной цепи обуславливается вращением одних участков цепи относительно других вокруг одинаковой валентной связи, соединяющей соседние атомы углерода. Так как таких отдельных связей в макромолекуле множество, то становится понятной та исключительная гибкость, которой обладают углеводородные цепочки. Молекулы полимеров не связанные друг с другом и ведут себя вполне самостоятельно, когда они находятся в относительно разбавленных растворах. В концентрированных растворах, когда вероятность столкновения молекул растворенного вещества велика, макромолекулы могут взаимодействовать и образовывать ассоциаты.

Ассоциаты в разбавленных растворах полимеров не являются постоянно существующими образованиями и не имеют определенного состава. Ассоциаты образуются и в растворах НМС за счет столкновения двух, трех, четырех и более молекул. Особенностью образования ассоциатов в растворах ВМС является то, что длинные и гибкие макромолекулы могут входить отдельными своими участками в состав различных ассоциатов.

2. Общие и отличительные свойства растворов высокомолекулярных соединений (ВМС) и золей

Растворы ВМС представляют собой истинные растворы, термодинамически устойчивые и обратимые, не нуждающиеся в стабилизаторе частицы, содержащиеся в таких растворах, состоят не из множеств малых молекул, как это имеет место у коллоидов, и представляют отдельные молекулы относительно очень больших размеров. В этом и заключается отличие растворов ВМС от растворов низкомолекулярных соединений.

Растворы ВМС в плохих растворителях содержат молекулы свернутые в компактный клубок с явно выраженной межфазной поверхностью.

Они представляют отдельную фазу. Такие растворы ВМС можно отнести к коллоидным системам. Растворы ВМС благодаря большим размерам их молекул обладают рядом свойств лиозолей, что позволяет рассматривать многие проблемы одновременно и для коллоидных растворов и для растворов ВМС.

В отличие от золей, для растворов ВМС характерны большая вязкость, высокая устойчивость, способность к набуханию.

Золи могут существовать в газообразном состоянии (аэрозоли), а ВМС – нет, т.к. произойдет разрыв макромолекулы.


3. Набухание. Стадии процесса набухания. Факторы, влияющие на набухание. Кинетика набухания. Степень набухания. Ограниченное и неограниченное набухание. Давление набухания. Концентрация

Растворение высокомолекулярных соединений с линейными гибкими молекулами в отличие от растворения НМС сопровождается набуханием.

При набухании высокомолекулярных соединений поглощает низкомолекулярный растворитель, значительно увеличивается в массе, при этом изменяет механические свойства без потери однородности. Объем ВМС может увеличиваться при набухании до 1000 – 1500%.

На первой стадии набухания происходит сольватация макромолекул в результате диффузии растворителя в высокомолекулярное вещество. Эта стадия характеризуется выделением тепла и упорядочением расположения молекул растворителя около макромолекулы, в результате чего энтропия системы в первой стадии растворения обычно даже понижается. Основное значение этой стадии при растворении сводится к разрушению связей между отдельными макромолекулами, следствии чего они становятся свободными.

Второй стадией является набухание или растворение, обусловленное чисто энтропийными причинами. В этой стадии, поскольку сольватация уже завершилась, тепловой эффект равен нулю или имеет отрицательное значение, а энтропия резко возрастает. Вторую стадию растворения можно рассматривать как чисто осмотический процесс. Легче всего набухают полимеры в вязкотекучем и высокоэластичном состоянии.

К факторам, влияющим на набухание, относятся: термодинамическая активность растворителя, температура, физическое состояние полимера, природа полимера и растворителя. Типичные кинетические кривые набухания, характеризующие зависимость растворителя, представлены на рисунке.


Кинетические кривые для ограниченного набухания представляют аналитически:

,

где - константа скорости набухания; - степень набухания при достижении равновесия и ко времени соответственно.

Проинтегрировав, получим уравнение кинетики набухания, подобное уравнению для кинетики ленгмюровской адсорбции:

,

Набухание полимера в жидкости характеризуется степенью набухания , вычисляемой по формуле:

где - навеска полимера до и после набухания.

Набухание не всегда заканчивается растворением. Очень часто после достижения известной степени набухания процесс прекращается.

Причины ограниченного набухания:

1. ВМС и растворитель способны смешиваться ограниченно. Поэтому в результате набухания в системе образуется две фазы – насыщенный раствор полимера в растворителе и насыщенный раствор растворителя в полимере (гель, студень). Такое ограниченное набухание носит равновесный характер.


... «мицелла» и «мицеллярный раствор». Эти термины были использованы им для обозначения систем, образованных нестехиометрическими соединениями в водной среде. Основная заслуга в становлении коллоидной химии как науки принадлежит Т. Грэму. Как уже отмечалось выше, именно этому ученому принадлежит идея введения термина «коллоид», производного от греческого слова «kolla», обозначающего «клей». Занимаясь...

Расстояние, пройденное веществом по сорбенту, прямо пропорционально растворимости данного вещества в пропускаемом растворителе. Даёт возможность полностью разделять вещества, входящие в состав разделяемой смеси. Коллоидная химия Дисперсные системы – это системы, состоящие из множества частиц одной фазы (дисперсной), распределённых в объёме другой фазы – дисперсионной. Дисперсионная среда...

И многое другое, без чего немыслима сама жизнь. Все человеческое тело – это мир частиц, находящихся в постоянном движении строго по определенным правилам, подчиняющимся физиологии человека. Коллоидные системы организмов обладают рядом биологических свойств, характеризующих то или иное коллоидное состояние: 2.2 Коллоидная система клеток. С точки зрения коллоидно-химической физиологии...

Металлов с белками, нуклеиновыми кислотами, липидами. Её практическое применение связано с синтезом фарамакологических препаратов, действие которых обусловленно комплексными ионами металлов. Биоорганическая Химия Изучает связь между строениями органических веществ и их биологическими функциями, использующих в основном методы органической и физической химии, а также физики и математики. ...

К таким факторам относят: величину U0, ММ полимера, густоту пространственной сетки, размер заместителей и температуру.

Потенциальный барьер вращения (U0). Величина U0 зависит от внутри- и межмолекулярных взаимодействий. Рассмотрим факторы, влияющие на U0 и гибкость цепей у карбоцепных полимеров.

У карбоцепных полимеров наименее полярными являются предельные углеводороды. У них внутри- и межмолекулярные взаимодействия невелики, а также малы значения U0 и ΔU, следовательно полимеры обладают большой кинетической и термодинамической гибкостью. Примеры: ПЭ, ПП, ПИБ.

Особенно низки значения U0 у полимеров, в цепи которых рядом с ординарной имеется двойная связь.

–СН2–СН=СН–СН2– Полибутадиен

Введение в макромолекулы заместителей, содержащих полярные группы приводит к внутри- и межмолекулярным взаимодействиям. При этом существенно влияют степень полярности групп и симметричность их расположения:

Наиболее полярные группы –СN, –NO2 (μ=3,4 D)

Менее полярные группы –Cl, –OH (μ=1,8-1,9 D)

При введении полярных групп возможны три случая по влиянию на гибкость:

1. Полярные группы близко расположены и возможны между ними сильные взаимодействия. Переход такими полимерами из одного пространственного положения в другое требует преодоления больших U0, поэтому цепи таких полимеров наименее гибкие.

2. Полярные группы расположены в цепи редко и взаимодействия между ними не проявляются. Значения U0 и ΔU невелики и полимеры имеют большую кинетическую и термодинамическую гибкость.

3.Полярные группы расположены так, что электрические поля взаимно компенсируются. При этом суммарный дипольный момент макромолекулы равен нулю. Поэтому низки значения U0 и ΔU и полимеры имеют большую кинетическую и термодинамическую гибкость.

Политетрафторэтилен –СF2–СF2–

Гетероцепные полимеры

У гетероцепных полимеров вращение возможно вокруг связей С–О, С–N, Si–O, C–C. Значения U0 для этих связей невелики и цепи обладают достаточной кинетической гибкостью. Примеры: полиэфиры, полиамиды, полиуретаны, силоксановые каучуки.

Однако гибкость гетероцепных полимеров может ограничиваться межмолекулярными взаимодействиями за счёт образования Н-связей (например, у целлюлозы, полиамидов). Целлюлоза является одним из жесткоцепных полимеров. У неё содержится большое количество полярных групп (–OH) и поэтому для целлюлозы характерны внутри- и межмолекулярные взаимодействия и высокие значения U0 и малая гибкость.

Молекулярная масса полимера. Увеличение ММ полимера повышает свернутость цепи и поэтому длинные макромолекулы обладают большей кинетической гибкостью по сравнению с короткими макромолекулами. По мере увеличения ММ возрастает число конформаций, которое может принимать макромолекула и гибкость цепей увеличивается.

Густота пространственной сетки. Чем больше химических связей между макромолекулами, тем меньше гибкость цепей, т.е. с увеличением густоты пространственной сетки гибкость уменьшается. Примером является снижение гибкости цепей с увеличением числа сшивок в ряду резол<резитол<резит.

Влияние размера и количества заместителей. Увеличение числа полярных и больших по размеру заместителей снижает подвижность звеньев макромолекулы и уменьшает кинетическую гибкость. Примером является снижение гибкости макромолекул сополимера бутадиена и стирола при увеличении содержания громоздких фенильных заместителей в цепи. Если при одном атоме углерода в основной цепи полимера имеются два заместителя (например, ОСН3 и СН3 в звеньях ПММА), то макромолекула становится кинетически жесткой.

Температура. С повышением температуры возрастает кинетическая энергия макромолекулы. До тех пор, пока величина кинетической энергии меньше U0, цепи совершают крутильные колебания. Когда кинетическая энергия макромолекулы становится равной или превышает величину U0 звенья начинают вращаться. С повышением температуры величина U0 мало изменяется, а скорость поворота звеньев увеличивается и кинетическая гибкость возрастает.

Химические превращения макромолекул используются для получения новых полимеров и модификации свойств готовых полимеров. Такие превращения могут осуществляться как направленно, так и самопроизвольно в процессе синтеза, переработки и эксплуатации полимеров под действием света, кислорода воздуха, тепла и механических воздействий. Основными разновидностями химических превращений полимеров являются:

1) Реакции, протекающие без изменения степени полимеризации (внутримолекулярные и полимераналогичные превращения),

2) Реакции, приводящие к увеличению степени полимеризации (сшивание и отверждение полимеров, получение блок- и привитых сополимеров),

3) Реакции, приводящие у уменьшению степени полимеризации (деструкция полимеров).

Особенности химических реакций полимеров

Химические реакции полимеров не отличаются от классических органических реакций, однако вследствие больших размеров макромолекул и сложности их строения реакции полимеров имеют специфические особенности.

Основными отличиями реакций полимеров от реакций низкомолекулярных соединений являются:

Для полимеров возможны реакции, не присущие низкомолекулярным соединениям, например, деполимеризация. Деполимеризация – это последовательное отщепление от цепи звеньев мономера.

В отличие от реакций низкомолекулярных соединений, когда конечные и промежуточные продукты реакций можно от делить от исходных соединений, в случае реакций полимеров конечные и промежуточные продукты входят в состав одной и той же макромолекулы и их невозможно разделить. Например, при этерификации низкомолекулярного спирта на каждой стадии реакции в системе находятся спирт, кислота, сложный эфир и вода, которые могут быть разделены. При этерификации поливинилового спирта промежуточными продуктами реакции являются сополимеры, содержащие гидроксильные и сложноэфирные группы, которые невозможно разделить:

Реакционная способность функциональных групп макромолекул отличается от реакционной способности низкомолекулярных соединений. Причиной является цепная природа полимера, когда “принцип равной реакционной способности” Флори не соблюдается. Устарело представление, что реакционная способность функциональных групп не должна зависить от длины полимерной цепи.

Основными особенностями в химическом поведении полимеров по сравнению с низкомолекулярными аналогами являются конфигурационный, конформационный, концентрационный.

Надмолекулярный, электростатический эффекты и “эффект соседа”.

Конфигурационный эффект - это различие в окружении функциональных групп полимера в начале и в конце реакции, которое отражается на направлении и завершенности реакции, на кинетике и механизме реакции.

На реакционную способность полимеров при химических превращениях существенное влияние оказывает стереоизомерия цепи. Например, цис -изомер – натуральный каучук отличается при химических превращениях от транс -изомера – гуттаперчи. Расположение функциональных групп по длине цепи также влияет на их химические свойства. Например, макромолекулы ПВС “нормального” строения (соединение звеньев по типу “голова к хвосту”) не подвергаются деструкции под действием кислорода и иодной кислоты (HIO4), а макромолекулы ПВС аномального строения (соединение звеньев по типу “голова к голове”) легко деструктируются.

Другой пример, при расположении звеньев в цепи ПВХ по типу “голова к хвосту” дегидрохлорирование и термический распад макромолекул протекает медленно, а при расположении звеньев в цепи по типу “голова к голове” реакция протекает быстро.

ПВХ Полихлоропрен

Эффект соседа” . В полимерах изменение реакционной способности функциональных групп или звеньев под влиянием уже прореагировавшей группы, расположенной по соседству в данной называется “эффектом соседа”. Влияние “соседей” вызывает изменение скорости и механизма реакций в полимерах. При этом скорость реакции может повышаться в 103–104 раз. Наряду с ускоряющим действием “соседи” могут оказывать и ингибирующее влияние на скорость реакции.

3. Молекулярная масса полимеров и молекулярно-массовое распределение (ММР). Полидисперсность полимеров. Среднечисловая, средневязкостная и среднемассовая молекулярная масса полимеров. Способы определения молекулярных масс полимеров.

Большинство синтетических полимеров состоит из макромолекул различной длины, т.е. являются полидисперсными вследствие статистического (случайного) характера элементарных реакций синтеза и возможности деструкции макромолекул. Биополимеры обычно однородны по молекулярной массе (ММ), однако при выделении полимеров некоторые связи разрушаются и биополимеры становятся полидисперсными.

Вследствие полидисперсности полимеры характеризуют средними ММ и в зависимости от типа усреднения различают среднечисловую и среднемассовую ММ. Существуют и другие типы усреднения, так при исследовании гидродинамических свойств полимеров определяют среднегидродинамические ММ. Такие ММ определяют при измерении вязкости (средневязкост ная –M η), константы седиментации (среднеседиментационна я – M S) или коэффициента диффузии (среднедиффузионная M D).

Среднечисловая молекулярная масса определяется соотношением:

Здесь N – число макромолекул, xi – числовая доля макромолекул с молекулярной массой Mi. xi= Ni / ΣN i .

Экспериментально n M измеряют методами, в основе которых лежат коллигативные свойства растворов (зависящие от числа частиц). К таким методам относят осмометрию, криоскопию, эбулиоскопию и анализ концевых групп.

Среднемассовая молекулярная масса определяется соотношением:

Здесь N – число макромолекул, ωi – массовая доля макромолекул с молекулярной массой Mi. ωi = Ni Mi / Σ N i Mi . Экспериментально M ω определяют методом светорассеяния. Величина M ω > n M для полидисперсного образца и M ω=Mn для монодисперсного образца. Значения M ω более чувствительны к наличию в образце высокомолекулярных фракций, а n M – к наличию низкомолекулярных фракций.

Отношение M ω/ n M =К D называется показателем полидисперсности. Если образец монодисперсен, то К D=1 (редкий случай). Для большинства синтетических и природных полимеров К D>1, т.е. полимеры полидисперсны, причём К D может изменяться в широких пределах (от 2 до 20). Значения показателя полидисперсности К D связаны с механизмом образования полимера. Так, К D=1,5 для продукта радикальной полимеризации при обрыве цепи рекомбинацией и К D=2 – при обрыве цепи диспропорционированием. Для полимеров, полученных поликонденсацией, К D=1 + Х, где Х – конверсия. При Х→1 (100%) К D=2.

Для характеристики полидисперсности полимеров, кроме показателя полидисперсности, используются кривые молекулярно-массового распределения (ММР). Различают интегральные и дифференциальные функции ММР (рис. 1), которые могут быть числовыми и массовыми. Интегральная кривая ММР – это зависимость между ММ и интегральной массовой (или числовой) долей фракций полимера.

Дифференциальная кривая ММР представляет собой зависимость ММ от массовой [молекулярно-массовое распределение (ММР) (рис.2, кривая 2)] или числовой доли фракции [молекулярно-числовое распределение (МЧР) (рис. 2, кривая 1)]. КривыеМЧР и ММР не совпадают, т.к на числовое распределение большое влияние оказывают низкомолекулярные фракции, а на массовое распределение влияют высокомолекулярные фракции.

Абсцисса центра тяжести площади, ограниченной кривой ММР, равна M ω , а абсцисса центра тяжести площади, ограниченной кривой МЧР, равна n M (см. рис.2). Кривые распределения могут иметь один (унимодальные), два (бимодальные) или несколько максимумов (полимодальные).

При одинаковой средней ММ полимеры могут иметь различное ММР – узкое (на рис. 3, кривая 2) и широкое (рис. 3, кривая 1).

Рис. 1. Кривые интегрального (2) и дифференциального (1) массового ММР полимера.

Здесь Δ m / m0 – относительная интегральная доля фракций, а (1/ m0)(d m/d M) – массовая доля фракций.

Рис. 2. Дифференциальные кривые МЧР (1) и ММР(2).

Рис. 3. Кривые ММР с различной полидисперсностью и одинаковым значением средней ММ.

Фракционирование полимеров

Фракционирование позволяет разделять образцы полимеров на фракции с различными ММ и используется для построения кривых ММР. Различают два типа фракционирования: препаративное и аналитическое . При препаративном фракционировании выделяют отдельные фракции и изучают их свойства. При аналитическом фракционировании кривую распределения получают без выделения отдельных фракций. К аналитическим методам фракционирования относят ультрацентрифугирование, турбодиметрическое титрование, гель-проникающую хроматографию.

К препаративным методам фракционирования относятся фракционное растворение и фракционное осаждение . Эти методы основаны на зависимости растворимости полимера от ММ – с увеличением ММ растворимость полимера уменьшается. Метод фракционного осаждения заключается в последовательном осаждении из раствора полимера фракций, ММ которых убывает. Осаждение фракций вызывают различными способами:

Добавлением осадителя к раствору полимера,

Испарением растворителя из раствора полимера,

Изменением температуры раствора, которое ухудшает качество растворителя.

Метод фракционного растворения заключается в последовательном экстрагировании полимера рядом жидкостей с возрастающей растворяющей способностью. При этом выделяемые фракции имеют последовательно возрастающую ММ.

Построение кривых распределения по ММ

В результате фракционирования выделяют ряд фракций. Для каждой фракции определяют массу и находят ММ. Экспериментальные данные вносят в таблицу.

Затем определяют массовую долю каждой фракции ωi и далее определяют интегральную массовую долю фракций суммированием всех долей фракций, начиная с наименьшей по ММ фракции. Расчётные данные вносят в таблицу.

По данным таблицы строят интегральную кривую ММР в координатах Wi=f (ММ) и дифференциальную кривую ММР в координатах dWi /dMi=f (ММ).

4. Изомерия высокомолекулярных соединений. Особенности изомерии полимерных материалов, понятие ближнего и дальнего порядка. Конформационная и конфигурационная изомерия элементарного звена.

Локальная изомерия

Этот вид изомерии характерен для виниловых, винилиденовых и диеновых полимеров. Так у молекулы винилового мономера

Заместители при атомах С (1) (голова) и (2) (хвост) различаются и, следовательно, возможны два типа присоединения

Присоединение по типу “голова-голова” происходят значительно реже, чем присоединения “голова-хвост” прежде всего из-за возникающих стерических затруднений. Так, например, в поливинилиденфториде (-СH 2 -CF 2 -) n доля звеньев присоединённых по типу “голова-голова” составляет всего 5-6%.

Образование молекул полиизопрена может происходить путём присоединения молекул мономеров в положениях 1,4; 1,2; 3,4. При этом будут образовываться различающиеся по конфигурации изомеры:

(У полибутадиена вследствие симметричного строения молекулы мономера возможно только присоединение 1,4 и 1,2). В зависимости от природы катализатора и условий полимеризации доля различных конфигураций в полимерных цепях может изменяться в широких пределах. У полиизопрена наряду с изомерией, обусловленной способом присоединения по двойным связям существует также изомерия присоединения по типу “голова-хвост” и “голова-голова”.