Распределение электронов по энергетическим уровням мышьяк. Электронная конфигурация атома

6.6. Особенности электронного строения атомов хрома, меди и некоторых других элементов

Если вы внимательно посмотрели приложение 4, то, наверное, заметили, что у атомов некоторых элементов последовательность заполнения электронами орбиталей нарушается. Иногда эти нарушения называют "исключениями ", но это не так – исключений из законов Природы не бывает!

Первым элементом с таким нарушением является хром. Рассмотрим подробнее его электронное строение (рис. 6.16 а ). У атома хрома на 4s -подуровне не два, как этого следовало бы ожидать, а только один электрон. Зато на 3d -подуровне пять электронов, а ведь этот подуровень заполняется после 4s -подуровня (см. рис. 6.4). Чтобы понять, почему так происходит, посмотрим, что собой представляют электронные облака 3d -подуровня этого атома.

Каждое из пяти 3d -облаков в этом случае образовано одним электроном. Как вы уже знаете из § 4 этой главы, общее электронное облако таких пяти электронов имеет шарообразную форму, или, как говорят, сферически симметрично. По характеру распределения электронной плотности по разным направлениям оно похоже на 1s -ЭО. Энергия подуровня, электроны которого образуют такое облако, оказывается меньше, чем в случае менее симметричного облака. В данном случае энергия орбиталей 3d -подуровня равна энергии 4s -орбитали. При нарушении симметрии, например, при появлении шестого электрона, энергия орбиталей 3d -подуровня вновь становится больше, чем энергия 4s -орбитали. Поэтому у атома марганца опять появляется второй электрон на 4s -АО.
Сферической симметрией обладает общее облако любого подуровня, заполненного электронами как наполовину, так и полностью. Уменьшение энергии в этих случаях носит общий характер и не зависит от того, наполовину или полностью заполнен электронами какой-либо подуровень. А раз так, то следующее нарушение мы должны искать у атома, в электронную оболочку которого последним "приходит"девятый d -электрон. И действительно, у атома меди на 3d -подуровне 10 электронов, а на 4s -подуровне только один (рис. 6.16 б ).
Уменьшение энергии орбиталей полностью или наполовину заполненного подуровня является причиной целого ряда важных химических явлений, с некоторыми из которых вы еще познакомитесь.

6.7. Внешние и валентные электроны, орбитали и подуровни

В химии свойства изолированных атомов, как правило, не изучаются, так как почти все атомы, входя в состав различных веществ, образуют химические связи. Химические связи образуются при взаимодействии электронных оболочек атомов. У всех атомов (кроме водорода) в образовании химических связей принимают участие не все электроны: у бора – три электрона из пяти, у углерода – четыре из шести, а, например, у бария – два из пятидесяти шести. Эти "активные"электроны называются валентными электронами .

Иногда валентные электроны путают с внешними электронами, а это не одно и то же.

Электронные облака внешних электронов имеют максимальный радиус (и максимальное значение главного квантового числа).

Именно внешние электроны принимают участие в образовании связи в первую очередь, хотя бы потому, что при сближении атомов электронные облака, образованные этими электронами, приходят в соприкосновение прежде всего. Но вместе с ними участие в образовании связи может принимать и часть электронов предвнешнего (предпоследнего) слоя, но только в том случае, если они обладают энергией, не сильно отличающейся от энергии внешних электронов. И те и другие электроны атома являются валентными. (У лантаноидов и актиноидов валентными являются даже некоторые "предвнешние" электроны)
Энергия валентных электронов намного больше, чем энергия других электронов атома, а друг от друга валентные электроны по энергии отличаются существенно меньше.
Внешние электроны – всегда валентные только в том случае, если атом вообще может образовывать химические связи. Так, оба электрона атома гелия – внешние, но назвать их валентными нельзя, так как атом гелия вообще никаких химических связей не образует.
Валентные электроны занимают валентные орбитали , которые в свою очередь образуют валентные подуровни .

В качестве примера рассмотрим атом железа, электронная конфигурация которого показана на рис. 6.17. Из электронов атома железа максимальное главное квантовое число (n = 4) имеют только два 4s -электрона. Следовательно, именно они и являются внешними электронами этого атома. Внешние орбитали атома железа – все орбитали с n = 4, а внешние подуровни – все подуровни, образуемые этими орбиталями, то есть 4s -, 4p -, 4d - и 4f -ЭПУ.
Внешние электроны – всегда валентные, следовательно, 4s -электроны атома железа – валентные электроны. А раз так, то и 3d -электроны, имеющие чуть большую энергию, также будут валентными. На внешнем уровне атома железа кроме заполненной 4s -АО есть еще свободные 4p -, 4d - и 4f -АО. Все они внешние, но валентные среди них только 4р -АО, так как энергия остальных орбиталей значительно больше, и появление электронов на этих орбиталях для атома железа не выгодно.

Итак, у атома железа
внешний электронный уровень – четвертый,
внешние подуровни – 4s -, 4p -, 4d - и 4f -ЭПУ,
внешние орбитали – 4s -, 4p -, 4d - и 4f -АО,
внешние электроны – два 4s -электрона (4s 2),
внешний электронный слой – четвертый,
внешнее электронное облако – 4s -ЭО
валентные подуровни – 4s -, 4p -, и 3d -ЭПУ,
валентные орбитали – 4s -, 4p -, и 3d -АО,
валентные электроны – два 4s -электрона (4s 2) и шесть 3d -электронов (3d 6).

Валентные подуровни могут быть заполнены электронами частично или полностью, а могут и вообще оставаться свободными. С увеличением заряда ядра уменьшаются значения энергии всех подуровней, но из-за взаимодействия электронов между собой энергия разных подуровней уменьшается с разной "скоростью". Энергия полностью заполненных d - и f -подуровней уменьшается настолько сильно, что они перестают быть валентными.

В качестве примера рассмотрим атомы титана и мышьяка (рис. 6.18).

В случае атома титана 3d -ЭПУ заполнен электронами только частично, и его энергия больше, чем энергия 4s -ЭПУ, а 3d -электроны являются валентными. У атома мышьяка 3d -ЭПУ полностью заполнен электронами, и его энергия существенно меньше энергии 4s -ЭПУ, и, следовательно, 3d -электроны не являются валентными.
В приведенных примерах мы анализировали валентную электронную конфигурацию атомов титана и мышьяка.

Валентная электронная конфигурация атома изображается в виде валентной электронной формулы , или в виде энергетической диаграммы валентных подуровней .

ВАЛЕНТНЫЕ ЭЛЕКТРОНЫ, ВНЕШНИЕ ЭЛЕКТРОНЫ, ВАЛЕНТНЫЕ ЭПУ, ВАЛЕНТНЫЕ АО, ВАЛЕНТНАЯ ЭЛЕКТРОННАЯ КОНФИГУРАЦИЯ АТОМА, ВАЛЕНТНАЯ ЭЛЕКТРОННАЯ ФОРМУЛА, ДИАГРАММА ВАЛЕНТНЫХ ПОДУРОВНЕЙ.

1.На составленных вами энергетических диаграммах и в полных электронных формулах атомов Na, Mg, Al, Si, P, S, Cl, Ar укажите внешние и валентные электроны. Составьте валентные электронные формулы этих атомов. На энергетических диаграммах выделите части, соответствующие энергетическим диаграммам валентных подуровней.
2.Что общего между электронными конфигурациями атомов а) Li и Na, В и Al, O и S, Ne и Ar; б) Zn и Mg, Sc и Al, Cr и S, Ti и Si; в) H и He, Li и O, K и Kr, Sc и Ga. В чем их различия
3.Сколько валентных подуровней в электронной оболочке атома каждого из элементов: а) водорода, гелия и лития, б) азота, натрия и серы, в) калия, кобальта и германия
4.Сколько валентных орбиталей заполнено полностью у атома а) бора, б) фтора, в) натрия?
5.Сколько орбиталей с неспаренным электроном у атома а) бора, б) фтора, в) железа
6.Сколько свободных внешних орбиталей у атома марганца? А сколько свободных валентных?
7.К следующему занятию подготовьте полоску бумаги шириной 20 мм, разделите ее на клеточки (20 ? 20 мм), и нанесите на эту полоску естественный ряд элементов (от водорода до мейтнерия).
8.В каждой клеточке поместите символ элемента, его порядковый номер и валентную электронную формулу, как показано на рис. 6.19 (воспользуйтесь приложением 4).

6.8. Систематизация атомов по строению их электронных оболочек

В основу систематизации химических элементов положен естественный ряд элементов и принцип подобия электронных оболочек их атомов.
С естественным рядом химических элементов вы уже знакомы. Теперь познакомимся с принципом подобия электронных оболочек.
Рассматривая валентные электронные формулы атомов в ЕРЭ, легко обнаружить, что у некоторых атомов они отличаются только значениями главного квантового числа. Например, 1s 1 у водорода, 2s 1 у лития, 3s 1 у натрия и т. д. Или 2s 2 2p 5 у фтора, 3s 2 3p 5 у хлора, 4s 2 4p 5 у брома и т. д. Это значит, что внешние области облаков валентных электронов таких атомов по форме очень похожи и отличаются только размерами (и, конечно, электронной плотностью). А раз так, то электронные облака таких атомов и соответствующие им валентные конфигурации можно назвать подобными . Для атомов разных элементов с подобными электронными конфигурациями мы можем записать общие валентные электронные формулы : ns 1 в первом случае и ns 2 np 5 во втором. Двигаясь по естественному ряду элементов, можно найти и другие группы атомов с подобными валентными конфигурациями.
Таким образом, в естественном ряду элементов регулярно встречаются атомы с подобными валентными электронными конфигурациями . Это и есть принцип подобия электронных оболочек.
Попробуем выявить вид этой регулярности. Для этого воспользуемся сделанным вами естественным рядом элементов.

ЕРЭ начинается с водорода, валентная электронная формула которого 1s 1 . В поисках подобных валентных конфигураций разрежем естественный ряд элементов перед элементами с общей валентной электронной формулой ns 1 (то есть, перед литием, перед натрием и т. д.). Мы получили так называемые "периоды" элементов. Сложим получившиеся "периоды" так, чтобы они стали строками таблицы (см. рис. 6.20). В результате подобные электронные конфигурации будут только у атомов первых двух столбцов таблицы.

Попробуем добиться подобия валентных электронных конфигураций и в других столбцах таблицы. Для этого вырежем из 6-го и 7-го периодов элементы с номерами 58 – 71 и 90 –103 (у них происходит заполнение 4f - и 5f -подуровней) и поместим их под таблицей. Символы остальных элементов сдвинем по горизонтали так, как это показано на рисунке. После этого у атомов элементов, стоящих в одной колонке таблицы, получатся подобные валентные конфигурации, которые можно выразить общими валентными электронными формулами: ns 1 , ns 2 , ns 2 (n –1)d 1 , ns 2 (n –1)d 2 и так далее до ns 2 np 6 . Все отклонения от общих валентных формул объясняются теми же причинами, что и в случае хрома и меди (см. параграф 6.6).

Как видите, использовав ЕРЭ и применив принцип подобия электронных оболочек, нам удалось систематизировать химические элементы. Такая система химических элементов называется естественной , так как основана исключительно на законах Природы. Полученная нами таблица (рис. 6.21) представляет собой один из способов графического изображения естественной системы элементов и называется длиннопериодной таблицей химических элементов.

ПРИНЦИП ПОДОБИЯ ЭЛЕКТРОННЫХ ОБОЛОЧЕК, ЕСТЕСТВЕННАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ ("ПЕРИОДИЧЕСКАЯ" СИСТЕМА),ТАБЛИЦА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ.

6.9. Длиннопериодная таблица химических элементов

Познакомимся подробнее со структурой длиннопериодной таблицы химических элементов.
Строки этой таблицы, как вы уже знаете, называются "периодами "элементов. Периоды нумеруются арабскими цифрами от 1 до 7. В первом периоде всего два элемента. Второй и третий периоды, содержащие по восемь элементов, называются короткими периодами. Четвертый и пятый периоды, содержащие по 18 элементов, называются длинными периодами. Шестой и седьмой периоды, содержащие по 32 элемента, называются сверхдлинными периодами.
Столбцы этой таблицы называются группами элементов. Номера групп обозначаются римскими цифрами с латинскими буквами А или В.
Элементы некоторых групп имеют свои общие (групповые) названия: элементы IА группы (Li, Na, K, Rb, Cs, Fr) – щелочные элементы (или элементы щелочных металлов ); элементы IIA группы (Ca, Sr, Ba и Ra) – щелочноземельные элементы (или элементы щелочноземельных металлов )(название "щелочные металлы" и щелочноземельные металлы" относятся к простым веществам, образуемым соответствующими элементами и не должны использоваться как названия групп элементов); элементы VIA группы (O, S, Se, Te, Po) – халькогены , элементы VIIA группы (F, Cl, Br, I, At) – галогены , элементы VIIIA группы (He, Ne, Ar, Kr, Xe, Rn) – элементы благородных газов .(Традиционное название "благородные газы" также относится к простым веществам)
Выносимые обычно в нижнюю часть таблицы элементы с порядковыми номерами 58 – 71 (Ce – Lu) называются лантаноиды ("следующие за лантаном"), а элементы с порядковыми номерами 90 – 103 (Th – Lr) – актиноиды ("следующие за актинием "). Существует вариант длиннопериодной таблицы, в котором лантаноиды и актиноиды не вырезаются из ЕРЭ, а остаются на своих местах в сверхдлинных периодах. Такую таблицу иногда называют сверхдлиннопериодной .
Длиннопериодная таблица делится на четыре блока (или секции).
s-Блок включает элементы IA и IIA-групп с общими валентными электронными формулами ns 1 и ns 2 (s-элементы ).
р-Блок включает элементы с IIIA по VIIIA группу с общими валентными электронными формулами от ns 2 np 1 до ns 2 np 6 (p-элементы ).
d-Блок включает элементы с IIIB по IIB группу с общими валентными электронными формулами от ns 2 (n –1)d 1 до ns 2 (n –1)d 10 (d-элементы ).
f-Блок включает лантаноиды и актиноиды (f-элементы ).

Элементы s - и p -блоков образуют А-группы, а элементы d -блока – В-группы системы химических элементов. Все f -элементы формально входят в IIIB группу.
Элементы первого периода – водород и гелий – являются s -элементами и могут быть помещены в IA и IIA группы. Но гелий чаще помещают в VIIIA группу как элемент, которым заканчивается период, что полностью соответствует его свойствам (гелий, как и все остальные простые вещества, образуемые элементами этой группы, – благородный газ). Водород же часто помещают в VIIA группу, так как по своим свойствам он существенно ближе к галогенам, чем к щелочным элементам.
Каждый из периодов системы начинается с элемента, имеющего валентную конфигурацию атомов ns 1 , так как именно с этих атомов начинается формирование очередного электронного слоя, и заканчивается элементом с валентной конфигурацией атомов ns 2 np 6 (кроме первого периода). Это позволяет легко выделить на энергетической диаграмме группы подуровней, заполняющихся электронами у атомов каждого из периодов (рис. 6.22). Проделайте эту работу со всеми подуровнями, изображенными на сделанной вами копии рисунка 6.4. Выделенные на рисунке 6.22 подуровни (кроме полностью заполненных d - и f -подуровней) являются валентными для атомов всех элементов данного периода.
Появление в периодах s -, p -, d - или f -элементов полностью соответствует последовательности заполнения s -, p -, d - или f -подуровней электронами. Эта особенность системы элементов позволяет, зная период и группу, в которые входит данный элемент, сразу же записать его валентную электронную формулу.

ДЛИННОПЕРИОДНАЯ ТАБЛИЦА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ, БЛОКИ, ПЕРИОДЫ, ГРУППЫ, ЩЕЛОЧНЫЕ ЭЛЕМЕНТЫ, ЩЕЛОЧНОЗЕМЕЛЬНЫЕ ЭЛЕМЕНТЫ, ХАЛЬКОГЕНЫ, ГАЛОГЕНЫ, ЭЛЕМЕНТЫ БЛАГОРОДНЫХ ГАЗОВ,ЛАНТАНОИДЫ,АКТИНОИДЫ.
Запишите общие валентные электронные формулы атомов элементов а) IVA и IVB групп, б) IIIA и VIIB групп?
2. Что общего между электронными конфигурациями атомов элементов А и В групп? Чем они различаются?
3.Сколько групп элементов входит в а) s -блок, б) р -блок, в) d -блок?
4.Продолжите рисунок 30 в сторону увеличения энергии подуровней и выделите группы подуровней, заполняющихся электронами в 4-м, 5-м и 6-м периодах.
5.Перечислите валентные подуровни атомов а) кальция, б) фосфора, в) титана, г) хлора, д) натрия. 6.Сформулируйте, чем отличаются друг от друга s-, p- и d-элементы.
7.Объясните, почему принадлежность атома к какому-либо элементу определяется числом протонов в ядре, а не массой этого атома.
8.Для атомов лития, алюминия, стронция, селена, железа и свинца составьте валентные, полные и сокращенные электронные формулы и изобразите энергетические диаграммы валентных подуровней. 9.Атомам каких элементов соответствуют следующие валентные электронные формулы: 3s 1 , 4s 1 3d 1 , 2s 2 2p 6 , 5s 2 5p 2 , 5s 2 4d 2 ?

6.10. Типы электронных формул атома. Алгоритм их составления

Для разных целей нам нужно знать либо полную, либо валентную конфигурацию атома. Каждая из этих электронных конфигураций может изображаться как формулой, так и энергетической диаграммой. То есть, полная электронная конфигурация атома выражается полной электронной формулой атома , или полной энергетической диаграммой атома . В свою очередь, валентная электронная конфигурация атома выражается валентной (или, как ее часто называют, "краткой " ) электронной формулой атома , или диаграммой валентных подуровней атома (рис. 6.23).

Раньше мы составляли электронные формулы атомов, используя порядковые номера элементов. При этом мы определяли последовательность заполнения подуровней электронами по энергетической диаграмме: 1s , 2s , 2p , 3s , 3p , 4s , 3d , 4p , 5s , 4d , 5p , 6s , 4f , 5d , 6p , 7s и так далее. И только записав полную электронную формулу, мы могли записать и валентную формулу.
Валентную электронную формулу атома, которая чаще всего и используется, удобнее записывать, исходя из положения элемента в системе химических элементов, по координатам период – группа.
Рассмотрим подробно, как это делается для элементов s -, p - и d -блоков.
Для элементов s -блока валентная электронная формула атома состоит из трех символов. В общем виде ее можно записать так:

На первом месте (на месте большой клеточки) ставится номер периода (равен главному квантовому числу этих s -электронов), а на третьем (в верхнем индексе) – номер группы (равен числу валентных электронов). Взяв в качестве примера атом магния (3-й период, IIA группа), получим:

Для элементов p -блока валентная электронная формула атома состоит из шести символов:

Здесь на месте больших клеточек также ставится номер периода (равен главному квантовому числу этих s - и p -электронов), а номер группы (равен числу валентных электронов) оказывается равным сумме верхних индексов. Для атома кислорода (2-й период, VIA группа) получим:

2s 2 2p 4 .

Валентную электронную формулу большинства элементов d -блока можно записать так:

Как и в предыдущих случаях, здесь вместо первой клеточки ставится номер периода (равен главному квантовому числу этих s -электронов). Число во второй клеточке оказывается на единицу меньше, так как на единицу меньше главное квантовое число этих d -электронов. Номер группы здесь тоже равен сумме индексов. Пример – валентная электронная формула титана (4-й период, IVB группа): 4s 2 3d 2 .

Номер группы равен сумме индексов и для элементов VIB группы, но у них, как вы помните, на валентном s -подуровне всего один электрон, и общая валентная электронная формула ns 1 (n –1)d 5 . Поэтому валентная электронная формула, например, молибдена (5-й период) – 5s 1 4d 5 .
Так же просто составить валентную электронную формулу любого элемента IB группы, например, золота (6-й период)>– >6s 1 5d 10 , но в этом случае нужно помнить, что d - электроны у атомов элементов этой группы еще остаются валентными, и часть из них может участвовать в образовании химических связей.
Общая валентная электронная формула атомов элементов IIB группы – ns 2 (n – 1)d 10 . Поэтому валентная электронная формула, например, атома цинка – 4s 2 3d 10 .
Общим правилам подчиняются и валентные электронные формулы элементов первой триады (Fe, Co и Ni). У железа, элемента VIIIB группы, валентная электронная формула 4s 2 3d 6 . У атома кобальта – на один d -электрон больше (4s 2 3d 7), а у атома никеля – на два (4s 2 3d 8).
Пользуясь только этими правилами написания валентных электронных формул, нельзя составить электронные формулы атомов некоторых d -элементов (Nb, Ru, Rh, Pd, Ir, Pt), так как у них за счет стремления к высокосимметричным электронным оболочкам заполнение электронами валентных подуровней имеет некоторые дополнительные особенности.
Зная валентную электронную формулу, можно записать и полную электронную формулу атома (см. далее).
Часто вместо громоздких полных электронных формул записывают сокращенные электронные формулы атомов. Для их составления в электронной формуле выделяют все электроны атома кроме валентных, помещают их символы в квадратные скобки и часть электронной формулы, соответствующую электронной формуле атома последнего элемента предшествующего периода (элемента, образующего благородный газ), заменяют символом этого атома.

Примеры электронных формул разных типов приведены в таблице 14.

Таблица 14. Примеры электронных формул атомов

Электронные формулы

Сокращенная

Валентная

1s 2 2s 2 2p 3

2s 2 2p 3

2s 2 2p 3

1s 2 2s 2 2p 6 3s 2 3p 5

3s 2 3p 5

3s 2 3p 5

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5

4s 2 3d 5

4s 2 3d 5

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3

4s 2 4p 3

4s 2 4p 3

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6

4s 2 4p 6

4s 2 4p 6

Алгоритм составления электронных формул атомов (на примере атома йода)


операции

Операция

Результат

Определите координаты атома в таблице элементов.

Период 5-й, группа VIIA

Составьте валентную электронную формулу.

5s 2 5p 5

Допишите символы внутренних электронов в последовательности заполнения ими подуровней.

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 5

Учитывая уменьшение энергии полностью заполненных d - и f -подуровней, запишите полную электронную формулу.

Отметьте валентные электроны.

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5p 5

Выделите электронную конфигурацию предшествующего атома благородного газа.

Запишите сокращенную электронную формулу, объединив в квадратных скобках все невалентные электроны.

5s 2 5p 5

Примечания
1. Для элементов 2-го и 3-го периодов третья операция (без четвертой) сразу приводит к полной электронной формуле.
2. (n – 1)d 10 -Электроны остаются валентными у атомов элементов IB группы.

ПОЛНАЯ ЭЛЕКТРОННАЯ ФОРМУЛА, ВАЛЕНТНАЯ ЭЛЕКТРОННАЯ ФОРМУЛА, СОКРАЩЕННАЯ ЭЛЕКТРОННАЯ ФОРМУЛА, АЛГОРИТМ СОСТАВЛЕНИЯ ЭЛЕКТРОННЫХ ФОРМУЛ АТОМОВ.
1.Составьте валентную электронную формулу атома элемента а) второго периода третьей А группы, б) третьего периода второй А группы, в) четвертого периода четвертой А группы.
2.Составьте сокращенные электронные формулы атомов магния, фосфора, калия, железа, брома и аргона.

6.11. Короткопериодная таблица химических элементов

За 100 с лишним лет, прошедших с момента открытия естественной системы элементов, было предложено несколько сотен самых разнообразных таблиц, графически отражающих эту систему. Из них, кроме длиннопериодной таблицы, наибольшее распространение имеет так называемая короткопериодная таблица элементов Д. И. Менделеева. Короткопериодная таблица получается из длиннопериодной, если 4-й, 5-й, 6-й и 7-й периоды разрезать перед элементами IB группы, раздвинуть и получившиеся ряды сложить так, как раньше мы складывали периоды. Результат изображен на рисунке 6.24.

Лантаноиды и актиноиды здесь также помещаются под основной таблицей.

В группах этой таблицы собраны элементы, у атомов которых одинаковое число валентных электронов независимо от того, на каких орбиталях находятся эти электроны. Так, элементы хлор (типичный элемент, образующий неметалл; 3s 2 3p 5) и марганец (элемент, образующий металл; 4s 2 3d 5), не обладая подобием электронных оболочек, попадают здесь в одну и ту же седьмую группу. Необходимость различать такие элементы заставляет выделять в группах подгруппы : главные – аналоги А-групп длиннопериодной таблицы и побочные – аналоги В-групп. На рисунке 34 символы элементов главных подгрупп сдвинуты влево, а элементов побочных подгрупп – вправо.
Правда, такое расположение элементов в таблице имеет и свои преимущества, ведь именно числом валентных электронов в первую очередь определяются валентные возможности атома.
Длиннопериодная таблица отражает закономерности электронного строения атомов, сходство и закономерности изменения свойств простых веществ и соединений по группам элементов, закономерное изменение ряда физических величин, характеризующих атомы, простые вещества и соединения по всей системе элементов и многое другое. Короткопериодная таблица в этом отношении менее удобна.

КОРОТКОПЕРИОДНАЯ ТАБЛИЦА, ГЛАВНЫЕ ПОДГРУППЫ, ПОБОЧНЫЕ ПОДГРУППЫ.
1.Преобразуйте построенную вами из естественного ряда элементов длиннопериодную таблицу в короткопериодную. Проведите обратное преобразование.
2.Можно ли составить общую валентную электронную формулу атомов элементов одной группы короткопериодной таблицы? Почему?

6.12. Размеры атомов. Орбитальные радиусы

.

Четких границ у атома нет. Что же считать размером изолированного атома? Ядро атома окружено электронной оболочкой, а оболочка состоит из электронных облаков. Размер ЭО характеризуется радиусом r эо. Все облака внешнего слоя имеют примерно одинаковый радиус. Следовательно, размер атома можно охарактеризовать этим радиусом. Он называется орбитальным радиусом атома (r 0).

Значения орбитальных радиусов атомов приведены в приложении 5.
Радиус ЭО зависит от заряда ядра и от того, на какой орбитали находится электрон, образующий это облако. Следовательно, и орбитальный радиус атома зависит от этих же характеристик.
Рассмотрим электронные оболочки атомов водорода и гелия. И в атоме водорода, и в атоме гелия электроны находятся на 1s -АО, и их облака имели бы одинаковые размеры, если бы заряды ядер этих атомов были одинаковы. Но заряд ядра атома гелия в два раза больше, чем заряд ядра атома водорода. По закону Кулона сила притяжения, действующая на каждый из электронов атома гелия, в два раза больше силы притяжения электрона к ядру атома водорода. Следовательно, радиус атома гелия должен быть намного меньше радиуса атома водорода. Так и есть: r 0 (He) / r 0 (H) = 0,291 Е / 0,529 Е 0,55.
У атома лития внешний электрон находится на 2s -АО, то есть, образует облако уже второго слоя. Естественно, что его радиус должен быть больше. Действительно: r 0 (Li) = 1,586 Е.
У атомов остальных элементов второго периода внешние электроны (и 2s , и 2p ) размещаются в том же втором электронном слое, а заряд ядра у этих атомов с увеличением порядкового номера увеличивается. Электроны сильнее притягиваются к ядру, и, естественно, радиусы атомов уменьшаются. Мы могли бы повторить эти рассуждения и для атомов элементов остальных периодов, но с одним уточнением: монотонно уменьшается орбитальный радиус только при заполнении каждого из подуровней.
Но если отвлечься от частностей, то общий характер изменения размеров атомов в системе элементов следующий: с увеличением порядкового номера в периоде орбитальные радиусы атомов уменьшаются, а в группе – увеличиваются. Самый большой атом – атом цезия, а самый маленький – атом гелия, но из атомов элементов, образующих химические соединения (гелий и неон их не образуют), самый маленький – атом фтора.
У большинства атомов элементов, стоящих в естественном ряду после лантаноидов, орбитальные радиусы несколько меньше, чем следовало бы ожидать, опираясь на общие закономерности. Это связано с тем, что между лантаном и гафнием в системе элементов расположены 14 лантаноидов, и, следовательно, заряд ядра атома гафния на 14 е больше, чем у лантана. Поэтому внешние электроны этих атомов притягиваются к ядру сильнее, чем притягивались бы при отсутствии лантаноидов (этот эффект часто называют "лантаноидным сжатием").
Обратите внимание, что при переходе от атомов элементов VIIIA группы к атомам элементов IA группы орбитальный радиус скачкообразно увеличивается. Следовательно, наш выбор первых элементов каждого периода (см. § 7) оказался правильным.

ОРБИТАЛЬНЫЙ РАДИУС АТОМА, ЕГО ИЗМЕНЕНИЕ В СИСТЕМЕ ЭЛЕМЕНТОВ.
1.По данным, приведенным в приложении 5, постройте на миллиметровой бумаге график зависимости орбитального радиуса атома от порядкового номера элемента для элементов с Z от 1 до 40. Длина горизонтальной оси 200 мм, длина вертикальной оси 100 мм.
2.Как можно охарактеризовать вид получившейся ломаной линии?

6.13. Энергия ионизации атома

Если сообщить электрону в атоме дополнительную энергию (как это можно сделать, вы узнаете из курса физики), то электрон может перейти на другую АО, то есть атом окажется в возбужденном состоянии . Это состояние неустойчиво, и электрон почти сразу же вернется в исходное состояние, а избыточная энергия выделится. Но если сообщенная электрону энергия достаточно велика, электрон может совсем оторваться от атома, атом при этом ионизируется , то есть, превращается в положительно заряженный ион (катион ). Энергия, необходимая для этого, называется энергией ионизации атома (E и).

Оторвать электрон от единственного атома и измерить необходимую для этого энергию довольно сложно, поэтому практически определяют и используют молярную энергию ионизации (E и m).

Молярная энергия ионизации показывает, какова наименьшая энергия, которую необходимая для отрыва 1 моля электронов от 1 моля атомов (по одному электрону от каждого атома). Эта величина обычно измеряется в килоджоулях на моль. Значения молярной энергии ионизации первого электрона для большинства элементов приведены в приложении 6.
Как же зависит энергия ионизации атома от положения элемента в системе элементов, то есть, как она изменяется в группе и периоде?
По физическому смыслу энергия ионизации равна работе, которую нужно затратить на преодоление силы притяжения электрона к атому при перемещении электрона из атома на бесконечное от него расстояние.

где q – заряд электрона, Q – заряд катиона, оставшегося после удаления электрона, а r o – орбитальный радиус атома.

И q , и Q – величины постоянные, и можно сделать вывод, что, работа по отрыву электрона А , а вместе с ней и энергия ионизации Е и, обратно пропорциональны орбитальному радиусу атома.
Проанализировав значения орбитальных радиусов атомов различных элементов и соответствующие им значения энергии ионизации, приведенные в приложениях 5 и 6, вы можете убедиться, что зависимость между этими величинами близка к пропорциональной, но несколько от нее отличается. Причина того, что наш вывод не очень хорошо согласуется с экспериментальными данными, в том, что мы воспользовались очень грубой моделью, не учитывающей многих существенных факторов. Но даже эта грубая модель позволила нам сделать правильный вывод о том, что с увеличением орбитального радиуса энергия ионизации атома уменьшается и, наоборот, с уменьшением радиуса – возрастает.
Так как в периоде с увеличением порядкового номера орбитальный радиус атомов уменьшается, то энергия ионизации – возрастает. В группе же с увеличением порядкового номера орбитальный радиус атомов, как правило, увеличивается, а энергия ионизации уменьшается. Наибольшая молярная энергия ионизации – у самых маленьких атомов, атомов гелия (2372 кДж/моль), а из атомов, способных образовывать химические связи, – у атомов фтора (1681 кДж/моль). Наименьшая – у самых больших атомов, атомов цезия (376 кДж/моль). В системе элементов направление увеличения энергии ионизации можно схематически показать так:

В химии важно то, что энергия ионизации характеризует склонность атома к отдаче "своих"электронов: чем больше энергия ионизации, тем менее склонен атом отдавать электроны, и наоборот.

ВОЗБУЖДЕННОНЕ СОСТОЯНИЕ, ИОНИЗАЦИЯ, КАТИОН, ЭНЕРГИЯ ИОНИЗАЦИИ, МОЛЯРНАЯ ЭНЕРГИЯ ИОНИЗАЦИИ, ИЗМЕНЕНИЕ ЭНЕРГИИ ИОНИЗАЦИИ В СИСТЕМЕ ЭЛЕМЕНТОВ.
1.Используя данные, приведенные в приложении 6, определите, какую энергию нужно затратить, чтобы оторвать по одному электрону от всех атомов натрия общей массой 1 г.
2.Используя данные, приведенные в приложении 6, определите, во сколько раз больше энергии нужно затратить для отрыва по одному электрону от всех атомов натрия массой 3 г, чем от всех атомов калия такой же массы. Почему это отношение отличается от отношения молярных энергий ионизации этих же атомов?
3.По данным, приведенным в приложении 6, постройте график зависимости молярной энергии ионизации от порядкового номера для элементов с Z от 1 до 40. Размеры графика те же, что и в задании к предыдущему параграфу. Проследите, соответствует ли этот график выбору "периодов"системы элементов.

6.14. Энергия сродства к электрону

.

Вторая важнейшая энергетическая характеристика атома – энергия сродства к электрону (E с).

На практике, как и в случае энергии ионизации, обычно используют соответствующую молярную величину – молярную энергию сродства к электрону ().

Молярная энергия сродства к электрону показывает, какова энергия, выделяющаяся при присоединении одного моля электронов к одному молю нейтральных атомов (по одному электрону к каждому атому). Как и молярная энергия ионизации, эта величина тоже измеряется в килоджоулях на моль.
На первый взгляд может показаться, что энергия при этом выделяться не должна, ведь атом – это нейтральная частица, и никаких электростатических сил притяжения между нейтральным атомом и отрицательно заряженным электроном нет. Наоборот, приближаясь к атому, электрон, казалось бы, должен отталкиваться от таких же отрицательно заряженных электронов, образующих электронную оболочку. На самом деле это не совсем так. Вспомните, приходилось ли вам когда-либо иметь дело с атомарным хлором. Конечно, нет. Ведь он существует только при очень высоких температурах. Практически не встречается в природе даже более устойчивый молекулярный хлор – при необходимости его приходится получать с помощью химических реакций. А с хлоридом натрия (поваренной солью) вам приходится иметь дело постоянно. Ведь поваренная соль каждый день потребляется человеком с пищей. И в природе она встречается довольно часто. Но ведь в состав поваренной соли входят хлорид-ионы, то есть атомы хлора, присоединившие по одному "лишнему"электрону. Одна из причин этого такой распространенности хлорид-ионов состоит в том, что атомы хлора обладают склонностью к присоединению электронов, то есть при образовании хлорид-ионов из атомов хлора и электронов выделяется энергия.
Одна из причин выделения энергии вам уже известна – она связана с возрастанием симметрии электронной оболочки атома хлора при переходе к однозарядному аниону . При этом, как вы помните, энергия 3p -подуровня уменьшается. Есть и другие более сложные причины.
В связи с тем, что на значение энергии сродства к электрону влияет несколько факторов, характер изменения этой величины в системе элементов значительно более сложный, чем характер изменения энергии ионизации. В этом вы можете убедиться, проанализировав таблицу, приведенную в приложении 7. Но так как значение этой величины определяется, прежде всего, тем же электростатическим взаимодействием, что и значения энергии ионизации, то и изменение ее в системе элементов (по крайней мере в А-группах) в общих чертах сходно с изменением энергии ионизации, то есть энергия сродства к электрону в группе уменьшается, а в периоде – возрастает. Максимальна она у атомов фтора (328 кДж/моль) и хлора (349 кДж/моль). Характер изменения энергии сродства к электрону в системе элементов напоминает характер изменения энергии ионизации, то есть направление увеличения энергии сродства к электрону можно схематически показать так:

2.В том же масштабе по горизонтальной оси, что и в предыдущих заданиях, постройте график зависимости молярной энергии сродства к электрону от порядкового номера для атомов элементов с Z от 1 до 40, используя приложение 7.
3.Какой физический смысл имеют отрицательные значения энергии сродства к электрону?
4.Почему из всех атомов элементов 2-го периода отрицательные значения молярной энергии сродства к электрону имеют только бериллий, азот и неон?

6.15. Склонность атомов к отдаче и присоединению электронов

Вы уже знаете, что склонность атома отдавать свои и присоединять чужие электроны зависит от его энергетических характеристик (энергии ионизации и энергии сродства к электрону). Какие же атомы более склонны отдавать свои электроны, а какие – принимать чужие?
Для ответа на этот вопрос сведем в таблицу 15 все, что нам известно об изменении этих склонностей в системе элементов.

Таблица 15. Изменение склонности атомов к отдаче своих и присоединению чужих электронов

Теперь рассмотрим, сколько же электронов атом может отдать.
Во-первых, в химических реакциях атом может отдавать только валентные электроны, так как отдавать остальные энергетически крайне невыгодно. Во-вторых, атом "легко"отдает (если склонен) только первый электрон, второй электрон он отдает значительно труднее (в 2-3 раза), а третий – еще труднее (в 4-5 раз). Таким образом, атом может отдать один, два и, значительно реже, три электрона .
А сколько электронов атом может принять?
Во-первых, в химических реакциях атом может принимать электроны только на валентные подуровни. Во-вторых, выделение энергии происходит только при присоединении первого электрона (и то далеко не всегда). Присоединение второго электрона всегда энергетически невыгодно, а третьего – тем более. Тем не менее, атом может присоединить один, два и (крайне редко) три электрона , как правило, столько, сколько ему не хватает для заполнения своих валентных подуровней.
Энергетические затраты на ионизацию атомов и на присоединение к ним второго или третьего электрона компенсируются за счет энергии, выделяющейся при образовании химических связей. 4.Как меняется электронная оболочка у атомов калия, кальция и скандия при отдаче ими своих электронов? Приведите уравнения отдачи атомами электронов и сокращенные электронные формулы атомов и ионов.
5.Как меняется электронная оболочка у атомов хлора, серы и фосфора при присоединении ими чужих электронов? Приведите уравнения присоединения электронов и сокращенные электронные формулы атомов и ионов.
6.Используя приложение 7, определите, какая энергия выделится при присоединении электронов ко всем атомам натрия общей массой 1 г.
7.Используя приложение 7, определите, какую энергию необходимо затратить для отрыва "лишних"электронов у 0,1 моля ионов Br– ?

Содержание статьи

МЫШЬЯК – химический элемент V группы периодической таблицы, относится к семейству азота. Относительная атомная масса 74,9216. В природе мышьяк представлен только одним стабильным нуклидом 75 As. Искусственно получены также более десяти его радиоактивных изотопов с периодом полураспада от нескольких минут до нескольких месяцев. Типичные степени окисления в соединениях –3, +3, +5. Название мышьяка в русском языке связывают с употреблением его соединений для истребления мышей и крыс; латинское название Arsenicum происходит от греческого «арсен» – сильный, мощный.

Исторические сведения.

Мышьяк относится к пяти «алхимическим» элементам, открытым в средние века (удивительно, но четыре из них – As, Sb, Bi и P находятся в одной группе периодической таблицы – пятой). В то же время соединения мышьяка были известны с древних времен, их применяли для производства красок и лекарств. Особенно интересно использование мышьяка в металлургии.

Несколько тысячелетий назад каменный век сменился бронзовым. Бронза – это сплав меди с оловом. Как полагают историки, первую бронзу отлили в долине Тигра и Евфрата, где-то между 30 и 25 вв. до н.э. В некоторых регионах выплавлялась бронза с особо ценными свойствами – она лучше отливалась и легче ковалась. Как выяснили современные ученые, это был сплав меди, содержащий от 1 до 7% мышьяка и не более 3% олова. Вероятно, поначалу при его выплавке спутали богатую медную руду малахит с продуктами выветривания некоторых тоже зеленых сульфидных медно-мышьяковых минералов. Оценив замечательные свойства сплава, древние умельцы затем уже специально искали мышьяковые минералы. Для поисков использовали свойство таких минералов давать при нагревании специфический чесночный запах. Однако со временем выплавка мышьяковой бронзы прекратилась. Скорее всего это произошло из-за частых отравлений при обжиге мышьяксодержащих минералов.

Конечно, мышьяк был известен в далеком прошлом лишь в виде его минералов. Так, в Древнем Китаем твердый минерал реальгар (сульфид состава As 4 S 4 , реальгар по-арабски означает «рудниковая пыль») использовали для резьбы по камню, однако при нагревании или на свету он «портился», так как превращался в As 2 S 3 . В 4 в. до н.э. Аристотель описал этот минерал под названием «сандарак». В I в. н.э. римский писатель и ученый Плиний Старший, и римский врач и ботаник Диоскорид описали минерал аурипигмент (сульфид мышьяка As 2 S 3). В переводе с латыни название минерала означает «золотая краска»: он использовался как желтый краситель. В 11 в. алхимики различали три «разновидности» мышьяка: так называемый белый мышьяк (оксид As 2 O 3), желтый мышьяк (сульфид As 2 S 3) и красный мышьяк (сульфид As 4 S 4). Белый мышьяк получался при возгонке примесей мышьяка при обжиге медных руд, содержащих этот элемент. Конденсируясь из газовой фазы, оксид мышьяка оседал в виде белого налета. Белый мышьяк использовали с древних времен для уничтожения вредителей, а также...

В 13 в. Альберт фон Больштедт (Альберт Великий) получил металлоподобное вещество, нагревая желтый мышьяк с мылом; возможно, это был первый образец мышьяка в виде простого вещества, полученный искусственно. Но это вещество нарушало мистическую «связь» семи известных металлов с семью планетами; вероятно, поэтому алхимики считали мышьяк «незаконнорожденным металлом». В то же время они обнаружили его свойство придавать меди белый цвет, что дало повод называть его «средством, отбеливающим Венеру (то есть медь)».

Мышьяк был однозначно идентифицирован как индивидуальное вещество в середине 17 в., когда немецкий аптекарь Иоганн Шрёдер получил его в сравнительно чистом виде восстановлением оксида древесным углем. Позднее французский химик и врач Никола Лемери получил мышьяк, нагревая смесь его оксида с мылом и поташом. В 18 в. мышьяк уже был хорошо известен как необычный «полуметалл». В 1775 шведский химик К.В.Шееле получил мышьяковую кислоту и газообразный мышьяковистый водород, а в 1789 А.Л.Лавуазье, наконец, признал мышьяк самостоятельным химическим элементом. В 19 в. были открыты органические соединения, содержащие мышьяк.

Мышьяк в природе.

В земной коре мышьяка немного – около 5·10 –4 % (то есть 5 г на тонну), примерно столько же, сколько германия, олова, молибдена, вольфрама или брома. Часто мышьяк в минералах встречается совместно с железом, медью, кобальтом, никелем.

Состав минералов, образуемых мышьяком (а их известно около 200), отражает «полуметаллические» свойства этого элемента, который может находиться как в положительной, так и в отрицательной степени окисления и соединяться со многими элементами; в первом случае мышьяк может играть роль металла (например, в сульфидах), во втором – неметалла (например, в арсенидах). Сложный состав ряда минералов мышьяка отражает его способность, с одной стороны, частично заменять в кристаллической решетке атомы серы и сурьмы (ионные радиусы S –2 , Sb –3 и As –3 близки и составляют соответственно 0,182, 0,208 и 0,191 нм), с другой – атомы металлов. В первом случае атомы мышьяка имеют скорее отрицательную степень окисления, во втором – положительную.

Электроотрицательность мышьяка (2,0) мала, но выше, чем у сурьмы (1,9) и у большинства металлов, поэтому степень окисления –3 наблюдается для мышьяка лишь в арсенидах металлов, а также в стибарсене SbAs и сростках этого минерала с кристаллами чистых сурьмы или мышьяка (минерал аллемонтит). Многие соединения мышьяка с металлами, судя по их составу, относятся скорее к интерметаллическим соединениям, а не к арсенидам; некоторые из них отличаются переменным содержанием мышьяка. В арсенидах может присутствовать одновременно несколько металлов, атомы которых при близком радиусе ионов замещают друг друга в кристаллической решетке в произвольных соотношениях; в таких случаях в формуле минерала символы элементов перечисляются через запятую. Все арсениды имеют металлический блеск, это непрозрачные, тяжелые минералы, твердость их невелика.

Примером природных арсенидов (их известно около 25) могут служить минералы лёллингит FeAs 2 (аналог пирита FeS 2), скуттерудит CoAs 2–3 и никельскуттерудит NiAs 2–3 , никелин (красный никелевый колчедан) NiAs, раммельсбергит (белый никелевый колчедан) NiAs 2 , саффлорит (шпейсовый кобальт) CoAs 2 и клиносаффлорит (Co,Fe,Ni)As 2 , лангисит (Co,Ni)As, сперрилит PtAs 2 , маухерит Ni 11 As 8 , орегонит Ni 2 FeAs 2 , альгодонит Cu 6 As. Из-за высокой плотности (более 7 г/см 3) многие из них геологи относят к группе «сверхтяжелых» минералов.

Наиболее распространенный минерал мышьяка – арсенопирит (мышьяковый колчедан) FeAsS можно рассматривать как продукт замещения серы в пирите FeS 2 атомами мышьяка (в обычном пирите тоже всегда есть немного мышьяка). Такие соединения называют сульфосолями. Аналогично образовались минералы кобальтин (кобальтовый блеск) CoAsS, глаукодот (Co,Fe)AsS, герсдорфит (никелевый блеск) NiAsS, энаргит и люцонит одинакового состава, но разного строения Cu 3 AsS 4 , прустит Ag 3 AsS 3 – важная серебряная руда, которую иногда называют «рубиновым серебром» из-за ярко-красного цвета, она часто встречается в верхних слоях серебряных жил, где найдены великолепные большие кристаллы этого минерала. Сульфосоли могут содержать и благородные металлы платиновой группы; это минералы осарсит (Os,Ru)AsS, руарсит RuAsS, ирарсит (Ir,Ru,Rh,Pt)AsS, платарсит (Pt,Rh,Ru)AsS, холлингуортит (Rd,Pt,Pd)AsS. Иногда роль атомов серы в таких двойных арсенидах играют атомы сурьмы, например, в сейняйоките (Fe,Ni)(Sb,As) 2 , арсенопалладините Pd 8 (As,Sb) 3 , арсенполибазите (Ag,Cu) 16 (Ar,Sb) 2 S 11 .

Интересно строение минералов, в которых мышьяк присутствует одновременно с серой, но играет скорее роль металла, группируясь вместе с другими металлами. Таковы минералы арсеносульванит Cu 3 (As,V)S 4 , арсеногаухекорнит Ni 9 BiAsS 8 , фрейбергит (Ag,Cu,Fe) 12 (Sb,As) 4 S 13 , теннантит (Cu,Fe) 12 As 4 S 13 , аргентотеннантит (Ag,Cu) 10 (Zn,Fe) 2 (As,Sb) 4 S 13 , голдфилдит Cu 12 (Te,Sb,As) 4 S 13 , жиродит (Cu,Zn,Ag) 12 (As,Sb) 4 (Se,S) 13 . Можно представить себе, какое сложное строение имеет кристаллическая решетка всех этих минералов.

Однозначно положительную степень окисления мышьяк имеет в природных сульфидах – желтом аурипигменте As 2 S 3 , оранжево-желтом диморфите As 4 S 3 , оранжево-красном реальгаре As 4 S 4 , карминово-красном гетчеллите AsSbS 3 , а также в бесцветном оксиде As 2 O 3 , который встречается в виде минералов арсенолита и клаудетита с разной кристаллической структурой (они образуются в результате выветривания других мышьяковых минералов). Обычно эти минералы встречаются в виде небольших вкраплений. Но в 30-е годы 20 в. в южной части Верхоянского хребта были найдены огромные кристаллы аурипигмента размером до 60 см и массой до 30 кг.

В природных солях мышьяковой кислоты H 3 AsO 4 – арсенатах (их известно около 90) степень окисления мышьяка – +5; примером могут служить ярко-розовый эритрин (кобальтовый цвет) Co 3 (AsO 4) 2 ·8H 2 O, зеленые аннабергит Ni 3 (AsO 4) 2 ·8H 2 O, скородит Fe III AsO 4 ·2H 2 O и симплезит Fe II 3 (AsO 4) 2 ·8H 2 O, буро-красный гаспарит (Ce,La,Nd)ArO 4 , бесцветные гёрнесит Mg 3 (AsO 4) 2 ·8H 2 O, рузвельтит BiAsO 4 и кёттигит Zn 3 (AsO 4) 2 ·8H 2 O, а также множество основных солей, например, оливенит Cu 2 AsO 4 (OH), арсенобисмит Bi 2 (AsO 4)(OH) 3 . А вот природные арсениты – производные мышьяковистой кислоты H 3 AsO 3 очень редки.

В центральной Швеции есть знаменитые лангбановские железо-марганцевые карьеры, в которых нашли и описали более 50 образцов минералов, представляющих собой арсенаты. Некоторые из них нигде больше не встречаются. Они образовались когда-то в результате реакции мышьяковой кислоты H 3 AsO 4 с пирокроитом Mn(OH) 2 при не очень высоких температурах. Обычно же арсенаты – продукты окисления сульфидных руд. Они, как правило, не имеют промышленного применения, но некоторые из них очень красивые и украшают минералогические коллекции.

В названиях многочисленных минералов мышьяка можно встретить топонимы (Лёллинг в Австрии, Фрайберг в Саксонии, Сейняйоки в Финляндии, Скуттеруд в Норвегии, Аллемон во Франции, канадский рудник Лангис и рудник Гетчелл в Неваде, штат Орегон в США и др.), имена геологов, химиков, политических деятелей и т.п. (немецкий химик Карл Раммельсберг, мюнхенский торговец минералами Вильям Маухер, владелец шахты Иоганн фон Герсдорф, французский химик Ф.Клоде, английские химики Джон Пруст и Смитсон Теннант, канадский химик Ф.Л.Сперри, президент США Рузвельт и др.), названия растений (так, название минерала саффлорита произошело от шафрана), начальные буквы названий элементов – мышьяка, осмия, рутения, иридия, палладия, платины, греческие корни («эритрос» – красный, «энаргон» – видимый, «литос» – камень) и т.д. и т.п.

Интересно старинное название минерала никелина (NiAs) – купферникель. Средневековые немецкие горняки называли Никелем злого горного духа, а «купферникелем» (Kupfernickel, от нем. Kupfer – медь) – «чертову медь», «фальшивую медь». Медно-красные кристаллы этой руды внешне очень походили на медную руду; ее применяли в стекловарении для окрашивания стекол в зеленый цвет. А вот медь из нее никому получить не удавалось. Эту руду в 1751 исследовал шведский минералог Аксель Кронштедт и выделил из нее новый металл, назвав его никелем.

Поскольку мышьяк химически достаточно инертен, он встречается и в самородном состоянии – в виде сросшихся иголочек или кубиков. Такой мышьяк обычно содержит от 2 до 16% примесей – чаще всего это Sb, Bi, Ag, Fe, Ni, Co. Его легко растереть в порошок. В России самородный мышьяк геологи находили в Забайкалье, в Амурской области, встречается он и в других странах.

Уникален мышьяк тем, что он встречается повсюду – в минералах, горных породах, почве, воде, растениях и животных, недаром его называют «вездесущным». Распределение мышьяка по разным регионам земного шара во многом определялось в процессах формирования литосферы летучестью его соединений при высокой температуре, а также процессами сорбции и десорбции в почвах и осадочных породах. Мышьяк легко мигрирует, чему способствует достаточно высокая растворимость некоторых его соединений в воде. Во влажном климате мышьяк вымывается из почвы и уносится грунтовыми водами, а затем – реками. Среднее содержание мышьяка в реках – 3 мкг/л, в поверхностных водах – около 10 мкг/л, в воде морей и океанов – всего около 1 мкг/л. Это объясняется сравнительно быстрым осаждением его соединений из воды с накоплением в донных отложениях, например, в железомарганцевых конкрециях.

В почвах содержание мышьяка составляет обычно от 0,1 до 40 мг/кг. Но в области залегания мышьяковых руд, а также в вулканических районах в почве может содержаться очень много мышьяка – до 8 г/кг, как в некоторых районах Швейцарии и Новой Зеландии. В таких местах гибнет растительность, а животные болеют. Это характерно для степей и пустынь, где мышьяк не вымывается из почвы. Обогащены по сравнению со средним содержанием и глинистые породы – в них содержится вчетверо больше мышьяка, чем в среднем. В нашей стране предельно допустимой концентрацией мышьяка в почве считается 2 мг/кг.

Мышьяк может выноситься из почвы не только водой, но и ветром. Но для этого он должен сначала превратиться в летучие мышьякорганические соединения. Такое превращение происходит в результате так называемого биометилирования – присоединения метильной группы с образованием связи C–As; этот ферментативный процесс (он хорошо известен для соединений ртути) происходит при участии кофермента метилкобаламина – метилированного производного витамина В 12 (он есть и в организме человека). Биометилирование мышьяка происходит как в пресной, так и в морской воде и приводит к образованию мышьякорганических соединений – метиларсоновой кислоты CH 3 AsO(OH) 2 , диметиларсиновой (диметилмышьяковой, или какодиловой) кислоты (CH 3) 2 As(O)OH, триметиларсина (CH 3) 3 As и его оксида (CH 3) 3 As = O, которые также встречаются в природе. С помощью 14 С-меченого метилкобаламина и 74 As-меченого гидроарсената натрия Na 2 HAsO 4 было показано, что один из штаммов метанобактерий восстанавливает и метилирует эту соль до летучего диметиларсина. В результате в воздухе сельских районов содержится в среднем 0,001 – 0,01 мкг/м 3 мышьяка, в городах, где нет специфических загрязнений – до 0,03 мкг/м 3 , а вблизи источников загрязнения (заводы по выплавке цветных металлов, электростанции, работающие на угле с высоким содержание мышьяка, и др.) концентрация мышьяка в воздухе может превысить 1 мкг/м 3 . Интенсивность выпадения мышьяка в районах расположения промышленных центров составляет 40 кг/км 2 в год.

Образование летучих соединений мышьяка (триметиларсин, например, кипит всего при 51° С) вызывало в 19 в. многочисленные отравления, поскольку мышьяк содержался в штукатурке и даже в зеленой краске для обоев. В виде краски раньше использовали зелень Шееле Cu 3 (AsO 3) 2 · n H 2 O и парижскую, или швейфуртскую зелень Cu 4 (AsO 2) 6 (CH 3 COO) 2 . В условиях высокой влажности и появления плесени из такой краски образуются летучие мышьякорганические производные. Предполагают, что этот процесс мог быть причиной медленного отравления Наполеона в последние годы его жизни (как известно, мышьяк был найден в волосах Наполеона спустя полтора столетия после его смерти).

Мышьяк в заметных количествах содержится в некоторых минеральных водах. Российские нормативы устанавливают, что в лечебно-столовых минеральных водах мышьяка должно быть не более 700 мкг/л. В Джермуке его может быть в несколько раз больше. Выпитые один-два стакана «мышьяковой» минеральной воды человеку вреда не принесут: чтобы смертельно отравиться, надо выпить сразу литров триста... Но понятно, что такую воду нельзя пить постоянно вместо обычной воды.

Химики выяснили, что мышьяк в природных водах может находиться в разных формах, что существенно с точки зрения его анализа, способов миграции, а также разной токсичности этих соединений; так, соединения трехвалентного мышьяка в 25–60 раз токсичнее, чем пятивалентного. Соединения As(III) в воде присутствуют обычно в форме слабой мышьяковистой кислоты H 3 AsO 3 (рК а = 9,22), а соединения As(V) – в виде значительно более сильной мышьяковой кислоты H 3 AsO 4 (рК а = 2,20) и ее депротонированых анионов H 2 AsO 4 – и HAsO 4 2– .

В живом веществе мышьяка в среднем содержится 6·10 –6 %, то есть 6 мкг/кг. Некоторые морские водоросли способны концентрировать мышьяк в такой степени, что становятся опасными для людей. Более того, эти водоросли могут расти и размножаться в чистых растворах мышьяковистой кислоты. Такие водоросли используются в некоторых азиатских странах в качестве средства против крыс. Даже в чистых водах норвежских фьордов водоросли могут содержать мышьяк в количестве до 0,1 г/кг. У человека мышьяк содержится в мозговой ткани и в мышцах, накапливается он в волосах и ногтях.

Свойства мышьяка.

Хотя с виду мышьяк напоминает металл, он все же скорее является неметаллом: не образует солей, например, с серной кислотой, но сам является кислотообразующим элементом. Поэтому этот элемент часто называют полуметаллом. Мышьяк существует в нескольких аллотропных формах и в этом отношении весьма напоминает фосфор. Самая устойчивая из них – серый мышьяк, весьма хрупкое вещество, которое на свежем изломе имеет металлический блеск (отсюда название «металлический мышьяк»); его плотность 5,78 г/см 3 . При сильном нагревании (до 615° С) он возгоняется без плавления (такое же поведение характерно для иода). Под давлением 3,7 МПа (37 атм) мышьяк плавится при 817° С, что значительно выше температуры возгонки. Электропроводность серого мышьяка в 17 раз меньше, чем у меди, но в 3,6 раза выше, чем у ртути. С повышением температуры его электропроводность, как и у типичных металлов, снижается – примерно в такой же степени, как у меди.

Если пары мышьяка очень быстро охладить до температуры жидкого азота (–196° С), получается прозрачное мягкое вещество желтого цвета, напоминающее желтый фосфор, его плотность (2,03 г/см 3) значительно ниже, чем у серого мышьяка. Пары мышьяка и желтый мышьяк состоят из молекул As 4 , имеющих форму тетраэдра – и здесь аналогия с фосфором. При 800° С начинается заметная диссоциация паров с образованием димеров As 2 , а при 1700° С остаются только молекулы As 2 . При нагревании и под действием ультрафиолета желтый мышьяк быстро переходит в серый с выделением тепла. При конденсации паров мышьяка в инертной атмосфере образуется еще одна аморфная форма этого элемента черного цвета. Если пары мышьяка осаждать на стекле, образуется зеркальная пленка.

Строение внешней электронной оболочки у мышьяка такое же, как у азота и фосфора, но в отличие от них, у него 18 электронов на предпоследней оболочке. Как и фосфор, он может образовать три ковалентные связи (конфигурация 4s 2 4p 3), и на атоме As остается неподеленная пара. Знак заряда на атоме As в соединениях с ковалентными связями зависит от электроотрицательности соседних атомов. Участие неподеленной пары в комплексообразовании для мышьяка значительно затруднено по сравнению с азотом и фосфором.

Если в атоме As задействованы d-орбитали, возможно распаривание 4s-электронов с образованием пяти ковалентных связей. Такая возможность практически осуществляется только в соединении с фтором – в пентафториде AsF 5 (известен и пентахлорил AsCl 5 , но он исключительно нестоек и быстро разлагается даже при –50° С).

В сухом воздухе мышьяк устойчив, но во влажном тускнеет и покрывается черным оксидом. При возгонке пары мышьяка легко сгорают на воздухе голубым пламенем с образованием тяжелых белых паров мышьяковистого ангидрида As 2 O 3 . Этот оксид – один из наиболее распространенных мышьяксодержащих реагентов. Он обладает амфотерными свойствами:

As 2 O 3 + 6HCl ® 2AsCl 3 + 3H 2 O,

2 O 3 + 6NH 4 OH ® 2(NH 4) 3 AsO 3 + 3H 2 O.

При окислении As 2 O 3 образуется кислотный оксид – мышьяковый ангидрид:

As 2 O 3 + 2HNO 3 ® As 2 O 5 + H 2 O + NO 2 + NO.

При его взаимодействии с содой получают гидроарсенат натрия, который находит применение в медицине:

As 2 O 3 + 2Na 2 CO 3 + H 2 O ® 2Na 2 HAsO 4 + 2CO 2 .

Чистый мышьяк достаточно инертен; вода, щелочи и кислоты, не обладающие окислительными свойствами, на него не действуют. Разбавленная азотная кислота окисляет его до ортомышьяковистой кислоты H 3 AsO 3 , а концентрированная – до ортомышьяковой H 3 AsO 4:

3As + 5HNO 3 + 2H 2 O ® 3H 3 AsO 4 + 5NO.

Аналогично реагирует и оксид мышьяка(III):

3As 2 O 3 + 4HNO 3 + 7H 2 O ® 6H 3 AsO 4 + 4NO.

Мышьяковая кислота является кислотой средней силы, чуть слабее фосфорной. В отличие от нее, мышьяковистая кислота очень слабая, по своей силе соответствующая борной кислоте H 3 BO 3 . В ее растворах существует равновесие H 3 AsO 3 HAsO 2 + H 2 O. Мышьяковистая кислота и ее соли (арсениты) – сильные восстановители:

HAsO 2 + I 2 + 2H 2 O ® H 3 AsO 4 + 2HI.

Мышьяк реагирует с галогенами и серой. Хлорид AsCl 3 – бесцветная маслянистая жидкость, дымящая на воздухе; водой гидролизуется: AsCl 3 + 2H 2 O ® HAsO 2 + 3HCl. Известны бромид AsBr 3 и иодид AsI 3 , которые также разлагаются водой. В реакциях мышьяка с серой образуются сульфиды различного состава – вплоть до Ar 2 S 5 . Сульфиды мышьяка растворяются в щелочах, в растворе сульфида аммония и в концентрированной азотной кислоте, например:

As 2 S 3 + 6KOH ® K 3 AsO 3 + K 3 AsS 3 + 3H 2 O,

2 S 3 + 3(NH 4) 2 S ® 2(NH 4) 3 AsS 3 ,

2 S 5 + 3(NH 4) 2 S ® 2(NH 4) 3 AsS 4 ,

As 2 S 5 + 40HNO 3 + 4H 2 O ® 6H 2 AsO 4 + 15H 2 SO 4 + 40NO.

В этих реакциях образуются тиоарсениты и тиоарсенаты – соли соответствующих тиокислот (аналогичных тиосерной кислоте).

В реакции мышьяка с активными металлами образуются солеобразные арсениды, которые гидролизуются водой Особенно быстро реакция идет в кислой среде с образованием арсина: Ca 3 As 2 + 6HCl ® 3CaCl 2 + 2AsH 3 . Арсениды малоактивных металлов – GaAs, InAs и др. имеют алмазоподобную атомную решетку. Арсин – бесцветный очень ядовитый газ без запаха, но примеси придают ему запах чеснока. Арсин медленно разлагается на элементы уже при комнатной температуре и быстро – при нагревании.

Мышьяк образует множество мышьякорганических соединений, например, тетраметилдиарсин (CH 3) 2 As–As(CH 3) 2 . Еще в 1760 директор Сервской фарфоровой фабрики Луи Клод Каде де Гассикур, перегоняя ацетат калия с оксидом мышьяка(III), неожиданно получил содержащую мышьяк дымящуюся жидкость с отвратительным запахом, которую назвали аларсином, или жидкостью Каде. Как выяснили впоследствии, в этой жидкости содержались впервые полученные органические производные мышьяка: так называемая окись какодила, которая образовалась в результате реакции

4CH 3 COOK + As 2 O 3 ® (CH 3) 2 As–O–As(CH 3) 2 + 2K 2 CO 3 + 2CO 2 , и дикакодил (CH 3) 2 As–As(CH 3) 2 . Какодил (от греч. «какос» – дурной) был одним из первых радикалов, открытых в органических соединениях.

В 1854 парижский профессор химии Огюст Каур синтезировал триметиларсин действием метилиодида на арсенид натрия: 3CH 3 I + AsNa 3 ® (CH 3) 3 As + 3NaI.

В последующем для синтезов использовали трихлорид мышьяка, например,

(CH 3) 2 Zn + 2AsCl 3 ® 2(CH 3) 3 As + 3ZnCl 2 .

В 1882 были получены ароматические арсины действием металлического натрия на смесь арилгалогенидов и трихлорида мышьяка: 3C 6 H 5 Cl + AsCl 3 + 6Na ® (C 6 H 5) 3 As + 6NaCl. Наиболее интенсивно химия органических производных мышьяка развивалась в 20-е годы 20 в., когда у некоторых из них были обнаружены противомикробное, а также раздражающее и кожно-нарывное действие. В настоящее время синтезированы десятки тысяч мышьякорганических соединений.

Получение мышьяка.

Мышьяк получают, в основном, как побочный продукт переработки медных, свинцовых, цинковых и кобальтовых руд, а также при добыче золота. Некоторые полиметаллические руды содержат до 12% мышьяка. При нагревании таких руд до 650–700° С в отсутствие воздуха мышьяк возгоняется, а при нагревании на воздухе образуется летучий оксид As 2 O 3 – «белый мышьяк». Его конденсируют и нагревают с углем, при этом происходит восстановление мышьяка. Получение мышьяка – вредное производство. Раньше, когда слово «экология» было известно лишь узким специалистам, «белый мышьяк» выпускали в атмосферу, и он оседал на соседних полях и лесах. В отходящих газах мышьяковых заводов содержится от 20 до 250 мг/м 3 As 2 O 3 , тогда как обычно в воздухе содержится примерно 0,00001мг/м 3 . Среднесуточной допустимой концентрацией мышьяка в воздухе считают всего 0,003 мг/м 3 . Парадоксально, но и сейчас намного сильнее загрязняют окружающую среду мышьяком не заводы по его производству, а предприятия цветной металлургии и электростанции, сжигающие каменный уголь. В донных осадках вблизи медеплавильных заводов содержится огромное количество мышьяка – до 10 г/кг. Мышьяк может попасть в почву и с фосфорными удобрениями.

И еще один парадокс: получают мышьяка больше, чем его требуется; это довольно редкий случай. В Швеции «ненужный» мышьяк вынуждены были даже захоранивать в железобетонных контейнерах в глубоких заброшенных шахтах.

Главный промышленный минерал мышьяка – арсенопирит FeAsS. Крупные медно-мышьяковые месторождения есть в Грузии, Средней Азии и Казахстане, в США, Швеции, Норвегии и Японии, мышьяково-кобальтовые – в Канаде, мышьяково-оловянные – в Боливии и Англии. Кроме того, известны золото-мышьяковые месторождения в США и Франции. Россия располагает многочисленными месторождениями мышьяка в Якутии, на Урале, в Сибири, Забайкалье и на Чукотке.

Определение мышьяка.

Качественной реакцией на мышьяк является осаждение желтого сульфида As 2 S 3 из солянокислых растворов. Следы определяют реакцией Марша или методом Гутцейта: полоски бумаги, смоченные HgCl 2 , темнеют в присутствии арсина, который восстанавливает сулему до ртути.

В последние десятилетия разработаны различные чувствительные методы анализа, с помощью которых можно количественно определить ничтожные концентрации мышьяка, например, в природных водах. В их числе пламенная атомно-абсорбционная спектрометрия, атомно-эмиссионная спектрометрия, масс-спектрометрия, атомно-флуоресцентная спектрометрия, нейтронный активационный анализ... Если мышьяка в воде очень мало, может потребоваться предварительное концентрирование образцов. Используя такое концентрирование, группа харьковских ученых из Национальной академии наук Украины разработала в 1999 экстракционно-рентгенофлуоресцентный метод определения мышьяка (а также селена) в питьевой воде с чувствительностью до 2,5–5 мкг/л.

Для раздельного определения соединений As(III) и As(V) их предварительно отделяют друг от друга с помощью хорошо известных экстракционных и хроматографических методов, а также используя селективное гидрирование. Экстракцию обычно осуществляют с помощью дитиокарбамата натрия или пирролидиндитиокарбамата аммония. Эти соединения образуют с As(III) нерастворимые в воде комплексы, которые можно извлечь хлороформом. Затем с помощью окисления азотной кислотой мышьяк можно снова перевести в водную фазу. Во второй пробе с помощью восстановителя переводят арсенат в арсенит, а затем производят аналогичную экстракцию. Так определяют «общий мышьяк», а затем вычитанием первого результата из второго определяют As(III) и As(V) порознь. Если в воде есть органические соединения мышьяка, их обычно переводят в метилдииодарсин CH 3 AsI 2 или в диметилиодарсин (CH 3) 2 AsI, которые определяют тем или иным хроматографическим методом. Так, с помощью высокоэффективной жидкостной хроматографии можно определить нанограммовые количества вещества.

Многие мышьяковые соединения можно анализировать так называемым гидридным методом. Он заключается в селективном восстановлении анализируемого вещества в летучий арсин. Так, неорганические арсениты восстанавливаются до AsH 3 при рН 5 – 7, а при рН

Чувствителен и нейтронно-активационный метод. Он заключается в облучении образца нейтронами, при этом ядра 75 As захватывают нейтроны и превращаются в радионуклид 76 As, который обнаруживается по характерной радиоактивности с периодом полураспада 26 часов. Так можно обнаружить до 10 –10 % мышьяка в образце, т.е. 1 мг на 1000 т вещества

Применение мышьяка.

Около 97% добываемого мышьяка используют в виде его соединений. Чистый мышьяк применяют редко. В год во всем мире получают и используют всего несколько сотен тонн металлического мышьяка. В количестве 3% мышьяк улучшает качество подшипниковых сплавов. Добавки мышьяка к свинцу заметно повышают его твердость, что используется при производстве свинцовых аккумуляторов и кабелей. Малые добавки мышьяка повышают коррозионную устойчивость и улучшают термические свойства меди и латуни. Мышьяк высокой степени очистки применяют в производстве полупроводниковых приборов, в которых его сплавляют с кремнием или с германием. Мышьяк используют и в качестве легирующей добавки, которая придает «классическим» полупроводникам (Si, Ge) проводимость определенного типа.

Мышьяк как ценную присадку используют и в цветной металлургии. Так, добавка к свинцу 0,2...1% As значительно повышает его твердость. Уже давно заметили, что если в расплавленный свинец добавить немного мышьяка, то при отливке дроби получаются шарики правильной сферической формы. Добавка 0,15...0,45% мышьяка в медь увеличивает ее прочность на разрыв, твердость и коррозионную стойкость при работе в загазованной среде. Кроме того, мышьяк увеличивает текучесть меди при литье, облегчает процесс волочения проволоки. Добавляют мышьяк в некоторые сорта бронз, латуней, баббитов, типографских сплавов. И в то же время мышьяк очень часто вредит металлургам. В производстве стали и многих цветных металлов умышленно идут на усложнение процесса – лишь бы удалить из металла весь мышьяк. Присутствие мышьяка в руде делает производство вредным. Вредным дважды: во-первых, для здоровья людей; во-вторых, для металла – значительные примеси мышьяка ухудшают свойства почти всех металлов и сплавов.

Более широкое применение имеют различные соединения мышьяка, которые ежегодно производятся десятками тысяч тонн. Оксид As 2 O 3 применяют в стекловарении в качестве осветлителя стекла. Еще древним стеклоделам было известно, что белый мышьяк делает стекло «глухим», т.е. непрозрачным. Однако небольшие добавки этого вещества, напротив, осветляют стекло. Мышьяк и сейчас входит в рецептуры некоторых стекол, например, «венского» стекла для термометров.

Соединения мышьяка применяют в качестве антисептика для предохранения от порчи и консервирования шкур, мехов и чучел, для пропитки древесины, как компонент необрастающих красок для днищ судов. В этом качестве используют соли мышьяковой и мышьяковистой кислот: Na 2 HAsO 4 , PbHAsO 4 , Ca 3 (AsO 3) 2 и др. Биологическая активность производных мышьяка заинтересовала ветеринаров, агрономов, специалистов санэпидслужбы. В итоге появились мышьяксодержащие стимуляторы роста и продуктивности скота, противоглистные средства, лекарства для профилактики болезней молодняка на животноводческих фермах. Соединения мышьяка (As 2 O 3 , Ca 3 As 2 , Na 3 As, парижская зелень) используются для борьбы с насекомыми, грызунами, а также с сорняками. Раньше такое применение было широко распространено, особенно при обработке фруктовых деревьев, табачных и хлопковых плантаций, для избавления домашнего скота от вшей и блох, для стимулирования прироста в птицеводстве и свиноводстве, а также для высушивания хлопчатника перед уборкой. Еще в Древнем Китае оксидом мышьяка обрабатывали рисовые посевы, чтобы уберечь их от крыс и грибковых заболеваний и таким образом поднять урожай. А в Южном Вьетнаме американские войска применяли в качестве дефолианта какодиловую кислоту («Эйджент блю»). Сейчас из-за ядовитости соединений мышьяка их использование в сельском хозяйстве ограничено.

Важные области применения соединений мышьяка – производство полупроводниковых материалов и микросхем, волоконной оптики, выращивание монокристаллов для лазеров, пленочная электроника. Для введения небольших строго дозированных количеств этого элемента в полупроводники применяют газообразный арсин. Арсениды галлия GaAs и индия InAs применяют при изготовлении диодов, транзисторов, лазеров.

Ограниченное применение находит мышьяк и в медицине. Изотопы мышьяка 72 As, 74 As и 76 As с удобными для исследований периодами полураспада (26 ч, 17,8 сут. и 26,3 ч соответственно) применяются для диагностики различных заболеваний.

Илья Леенсон



Контрольная работа

    Напишите электронные формулы атомов мышьяка и ванадия. Укажите, на каких подуровнях расположены валентные электроны в атомах этих элементов.

Электронные формулы отображают распределение электронов в атоме по энергетическим уровням, подуровням (атомным орбиталям). Электронная конфигурация обозначается группами символов nl x , где n – главное квантовое число, l – орбитальное квантовое число (вместо него указывают соответствующее буквенное обозначение – s , p , d , f ), x – число электронов в данном подуровне (орбитали). При этом следует учитывать, что электрон занимает тот энергетический подуровень, на котором он обладает наименьшей энергией – меньшая сумма n +1 (правило Клечковского). Последовательность заполнения энергетических уровней и подуровней следующая:

1s→2s→2р→3s→3р→4s→3d→4р→5s→4d→5р→6s→(5d 1) →4f→5d→6р→7s→(6d 1-2)→5f→6d→7р

Так как число электронов в атоме того или иного элемента равно его порядковому номеру в таблице Д.И. Менделеева, то для элементов мышьяка (Аs порядковый № 33) и ванадия(V –порядковый № 23) электронные формулы имеют вид:

V 23 1s 2 2s 2 2р 6 3s 2 3р 6 4s 2 3d 3

Аs 33 1s 2 2s 2 2р 6 3s 2 3р 6 4s 2 3d 10 4р 3

Валентные электроны ванадия - 4s 2 3d 3 - находятся на 4s и 3d подуровнях;

Валентные электроны мышьяка 4s 2 4р 3 находятся на 4s и 4р подуровнях. Таким обра-зом, эти элементы не являются электронными аналогами и не должны размещаться в одной и той же подгруппе. Но на валентных орбиталях атомов этих элементов находится одинаковое число электронов – 5. Поэтому оба элемента помещают в одну и ту же группу периодической системы Д.И.Менделеева.

    У кого элемента – фосфора или сурьмы- ярче выражены окислительные свойства? Дайте ответ на основе сравнения электронных структур атомов этих элементов.

Фосфор 15-ый элемент в Периодической системе Д.И. Менделеева. Его электронная формула 1s 2 2s 2 2р 6 3s 2 3р 3

Сурьма 51-ый элемент в Периодической системе Д.И. Менделеева. Ее электронная формула 1s 2 2s 2 2р 6 3s 2 3р 6 4s 2 3d 10 4р 6 5s 2 4d 10 5р 3

На внешних электронных подуровнях этих элементов по 5 электронов, следовательно они относятся к 5-ой группе периодической системы.

Окислительные свойства связаны с положением элементов в Периодической системе Д.И. Менделеева. В каждой группе Периодической системы элемент с более высоким порядковым номером обладает более ярко выраженными восстановительными свойствами в своей группе, а элемент с меньшим порядковым номером - более сильными окислительными свойствами.

У фосфора окислительные свойства выражены сильнее, чем у сурьмы. так как радиус атома меньше и валентные электроны сильнее притягиваются к ядру.

    Почему у азота, кислорода, фтора, железа, кобальта и никеля максимальная валентность ниже номера группы, в которой расположены указанные элементы, а у их электронных аналогов максимальная валентность соответствует номеру группы?

Свойства элементов, формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядер их атомов.

Высшую степень окисления элемента определяет номер группы периодической системы Д.И. Менделеева, в которой он находится. Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении того количества электронов, которое необходимо для образования устойчивой восьмиэлектронной оболочки (ns 2 nр 6).

Так как у элементов второго периода отсутствует d-подуровень, то азот, кислород и фтор не могут достигать валентности равной номеру группы. У них нет возможности распаривать электроны. У фтора максимальная валентность может быть равной единице, у кислорода два, а у азота – три. Возбуждение 2s-электрона может происходить только на уровень с n = 3, что энергетически крайне невыгодно Для образования незаполненных АО необходимо, чтобы этот процесс был энергетически выгодным., но энергия, необходимая для перевода 2s -электрона на 3d - слишком велика. Взаимодействие атомов с образованием связи между ними происходит только при наличии орбиталей с близкими энергиями, т.е. орбиталей с одинаковым главным квантовым числом В отличие от азота, кислорода, фтора атомы фосфора серы, хлора могут образовывать соответственно пять, шесть, семь ковалентных связей.. В этом случае возможно участие 3s-электронов в образовании связей, поскольку d-АО (3d) имеют такое же главное квантовое число.

Для большинства d-элементов высшая валентность может отличаться от номера группы. Валентные возможности d-элемента в конкретном, случае определяются структурой электронной оболочки атома. d-элементы могут иметь минимальную валентность выше номера группы (медь, серебро) и ниже номера группы (железо, кобальт, никель).

    Термохимическое уравнение реакции:

СО(г)+2 H 2 (г)= CH 3 OH (ж)+128 кДж

Вычислите, при какой температуре наступает равновесие в этой системе?

При экзотермических реакциях энтальпия системы уменьшается и ΔH< 0 (Н 2 < H 1). Тепловые эффекты выражаются через ΔH.

В основе термохимических расчетов лежит закон Гесса (1840 г.): тепловой эффект реакции зависит только от природы и физического состояния исходных веществ и конечных продуктов, но не зависит от пути перехода.

В термохимических расчетах применяют чаще следствие из закона Гесса: тепловой эффект реакции (ΔHх.р) равен сумме энтальпий образования продуктов реакции за вычетом суммы энтальпий образования исходных веществ с учетом стехиометрических коэффициентов.

Энтропия S, так же энтальпия Н является свойством вещества, пропорциональным его количеству Энтропия является функцией состояния, т.е. ее изменение (ΔS) зависит только от начального (S 1) и конечного (S 2) состояния и не зависит от пути процесса:

ΔSх.р = ΣS 0 прод – ΣS 0 исх.

Так как энтропия растет с повышением температуры, то можно считать,

что мера беспорядка ≈ ТΔS. При Р =const и Т = const общую движущую силу процесса, которую обозначают ΔG, можно найти из соотношения:

ΔG = (Н 2 – H 1) – (TS 2 – TS 1); ΔG = ΔH – TΔS.

Химическое равновесие - состояние системы, в котором скорость прямой реакции (V 1) равна скорости обратной реакции (V 2). При химическом равновесии концентрации веществ остаются неизменными. Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются

В состояния равновесия

ΔG = 0 и ΔH = TΔS.

Находим ΔS. для данной системы:

S 0 (СО)=197,55∙10 -3 кДж/моль·К;

S 0 (Н 2)=130,52·10 -3 кДж/моль·К;

S 0 (СН 3 ОН)=126,78·10 -3 кДж/моль·К;

ΔSх.р=126,78·10 -3 -(197,55∙10 -3 +2·130,52·10 -3)=-331,81·10 -3

Из условия равновесия

ΔH = TΔS находим Т = ΔH/ΔS

    Вычислите температурный коэффициент реакции (γ), если константа скорости этой реакции при 120 градусах С равна 5,88∙10 -4 , а при 170 градусах С 6,7∙10 -2

Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле:

,

где v t 1 , v t 2 - скорости реакции соответственно при начальной (t 1) и конечной (t 2) температурах, а γ - температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры реагирующих веществ на 10º.

Отсюда следует, что

,

Исходя из условия задачи, следует, что:

, откуда γ 5 =113,94;

    В каком направлении произойдёт смещение равновесия в системах при повышении давления:

2NO+O 2 – 2NO 2

4HCI(г )+O 2 – 2H 2 O(г )+2CI 2

H 2 + S (к) – H 2 S

Принцип Ле Шателье (принцип смещения равновесия), устанавливает, что внешнее воздействие, выводящее систему из состояния термодинамического равновесия, вызывает в системе процессы, стремящиеся ослабить эффект воздействия.

При увеличении давления смещение равновесия связано с уменьшением общего объёма системы, а уменьшению давления сопутствуют физ. или хим.процессы, приводящие к увеличению объема.

2NO+O 2 → 2NO 2

2моля + 1моль → 2 моля

Увеличение давления приводит к смещению равновесия в сторону реакции, ведущей к образованию меньшего числа молекул. Следовательно равновесие смещается в сторону образования NО 2 V пр > V обр.

4HCI(г)+O 2 → 2H 2 O(г)+2CI 2

4 моля + 1 моль →4 моля

Увеличение давления приводит к смещению равновесия в сторону реакции, ведущей к образованию меньшего числа молекул. Следовательно V пр > V обр

H 2 +S(к) → H 2 S

в ходе реакции не происходит изменение объема. Следовательно изменение давления никак не влияет на смещение равновесия реакции.

Мышьяк - химический элемент группы азота (группа 15 таблицы Менделеева). Это серое с металлическим блеском хрупкое вещество (α-мышьяк) с ромбоэдрической кристаллической решеткой. При нагревании до 600°C As сублимирует. При охлаждении паров возникает новая модификация — желтый мышьяк. Выше 270°C все формы As переходят в черный мышьяк.

История открытия

О том, что такое мышьяк, было известно задолго до признания его химическим элементом. В IV в. до н. э. Аристотель упоминал о веществе под названием «сандарак», которое, как теперь полагают, было реальгаром, или сульфидом мышьяка. А в I веке н. э. писатели Плиний старший и Педаний Диоскорид описывали аурипигмент - краситель As 2 S 3 . В XI в. н. э. различались три разновидности «мышьяка»: белый (As 4 O 6), желтый (As 2 S 3) и красный (As 4 S 4). Сам элемент, вероятно, впервые был выделен в XIII веке Альбертом Великим, который отметил появление металлоподобного вещества, когда арсеникум, другое название As 2 S 3 , был нагрет с мылом. Но уверенности в том, что этот ученый-естествоиспытатель получил чистый мышьяк, нет. Первое подлинное свидетельство о выделении чистого датировано 1649 годом. Немецкий фармацевт Иоганн Шредер приготовил мышьяк, нагревая его оксид в присутствии угля. Позже Никола Лемери, французский врач и химик, наблюдал образование этого химического элемента при нагревании смеси его оксида, мыла и поташа. К началу XVIII века мышьяк уже был известен и как уникальный полуметалл.

Распространенность

В земной коре концентрация мышьяка невелика и составляет 1,5 промилле. Он встречается в почве и минералах и может попасть в воздух, воду и грунт благодаря ветровой и водной эрозии. Кроме того, элемент поступает в атмосферу из других источников. В результате извержения вулканов в воздух выделяется около 3 тыс. т мышьяка в год, микроорганизмы образуют 20 тыс. т летучего метиларсина в год, а в результате сжигания ископаемого топлива за тот же период выделяется 80 тыс. т.

Несмотря на то что As - смертельный яд, он является важной составляющей питания некоторых животных и, возможно, человека, хотя необходимая доза не превышает 0,01 мг/сутки.

Мышьяк крайне трудно перевести в водорастворимое или летучее состояние. Тот факт, что он довольно мобилен, означает, что большие концентрации вещества в каком-то одном месте появиться не могут. С одной стороны, это хорошо, но с другой - легкость, с которой он распространяется, является причиной того, что загрязнение мышьяком становится все большей проблемой. Из-за деятельности человека, в основном за счет добычи и плавки, обычно немобильный химический элемент мигрирует, и сейчас его можно найти не только в местах его естественной концентрации.

Количество мышьяка в земной коре составляет около 5 г на тонну. В космосе его концентрация оценивается как 4 атома на миллион атомов кремния. Этот элемент широко распространен. Небольшое его количество присутствует в самородном состоянии. Как правило, образования мышьяка чистотой 90-98% встречаются вместе с такими металлами, как сурьма и серебро. Большая его часть, однако, входит в состав более чем 150 различных минералов - сульфидов, арсенидов, сульфоарсенидов и арсенитов. Арсенопирит FeAsS является одним из самых распространенных As-содержащих минералов. Другие распространенные соединения мышьяка - минералы реальгар As 4 S 4, аурипигмент As 2 S 3, леллингит FeAs 2 и энаргит Cu 3 AsS 4 . Также часто встречается оксид мышьяка. Большая часть этого вещества является побочным продуктом выплавки медных, свинцовых, кобальтовых и золотых руд.

В природе существует только один стабильный изотоп мышьяка - 75 As. Среди искусственных радиоактивных изотопов выделяется 76 As c периодом полураспада 26,4 ч. Мышьяк-72, -74 и -76 используются в медицинской диагностике.

Промышленное производство и применение

Металлический мышьяк получают при нагреве арсенопирита до 650-700 °C без доступа воздуха. Если же арсенопирит и другие металлические руды нагревать с кислородом, то As легко вступает с ним в соединение, образуя легко возгоняемый As 4 O 6 , также известный как «белый мышьяк». Пары оксида собирают и конденсируют, и позже очищают повторной возгонкой. Большая часть As производится путем его восстановления углеродом из белого мышьяка, полученного таким образом.

Мировое потребление металлического мышьяка является относительно небольшим - всего несколько сотен тонн в год. Большая часть того, что потребляется, поступает из Швеции. Он используется в металлургии из-за его металлоидных свойств. Около 1% мышьяка применяется в производстве свинцовой дроби, так как он улучшает округлость расплавленной капли. Свойства подшипниковых сплавов на основе свинца улучшаются как по тепловым, так и по механическим характеристикам, когда они содержат около 3% мышьяка. Наличие малого количества этого химического элемента в свинцовых сплавах закаляет их для использования в аккумуляторных батареях и кабельной броне. Небольшие примеси мышьяка повышают коррозионную стойкость и тепловые свойства меди и латуни. В чистом виде химический элементарный As используется для нанесения бронзового покрытия и в пиротехнике. Высокоочищенный мышьяк находит применение в полупроводниковой технике, где он используется с кремнием и германием, а также в форме арсенида галлия (GaAs) в диодах, лазерах и транзисторах.

Соединения As

Так как валентность мышьяка равна 3 и 5, и он имеет ряд степеней окисления от -3 до +5, элемент может образовывать различные виды соединений. Наиболее важное коммерческое значение имеют его формами которых являются As 4 O 6 и As 2 O 5 . Мышьяковистый оксид, широко известный как белый мышьяк, - это побочный продукт обжига руд меди, свинца и некоторых других металлов, а также арсенопирита и сульфидных руд. Он является исходным материалом для большинства других соединений. Кроме того, он используется в пестицидах, служит обесцвечивающим веществом в производстве стекла и консервантом для кож. Пятиокись мышьяка образуется при воздействии окислителя (например, азотной кислоты) на белый мышьяк. Он является основным ингредиентом инсектицидов, гербицидов и клея для металла.

Арсин (AsH 3), бесцветный ядовитый газ, состоящий из мышьяка и водорода, - это еще одно известное вещество. Вещество, называемое также мышьяковистым водородом, получают путем гидролиза металлических арсенидов и восстановления металлов из соединений мышьяка в растворах кислот. Он нашел применение как легирующая добавка в полупроводниках и боевой отравляющий газ. В сельском хозяйстве большое значение имеют мышьяковая кислота (H 3 AsO 4), арсенат свинца (PbHAsO 4) и арсената кальция [Са 3 (AsO 4) 2 ], которые используются для стерилизации почвы и борьбы с вредителями.

Мышьяк - химический элемент, образующий множество органических соединений. Какодин (СН 3) 2 As−As(СН 3) 2 , например, используется при подготовке широко используемого десиканта (осушающего средства) - какодиловой кислоты. Сложные органические соединения элемента применяются в лечении некоторых заболеваний, например, амебной дизентерии, вызванной микроорганизмами.

Физические свойства

Что такое мышьяк с точки зрения его физических свойств? В наиболее стабильном состоянии он представляет собой хрупкое твердое вещество стального серого цвета с низкой тепловой и электрической проводимостью. Хотя некоторые формы As являются металлоподобными, отнесение его к неметаллам - это более точная характеристика мышьяка. Есть и другие виды мышьяка, но они не очень хорошо изучены, особенно желтая метастабильная форма, состоящая из молекул As 4 , подобно белому фосфору Р 4 . Мышьяк возгоняется при температуре 613 °C, и в виде пара он существует как молекулы As 4 , которые не диссоциируют до температуры около 800 °C. Полная диссоциация на молекулы As 2 происходит при 1700 °С.

Строение атома и способность образовывать связи

Электронная формула мышьяка - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 - напоминает азот и фосфор в том, что во внешней оболочке есть пять электронов, но он отличается от них наличием 18 электронов в предпоследней оболочке вместо двух или восьми. Добавление 10 положительных зарядов в ядре во время заполнения пяти 3d-орбиталей часто вызывает общее уменьшение электронного облака и увеличение электроотрицательности элементов. Мышьяк в таблице Менделеева можно сравнить с другими группами, которые наглядно демонстрируют эту закономерность. Например, общепризнанно, что цинк является более электроотрицательным, чем магний, а галлий - чем алюминий. Однако в последующих группах эта разница уменьшается, и многие не согласны с тем, что германий электроотрицательнее кремния, несмотря на обилие химических доказательств. Подобный переход от 8- к 18-элементной оболочке от фосфора к мышьяку может увеличить электроотрицательность, но это остается спорным.

Сходство внешней оболочки As и P говорит о том, они могут образовывать 3 на атом при наличии дополнительной несвязанной электронной пары. Степень окисления должна, следовательно, быть +3 или -3, в зависимости от относительной взаимной электроотрицательности. Строение мышьяка также говорит о возможности использования внешней d-орбитали для расширения октета, что позволяет элементу образовывать 5 связей. Она реализуется только при реакции с фтором. Наличие свободной электронной пары для образования комплексных соединений (через донорство электронов) в атоме As проявляется гораздо меньше, чем у фосфора и азота.

Мышьяк стабилен в сухом воздухе, но во влажном покрывается черным оксидом. Его пары легко сгорают, образуя As 2 O 3 . Что такое мышьяк в свободном состоянии? Он практически не подвержен воздействию воды, щелочей и неокисляющих кислот, но окисляется азотной кислотой до состояния +5. С мышьяком реагируют галогены, сера, а многие металлы образуют арсениды.

Аналитическая химия

Вещество мышьяк качественно можно обнаружить в виде желтого аурипигмента, выпадающего в осадок под действием 25% раствора соляной кислоты. Следы As, как правило, определяются путем его преобразования в арсин, который можно обнаружить с помощью теста Марша. Арсин термически разлагается, образуя черное зеркало из мышьяка внутри узкой трубки. По методу Гутцайта пробник, пропитанный под действием арсина темнеет из-за выделения ртути.

Токсикологическая характеристика мышьяка

Токсичность элемента и его производных широко изменяется в значительных пределах, от чрезвычайно ядовитого арсина и его органических производных до просто As, который относительно инертен. О том, что такое мышьяк, говорит применение его органических соединений в качестве боевых отравляющих веществ (люизит), везиканта и дефолианта («Агент блю» на основе водной смеси 5% какодиловой кислоты 26% ее натриевой соли).

В целом производные данного химического элемента раздражают кожу и вызывают дерматит. Также рекомендуется защита от вдыхания мышьяк-содержащей пыли, но большая часть отравлений происходит при его употреблении внутрь. Предельно допустимая концентрация As в пыли за восьмичасовой рабочий день составляет 0,5 мг/м 3 . Для арсина доза снижается до 0,05 части на миллион. Помимо использования соединений данного химического элемента в качестве гербицидов и пестицидов, применение мышьяка в фармакологии позволило получить сальварсан - первый успешный препарат против сифилиса.

Воздействие на здоровье

Мышьяк является одним из наиболее токсичных элементов. Неорганические соединения данного химического вещества в естественных условиях встречаются в небольших количествах. Люди могут подвергаться воздействию мышьяка через пищу, воду и воздух. Экспозиция может также произойти при контакте кожи с зараженной почвой или водой.

Воздействию вещества также подвержены люди, которые с ним работают, живут в домах, построенных из обработанной им древесины, и на землях сельскохозяйственного назначения, где в прошлом применялись пестициды.

Неорганический мышьяк может вызывать различные последствия для здоровья человека, такие как раздражение желудка и кишечника, снижение производства красных и белых клеток крови, изменение кожи и раздражение легких. Предполагается, что поглощение значительного количества этого вещества может увеличить шансы развития рака, особенно рака кожи, легких, печени и лимфатической системы.

Очень высокие концентрации неорганического мышьяка являются причиной бесплодия и выкидышей у женщин, дерматитов, снижения сопротивляемости организма инфекциям, проблем с сердцем и повреждений мозга. Кроме того, этот химический элемент способен повредить ДНК.

Смертельная доза белого мышьяка равна 100 мг.

Органические соединения элемента ни рака, ни повреждений генетического кода не вызывают, но высокие дозы могут нанести вред здоровью человека, например вызвать нервные расстройства или боли в животе.

Свойства As

Основные химико-физические свойства мышьяка следующие:

  • Атомное число - 33.
  • Атомный вес - 74,9216.
  • Температура плавления серой формы - 814 °C при давлении 36 атмосфер.
  • Плотность серой формы - 5,73 г/см 3 при 14 °C.
  • Плотность желтой формы - 2,03 г/см 3 при 18 °C.
  • Электронная формула мышьяка - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 3 .
  • Состояния окисления - -3, +3, +5.
  • Валентность мышьяка - 3, 5.

Природные соединения Мышьяка с серой (аурипигмент As 2 S 3 , реальгар As 4 S 4) были известны народам древнего мира, которые применяли эти минералы как лекарства и краски. Был известен и продукт обжигания сульфидов Мышьяка - оксид Мышьяка (III) As 2 O 3 ("белый Мышьяк"). Название arsenikon встречается уже у Аристотеля; оно произведено от греческого arsen - сильный, мужественный и служило для обозначения соединений Мышьяка (по их сильному действию на организм). Русское название, как полагают, произошло от "мышь" (по применению препаратов Мышьяка для истребления мышей и крыс). Получение Мышьяка в свободном состоянии приписывают Альберту Великому (около 1250 года). В 1789 году А. Лавуазье включил Мышьяк в список химических элементов.

Распространение Мышьяка в природе. Среднее содержание Мышьяк в земной коре (кларк) 1,7·10 -4 % (по массе), в таких количествах он присутствует в большинстве изверженных пород. Поскольку соединения Мышьяка летучи при высоких температурах, элемент не накапливается при магматических процессах; он концентрируется, осаждаясь из горячих глубинных вод (вместе с S, Se, Sb, Fe, Co, Ni, Cu и другими элементами). При извержении вулканов Мышьяк в виде своих летучих соединений попадает в атмосферу. Так как Мышьяк многовалентен, на его миграцию оказывает большое влияние окислительно-восстановительная среда. В окислительных условиях земной поверхности образуются арсенаты (As 5+) и арсениты (As 3+). Это редкие минералы, встречающиеся только на участках месторождений Мышьяка. Еще реже встречается самородный Мышьяк и минералы As 2+ . Из многочисленных минералов Мышьяка (около 180) основное промышленное значение имеет лишь арсенопирит FeAsS.

Малые количества Мышьяка необходимы для жизни. Однако в районах месторождений Мышьяка и деятельности молодых вулканов почвы местами содержат до 1% Мышьяка, с чем связаны болезни скота, гибель растительности. Накопление Мышьяка особенно характерно для ландшафтов степей и пустынь, в почвах которых Мышьяк малоподвижен. Во влажном климате Мышьяк легко вымывается из почв.

В живом веществе в среднем 3·10 -5 % Мышьяка, в реках 3·10 -7 %. Мышьяк, приносимый реками в океан, сравнительно быстро осаждается. В морской воде лишь 1·10 -7 % Мышьяка, но зато в глинах и сланцах 6,6·10 -4 %. Осадочные железные руды, железомарганцевые конкреции часто обогащены Мышьяком.

Физические свойства Мышьяка. Мышьяк имеет несколько аллотропических модификаций. При обычных условиях наиболее устойчив так называемых металлический, или серый, Мышьяк (α-As) - серостальная хрупкая кристаллическая масса; в свежем изломе имеет металлический блеск, на воздухе быстро тускнеет, так как покрывается тонкой пленкой As 2 O 3 . Кристаллическая решетка серого Мышьяка ромбоэдрическая (а = 4,123Å, угол α = 54°10", х == 0,226), слоистая. Плотность 5,72 г/см 3 (при 20 °C), удельное электрическое сопротивление 35·10 -8 ом·м, или 35·10 -6 ом·см, температурный коэффициент электросопротивления 3,9·10 -3 (0°-100 °C), твердость по Бринеллю 1470 Мн/м 2 , или 147 кгс/мм 2 (3-4 по Moocy); Мышьяк диамагнитен. Под атмосферным давлением Мышьяк возгоняется при 615 °C не плавясь, так как тройная точка α-As лежит при 816 °C и давлении 36 aт. Пар Мышьяка состоит до 800 °C из молекул As 4 , выше 1700 °C - только из As 2 . При конденсации пара Мышьяка на поверхности, охлаждаемой жидким воздухом, образуется желтый Мышьяк - прозрачные, мягкие как воск кристаллы, плотностью 1,97 г/см 3 , похожие по свойствам на белый фосфор. При действии света или при слабом нагревании он переходит в серый Мышьяк. Известны также стекловидно-аморфные модификации: черный Мышьяк и бурый Мышьяк, которые при нагревании выше 270 °C превращаются в серый Мышьяк

Химические свойства Мышьяка. Конфигурация внешних электронов атома Мышьяка 3d 10 4s 2 4p 3 . B соединениях Мышьяк имеет степени окисления +5, +3 и -3. Серый Мышьяк значительно менее активен химически, чем фосфор. При нагревании на воздухе выше 400 °C Мышьяк горит, образуя As 2 O 3 . С галогенами Мышьяк соединяется непосредственно; при обычных условиях AsF 5 - газ; AsF 3 , AsCl 3 , AsBr 3 - бесцветные легко летучие жидкости; AsI 3 и As 2 I 4 - красные кристаллы. При нагревании Мышьяка с серой получены сульфиды: оранжево-красный As 4 S 4 и лимонно-желтый As 2 S 3 . Бледно-желтый сульфид As 2 S 5 осаждается при пропускании H 2 S в охлаждаемый льдом раствор мышьяковой кислоты (или ее солей) в дымящей соляной кислоте: 2H 3 AsO 4 + 5H 2 S = As 2 S 5 + 8H 2 O; около 500 °C он разлагается на As 2 S 3 и серу. Все сульфиды Мышьяка нерастворимы в воде и разбавленных кислотах. Сильные окислители (смеси HNO 3 + HCl, HCl + KClO 3) переводят их в смесь H 3 AsO 4 и H 2 SO 4 . Сульфид As 2 S 3 легко растворяется в сульфидах и полисульфидах аммония и щелочных металлов, образуя соли кислот - тиомышьяковистой H 3 AsS 3 и тиомышьяковой H 3 AsS 4 . С кислородом Мышьяк дает оксиды: оксид Мышьяка (III) As 2 O 3 - мышьяковистый ангидрид и оксид Мышьяка (V) As 2 O 5 - мышьяковый ангидрид. Первый из них образуется при действии кислорода на Мышьяк или его сульфиды, например 2As 2 S 3 + 9O 2 = 2As 2 O 3 + 6SO 2 . Пары As 2 O 3 конденсируются в бесцветную стекловидную массу, которая с течением времени становится непрозрачной вследствие образования мелких кристаллов кубической сингонии, плотность 3,865 г/см 3 . Плотность пара отвечает формуле As 4 O 6 ; выше 1800 °C пар состоит из As 2 O 3 . В 100 г воды растворяется 2,1 г As 2 O 3 (при 25 °C). Оксид Мышьяк (III) - соединение амфотер-ное, с преобладанием кислотных свойств. Известны соли (арсениты), отвечающие кислотам ортомышьяковистой H 3 AsO 3 и метамышьяковистой HAsO 2 ; сами же кислоты не получены. В воде растворимы только арсениты щелочных металлов и аммония. As 2 O 3 и арсениты обычно бывают восстановителями (например, As 2 O 3 + 2I 2 + 5H 2 O = 4HI + 2H 3 AsO 4), но могут быть и окислителями (например, As 2 O 3 + 3C = 2As + ЗСО).

Оксид Мышьяка (V) получают нагреванием мышьяковой кислоты H 3 AsO 4 (около 200 °C). Он бесцветен, около 500 °C разлагается на As 2 O 3 и O 2 . Мышьяковую кислоту получают действием концентрированной HNO 3 на As или As 2 O 3 . Соли мышьяковой кислоты (арсенаты) нерастворимы в воде, за исключением солей щелочных металлов и аммония. Известны соли, отвечающие кислотам ортомышьяковой H 3 AsO 4 , метамышьяковой HAsO 3 и пиромышьяковой H 4 As 2 O 7 ; последние две кислоты в свободном состоянии не получены. При сплавлении с металлами Мышьяк по большей части образует соединения (арсениды).

Получение Мышьяка. Мышьяк получают в промышленности нагреванием мышьякового колчедана:

FeAsS = FeS + As

или (реже) восстановлением As 2 O 3 углем. Оба процесса ведут в ретортах из огнеупорной глины, соединенных с приемником для конденсации паров Мышьяка. Мышьяковистый ангидрид получают окислительным обжигом мышьяковых руд или как побочный продукт обжига полиметаллических руд, почти всегда содержащих Мышьяк. При окислительном обжиге образуются пары As 2 O 3 , которые конденсируются в уловительных камерах. Сырой As 2 O 3 очищают возгонкой при 500-600 °C. Очищенный As 2 O 3 служит для производства Мышьяка и его препаратов.

Применение Мышьяка. Небольшие добавки Мышьяка (0,2-1,0% по массе) вводят в свинец, служащий для производства ружейной дроби (Мышьяк повышает поверхностное натяжение расплавленного свинца, благодаря чему дробь получает форму, близкую к сферической; Мышьяк несколько увеличивает твердость свинца). Как частичный заменитель сурьмы Мышьяк входит в состав некоторых баббитов и типографских сплавов.

Чистый Мышьяк не ядовит, но все его соединения, растворимые в воде или могущие перейти в раствор под действием желудочного сока, чрезвычайно ядовиты; особенно опасен мышьяковистый водород. Из применяемых на производстве соединений Мышьяка наиболее токсичен мышьяковистый ангидрид. Примесь Мышьяка содержат почти все сульфидные руды цветных металлов, а также железный (серный) колчедан. Поэтому при их окислительном обжиге, наряду с сернистым ангидридом SO 2 , всегда образуется As 2 O 3 ; большая часть его конденсируется в дымовых каналах, но при отсутствии или малой эффективности очистных сооружений отходящие газы рудообжигательных печей увлекают заметные количества As 2 O 3 . Чистый Мышьяк, хотя и не ядовит, но при хранении на воздухе всегда покрывается налетом ядовитого As 2 O 3 . При отсутствии должной вентиляции крайне опасно травление металлов (железа, цинка) техническими серной или соляной кислотами, содержащими примесь Мышьяка, так как при этом образуется мышьяковистый водород.

Мышьяк в организме. В качестве микроэлемента Мышьяк повсеместно распространен в живой природе. Среднее содержание Мышьяка в почвах 4·10 -4 %, в золе растений - 3·10 -5 %. Содержание Мышьяка в морских организмах выше, чем в наземных (в рыбах 0,6-4,7 мг в 1 кг сырого вещества, накапливается в печени). Среднее содержание Мышьяка в теле человека 0,08-0,2 мг/кг. В крови Мышьяк концентрируется в эритроцитах, где он связывается с молекулой гемоглобина (причем в глобиновой фракции содержится его вдвое больше, чем в геме). Наибольшее количество его (на 1 г ткани) обнаруживается в почках и печени. Много Мышьяка содержится в легких и селезенке, коже и волосах; сравнительно мало - в спинномозговой жидкости, головном мозге (главном образом гипофизе), половых железах и других. В тканях Мышьяк находится в основной белковой фракции, значительно меньше - в кислоторастворимой и лишь незначительная часть его обнаруживается в липидной фракции. Мышьяк участвует в окислительно-восстановительных реакциях: окислительном распаде сложных углеводов, брожении, гликолизе и т. п. Соединения Мышьяка применяют в биохимии как специфические ингибиторы ферментов для изучения реакций обмена веществ.