Cao основной оксид. Химия - комплексная подготовка к внешнему независимому оцениванию

В природе существует три класса неорганических химических соединений: соли, гидроксиды и оксиды. Первые являются соединениями атома металла с кислотным остатком, к примеру, СІ-. Вторые подразделяются на кислоты и основания. Молекулы первых из них состоят из катионов Н+ и кислотного остатка, например, SO 4 -. Основания же имеют в своем составе катион металла, к примеру, К+, и анион в виде гидроксильной группы ОН-. А оксиды, в зависимости от своих свойств, делятся на кислотные и основные. О последних мы и расскажем в этой статье.

Определение

Основные оксиды — это вещества, состоящие из двух химических элементов, одним из которых обязательно является оксиген, а вторым — металл. При добавлении воды к веществам этого типа образуются основания.

Химические свойства основных оксидов

Вещества данного класса в первую очередь способны вступать в реакцию с водой, вследствие которой получается основание. Для примера можно привести следующее уравнение: СаО + Н 2 О = Са(ОН) 2 .

Реакции с кислотами

Если основные оксиды смешать с кислотами, можно получить соли и воду. К примеру, если к оксиду калия добавить хлоридную кислоту, получим хлорид калия и воду. Уравнение реакции будет выглядеть таким образом: К 2 О + 2НСІ = 2КСІ + Н 2 О.

Взаимодействие с кислотными оксидами

Такого рода химические реакции приводят к образованию солей. Например, если к оксиду кальция добавить углекислый газ, получим карбонат кальция. Данную реакцию можно выразить в виде следующего уравнения: СаО + СО 2 = СаСО 3 . Подобного рода химическое взаимодействие может произойти только под воздействием высокой температуры.

Амфотерные и основные оксиды

Эти вещества также могут взаимодействовать между собой. Это происходит, потому что первые из них имеют свойства как кислотных, так и основных оксидов. В результате подобных химических взаимодействий образуются сложные соли. Для примера приведем уравнение реакции, которая происходит при смешивании оксида калия (основного) с оксидом алюминия (амфотерным): К 2 О + АІ 2 О 3 = 2КАІО 2 . Полученное при этом вещество называется алюминат калия. Если смешать те же реагенты, но еще и добавить воду, то реакция пройдет следующим образом: К 2 О + АІ 2 О 3 + 4Н 2 О = 2К. Вещество, которое образовалось, называется тетрагидроксоалюминат калия.

Физические свойства

Разнообразные основные оксиды весьма отличаются друг от друга по физическим свойствам, однако все они в основном при нормальных условиях пребывают в твердом агрегатном состоянии, имеют высокую температуру плавления.

Давайте рассмотрим каждое химическое соединение по отдельности. Оксид калия выглядит как твердое вещество светло-желтого цвета. Плавится при температуре +740 градусов по шкале Цельсия. Оксид натрия представляет собой бесцветные кристаллы. Превращаются в жидкость при температуре +1132 градуса. Оксид кальция представлен белыми кристаллами, которые плавятся при +2570 градусах. Диоксид железа выглядит как черный порошок. Принимает жидкое агрегатное состояние при температуре +1377 градусов Цельсия. Оксид магния похож на соединение кальция — это также кристаллы белого цвета. Плавится при +2825 градусах. Оксид лития представляет собой прозрачные кристаллы с температурой плавления +1570 градусов. Данное вещество обладает высокой гигроскопичностью. Оксид бария выглядит так же, как и предыдущее химическое соединения, температура, при которой оно принимает жидкое состояние, чуть выше — +1920 градусов. Оксид ртути — порошок оранжево-красного цвета. При температуре +500 градусов по Цельсию данное химическое вещество разлагается. Оксид хрома — это порошок темно-красной расцветки с такой же температурой плавления, как и у соединения лития. Оксид цезия обладает такой же окраской, как и ртути. Разлагается под воздействием солнечной энергии. Оксид никеля — кристаллы зеленого цвета, превращаются в жидкость при температуре +1682 градуса по шкале Цельсия. Как видите, физические свойства всех веществ данной группы обладают многими общими чертами, хотя и имеют некоторые различия. Оксид купрума (меди) выглядит как кристаллы, обладающие черной окраской. В жидкое агрегатное состояние переходит при температуре +1447 градус по Цельсию.

Как добывают химические вещества этого класса?

Основные оксиды можно получить путем проведения реакции между металлом и кислородом под воздействием высокой температуры. Уравнение такого взаимодействия выглядит следующим образом: 4К + О 2 = 2К 2 О. Второй способ получения химических соединений данного класса — разложение нерастворимого основания. Уравнение можно записать так: Са(ОН) 2 = СаО + Н 2 О. Для осуществления подобного рода реакции необходимы специальные условия в виде высоких температур. Кроме того, основные оксиды также образуются при разложении определенных солей. Примером может служить такое уравнение: СаСО 3 = СаО + СО 2 . Таким образом, образовался еще и кислотный оксид.

Использование основных оксидов

Химические соединения данной группы находят широкое применение в различных отраслях промышленности. Далее рассмотрим использование каждого из них. Оксид алюминия применяют в стоматологии для изготовления зубных протезов. Его также используют при производстве керамики. Оксид кальция является одним из компонентов, участвующих в изготовлении силикатного кирпича. Также он может выступать в роли огнеупорного материала. В пищевой промышленности это добавка Е529. Оксид калия — один из ингредиентов минеральных удобрений для растений, натрия — используется в химической промышленности, в основном при получении гидроксида этого же металла. Оксид магния также применяют в пищевой отрасли, в качестве добавки под номером Е530. Кроме того, он является средством против повышения кислотности желудочного сока. Оксид бария применяется в химических реакциях в качестве катализатора. Диоксид железа используют в производстве чугуна, керамики, красок. Он также является пищевым красителем по номером Е172. Оксид никеля придает стеклу зеленый цвет. Кроме того, он используется в синтезе солей и катализаторов. Оксид лития — один из компонентов в производстве некоторых видов стекла, он повышает прочность материала. Соединение цезия выступает в роли катализатора для проведения некоторых химических реакций. Оксид купрума, как и некоторые другие, находит свое применение в изготовлении специальных видов стекла, а также для получения чистой меди. При производстве красок и эмалей он используется в качестве пигмента, придающего синий цвет.

Вещества данного класса в природе

В естественной среде химические соединения этой группы встречаются в виде минералов. В основном это кислотные оксиды, но среди других также они встречаются. К примеру, соединение алюминия — корунд.

В зависимости от присутствующих в нем примесей, он может быть различного цвета. Среди вариаций на основе АІ 2 О 3 можно выделить рубин, который имеет красную расцветку, и сапфир — минерал, обладающий синей окраской. Это же химическое вещество можно встретить в природе и в виде глинозема. Соединение купрума с оксигеном встречается в природе в виде минерала тенорита.

Заключение

В качестве вывода можно сказать, что все вещества, рассмотренные в данной статье, обладают похожими физическими и аналогичными химическими свойствами. Они находят свое применение во многих отраслях промышленности — от фармацевтической до пищевой.

Оксиды, их классификация и свойства - это основа такой важной науки, как химия. Их начинают изучать в первый год обучения химии. В таких точных науках, как математика, физика и химия, весь материал связан между собой, именно поэтому неусвоение материала влечет за собой непонимание новых тем. Поэтому очень важно разобраться в теме оксидов и полностью в ней ориентироваться. Об этом мы с вами сегодня и постараемся поговорить более подробно.

Что такое оксиды?

Оксиды, их классификация и свойства - это то, что нужно понять первостепенно. Итак, что же такое оксиды? Вы помните это из школьной программы?

Оксиды (или оксилы) - бинарные соединения, в состав которых входят атомы электроотрицательного элемента (менее электроотрицательный, чем кислород) и кислорода со степенью окисления -2.

Окислы - это невероятно распространенные на нашей планете вещества. Примеры оксидного соединения: вода, ржавчина, некоторые красители, песок и даже углекислый газ.

Образование оксидов

Окислы можно получить самыми различными способами. Образование окислов также изучает такая наука, как химия. Оксиды, их классификация и свойства - вот, что должны знать ученые, чтобы понять, как образовался тот или иной оксид. Например, они могут быть получены путем прямого соединения атома (или атомов) кислорода с химическим элементом - это взаимодействие химических элементов. Однако есть и косвенное образование оксидов, это когда оксиды образуются путем разложения кислот, солей или оснований.

Классификация оксидов

Оксиды и их классификация зависят от того, как они образовались. По своей классификации окислы делятся всего на две группы, первая из которых солеобразующие, а вторая несолеобразующие. Итак, рассмотрим подробнее обе группы.

Солеобразующие оксиды - это довольно большая группа, которая делится на амфотерные, кислотные и основные оксиды. В результате любой химической реакции солеобразующие оксиды образуют соли. Как правило, в состав оксидов солеобразующих входят элементы металлов и неметаллов, которые в результате химической реакции с водой образуют кислоты, но при взаимодействии с основаниями образуют соответствующие кислоты и соли.

Несолеобразующие окислы - это такие окислы, которые в результате химической реакции не образуют соли. Примерами таких окислов могут служить и углерода.

Амфотерные оксиды

Оксиды, их классификация и свойства - очень важные в химии понятия. В состав солеобразующих входят оксиды амфотерные.

Амфотерные оксиды - это такие окислы, которые могут проявлять основные или кислотные свойства, в зависимости от условий химических реакций (проявляют амфотерность). Такие окислы образуются переходными металлами (медь, серебро, золото, железо, рутений, вольфрам, резерфордий, титан, иттрий и многие другие). Амфотерные окислы реагируют с сильными кислотами, а в результате химической реакции они образуют соли этих кислот.

Кислотные оксиды

Или ангидриды - это такие окислы, которые в химических реакциях проявляют а также образуют кислородсодержащие кислоты. Ангидриды всегда образуются типичными неметаллами, а также некоторыми переходными химическими элементами.

Оксиды, их классификация и химические свойства - это важные понятия. Например, у кислотных оксидов химические свойства совершенно отличаются от амфотерных. Например, когда ангидрид взаимодействует с водой, образуется соответствующая кислота (исключение составляет SiO2 - Ангидриды взаимодействуют с щелочами, а в результате таких реакций выделяется вода и сода. При взаимодействии с образуется соль.

Основные оксиды

Основные (от слова "основание") окислы - это оксиды химических элементов металлов со степенями окисления +1 или +2. К ним относятся щелочные, щелочноземельные металлы, а также химический элемент магний. Основные окислы отличаются от других тем, что именно они способны реагировать с кислотами.

Основные окислы взаимодействуют с кислотами, в отличии от кислотных оксидов, а также с щелочами, водой, другими оксидами. В результате этих реакций, как правило, образуются соли.

Свойства оксидов

Если внимательно изучить реакции различных оксидов, можно самостоятельно сделать выводы о том, какими химическими свойствами оксилы наделены. Общее химическое свойство абсолютно всех оксидов заключается в окислительно-восстановительном процессе.

Но тем не менее, все окислы отличаются друг от друга. Классификация и свойства оксидов - это две взаимосвязанные темы.

Несолеобразующие оксиды и их химические свойства

Несолеобразующие окислы - это такая группа оксидов, которая не проявляет ни кислотных, ни основных, ни амфотерных свойств. В результате химических реакций с несолеобразующими оксидами никаких солей не образуется. Раньше такие оксиды называли не несолеобразующими, а безразличными и индиффирентными, но такие названия не соответсвуют свойствам несолеобразующих оксидов. По своим свойствам эти оксилы вполне способны к химическим реакциям. Но несолебразующих оксидов очень мало, они образованы одновалентными и двухвалентными неметаллами.

Из несолеобразующих оксидов в результате химической реакции могут быть получены солеобразующие оксиды.

Номенклатура

Практически все оксиды принято называть так: слово "оксид", после чего следует название химического элемента в родительном падеже. Например, Al2O3 - это оксид алюминия. На химическом языке этот окисл читается так: алюминий 2 о 3. Некоторые химические элементы, такие как медь, могут иметь несколько степеней оксиления, соответственно, оксиды тоже будут разными. Тогда оксид CuO - это оксид меди (два), то есть со степенью оксиления 2, а оксид Cu2O - это оксид меди (три), который имеет степень оксиления 3.

Но существуют и другие наименования оксидов, которые выделяют по числу в соединении атомов кислорода. Монооксидом или моноокисью называют такие оксиды, в которых содержится всего один атом кислорода. Диоксидами называют такие оксилы, в которых содержится два атома кислорода, о чем сообщается приставка "ди". Триоксидами называют такие оксиды, в которых содержится уже три атома кислорода. Такие наименования как монооксид, диоксид и триоксид, уже устарели, но часто встречаются в учебниках, книгах и других пособиях.

Существуют и так называемые тривиальные названия оксидов, то есть те, которые сложились исторически. Например, CO - это окисл или монооксид углерода, но даже химики чаще всего называют это вещество угарным газом.

Итак, оксид - это соединение кислорода с химическим элементом. Основной наукой, которая изучает их образование и взаимодействия, является химия. Оксиды, их классификация и свойства - это несколько важных тем в науке химия, не поняв которую нельзя понять все остальное. Окислы - это и газы, и минералы, и порошки. Некоторые окислы стоит подробно знать не только ученым, но и обычным людям, ведь они даже могут быть опасны для жизни на этой земле. Окислы - это тема очень интересная и достаточно легкая. Соединения оксидов очень часто встречаются в повседневной жизни.

Современная энциклопедия

Оксиды - ОКСИДЫ, соединения химических элементов (кроме фтора) с кислородом. При взаимодействии с водой образуют основания (основные оксиды) или кислоты (кислые оксиды), многие оксиды амфотерны. Большинство оксидов при обычных условиях твёрдые вещества,… … Иллюстрированный энциклопедический словарь

Оксид (окисел, окись) бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй… … Википедия

Оксиды металлов - это соединения металлов с кислородом. Многие из них могут соединяться с одной или несколькими молекулами воды с образованием гидроксидов. Большинство оксидов являются основными, так как их гидроксиды ведут себя как основания. Однако некоторые… … Официальная терминология

оксиды - Соединение химического элемента с кислородом. По химическим свойствам все оксиды делятся на солеобразующие (наприме, Na2О, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7) и несолеобразующие (например, СО, N2O, NO, H2O). Солеобразующие оксиды подразделяют на… … Справочник технического переводчика

ОКСИДЫ - хим. соединения элементов с кислородом (устаревшее название окислы); один из важнейших классов хим. веществ. О. образуются чаще всего при непосредственном окислении простых и сложных веществ. Напр. при окислении углеводородов образуются О.… … Большая политехническая энциклопедия

Основные факты

Основные факты - Нефть - это горючая жидкость, представляющая собой сложную смесь из углеводородов. Различные типы нефти существенно различаются по химическим и физическим свойствам: в природе она представлена и в виде черного битумного асфальта, и в форме… … Нефтегазовая микроэнциклопедия

Основные факты - Нефть - это горючая жидкость, представляющая собой сложную смесь из углеводородов. Различные типы нефти существенно различаются по химическим и физическим свойствам: в природе она представлена и в виде черного битумного асфальта, и в форме… … Нефтегазовая микроэнциклопедия

Оксиды - соединение химического элемента с кислородом. По химическим свойствам все оксиды делятся на солеобразующие (например, Na2O, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7) и несолеобразующие (например, СО, N2O, NO, H2O). Солеобразующие оксиды… … Энциклопедический словарь по металлургии

Книги

  • , Гусев Александр Иванович. Нестехиометрия, обусловленная наличием структурных вакансий, широко распространена в твердофазных соединениях и создает предпосылки для неупорядоченного или упорядоченного распределения…
  • Нестехиометрия, беспорядок, ближний и дальний порядок в твердом теле , Гусев А.И.. Нестехиометрия, обусловленная наличием структурных вакансий, широко распространена в твердофазных соединениях и создает предпосылки для неупорядоченного или упорядоченного распределения…

Оксиды.

Это – сложные вещества состоящие из ДВУХ элементов, один из которых кислород. Например:

CuO– оксид меди(II)

AI 2 O 3 – оксид алюминия

SO 3 – оксид серы (VI)

Оксиды делятся (их классифицируют) на 4 группы:

Na 2 O– Оксид натрия

СаО – Оксид кальция

Fe 2 O 3 – оксид железа (III)

2). Кислотные – Это оксидынеметаллов . А иногда и металлов если степень окисления металла > 4. Например:

СО 2 – Оксид углерода (IV)

Р 2 О 5 – Оксид фосфора (V)

SO 3 – Оксид серы (VI)

3). Амфотерные – Это оксиды которые имеют свойства, как основных так и кислотных оксидов. Необходимо знать пять наиболее часто встречающихся амфотерных оксидов:

BeO–оксид бериллия

ZnO– Оксид цинка

AI 2 O 3 – Оксид алюминия

Cr 2 O 3 – Оксид хрома (III)

Fe 2 O 3 – Оксид железа (III)

4). Несолеобразующие (безразличные) – Это оксиды которые не проявляют свойств ни основных, ни кислотных оксидов. Необходимо запомнить три оксида:

СО – оксид углерода (II) угарный газ

NO– оксид азота (II)

N 2 O– оксид азота (I) веселящий газ, закись азота

Способы получения оксидов.

1). Горение, т.е. взаимодействие с кислородом простого вещества:

4Na + O 2 = 2Na 2 O

4P + 5O 2 = 2P 2 O 5

2). Горение, т.е. взаимодействие с кислородом сложного вещества (состоящего из двух элементов ) при этом образуются два оксида.

2ZnS + 3O 2 = 2ZnO + 2SO 2

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

3). Разложение трех слабых кислот. Другие не разлагаются. При этом образуются – кислотный оксид и вода.

Н 2 СО 3 = Н 2 О + СО 2

Н 2 SO 3 = H 2 O + SO 2

H 2 SiO 3 = H 2 O + SiO 2

4). Разложение нерастворимых оснований. Образуются основный оксид и вода.

Mg(OH) 2 = MgO + H 2 O

2Al(OH) 3 = Al 2 O 3 + 3H 2 O

5). Разложение нерастворимых солей. Образуются основный оксид и кислотный оксид.

СаСО 3 = СаО + СО 2

МgSO 3 = MgO + SO 2

Химические свойства.

I . Основных оксидов.

щелочь.

Na 2 O + H 2 O = 2NaOH

CaO + H 2 O = Ca(OH) 2

СuO + H 2 O = реакция не протекает, т.к. возможное основание в состав которого входит медь - нерастворимо

2). Взаимодействие с кислотами, при этом образуется соль и вода. (Основный оксид и кислоты реагируют ВСЕГДА)

К 2 О + 2НСI = 2KCl + H 2 O

CaO + 2HNO 3 = Ca(NO 3) 2 + H 2 O

3). Взаимодействие с кислотными оксидами, при этом образуется соль.

Li 2 O + CO 2 = Li 2 CO 3

3MgO + P 2 O 5 = Mg 3 (PO 4) 2

4). Взаимодействие с водородом, при этом образуется металл и вода.

CuO + H 2 = Cu + H 2 O

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O

II. Кислотных оксидов.

1). Взаимодействие с водой, при этом должна образоваться кислота. (Только SiO 2 не взаимодействует с водой)

CO 2 + H 2 O = H 2 CO 3

P 2 O 5 + 3H 2 O = 2H 3 PO 4

2). Взаимодействие с растворимыми основаниями (щелочами). При этом образуется соль и вода.

SO 3 + 2KOH = K 2 SO 4 + H 2 O

N 2 O 5 + 2KOH = 2KNO 3 + H 2 O

3). Взаимодействие с основными оксидами. При этом образуется только соль.

N 2 O 5 + K 2 O = 2KNO 3

Al 2 O 3 + 3SO 3 = Al 2 (SO 4) 3

Основные упражнения.

1). Закончить уравнение реакции. Определить её тип.

К 2 О + Р 2 О 5 =

Решение.

Что бы записать, что образуется в результате – необходимо определить – какие вещества вступили в реакцию – здесь это оксид калия (основный) и оксид фосфора (кислотный) согласно свойств – в результате должна получиться СОЛЬ (смотри свойство № 3) а соль состоит из атомов металлов (в нашем случае калия) и кислотного остатка в состав которого входит фосфор (т.е. РО 4 -3 – фосфат) Поэтому

3К 2 О + Р 2 О 5 = 2К 3 РО 4

тип реакции – соединение (так как вступают в реакцию два вещества, а образуется – одно)

2). Осуществить превращения (цепочка).

Са → СаО → Са(ОН) 2 → СаСО 3 → СаО

Решение

Для выполнения этого упражнения необходимо помнить, что каждая стрелочка это одно уравнение (одна химическая реакция). Пронумеруем каждую стрелочку. Следовательно, необходимо записать 4 уравнения. Вещество записанное слева от стрелочки(исходное вещество) вступает в реакцию, а вещество записанное справа – образуется в результате реакции(продукт реакции). Расшифруем первую часть записи:

Са + …..→ СаО Мы обращаем внимание, что вступает в реакцию простое вещество, а образуется оксид. Зная способы получения оксидов (№ 1) приходим к выводу, что в данной реакции необходимо добавить –кислород (О 2)

2Са + О 2 → 2СаО

Переходим к превращению № 2

СаО → Са(ОН) 2

СаО + ……→ Са(ОН) 2

Приходим к выводу, что здесь необходимо применить свойство основных оксидов – взаимодействие с водой, т.к. только в этом случае из оксида образуется основание.

СаО + Н 2 О → Са(ОН) 2

Переходим к превращению № 3

Са(ОН) 2 → СаСО 3

Сa(OH) 2 + ….. = CaCO 3 + …….

Приходим к выводу, что здесь речь идет об углекислом газе СО 2 т.к. только он при взаимодействии со щелочами образует соль (смотри свойство № 2 кислотных оксидов)

Сa(OH) 2 + СО 2 = CaCO 3 + Н 2 О

Переходим к превращению № 4

СаСО 3 → СаО

СаСО 3 = ….. СаО + ……

Приходим к выводу что здесь образуется еще СО 2 , т.к. СаСО 3 нерастворимая соль и именно при разложении таких веществ образуются оксиды.

СаСО 3 = СаО + СО 2

3). С какими из перечисленных веществ взаимодействует СО 2 . Напишите уравнения реакций.

А). Соляная кислота Б). Гидроксид натрия В). Оксид калия г). Вода

Д). Водород Е). Оксид серы (IV).

Определяем, что СО 2 – это кислотный оксид. А кислотные оксиды вступают в реакции с водой, щелочами и основными оксидами … Следовательно из приведенного списка выбираем ответы Б, В, Г И именно с ними записываем уравнения реакций:

1). СО 2 + 2NaOH = Na 2 CO 3 + H 2 O

2). CO 2 + K 2 O = K 2 CO 3

Вы можете приобрести видеоурок (запись вебинара, 1,5 часа) и комплект теории по теме «Оксиды: получение и химические свойства». Стоимость материалов — 500 рублей. Оплата через систему Яндекс.Деньги (Visa, Mastercard, МИР, Maestro) по ссылке .

Внимание! После оплаты необходимо прислать сообщение с пометкой «Оксиды» с указанием адреса электронной почты, на которую можно выслать ссылку для скачивания и просмотра вебинара. В течение суток после оплаты заказа и получения сообщения материалы вебинара поступят на вашу почту. Сообщение можно прислать одним из следующих способов:

  • через смс, Viber или whatsapp на номер +7-977-834-56-28;
  • через e-mail: [email protected]

Без сообщения мы не сможем идентифицировать платеж и отправить Вам материалы.

Химические свойства основных оксидов

Подробно про оксиды, их классификацию и способы получения можно прочитать .

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CaO + H 2 O → Ca(OH) 2

CuO + H 2 O ≠

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота) .

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N 2 O 5 , NO 2 , SO 3 и т.д.).

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи . При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

K 2 O + Al 2 O 3 → 2KAlO 2

CuO + Al 2 O 3 ≠ (реакция не идет, т.к. Cu(OH) 2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al 2 O 3 + H 2 O = H 2 Al 2 O 4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO 2 . Получается алюминат-ион AlO 2 — . Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие основных оксидов с восстановителями.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом .

Углерод (уголь) восстанавливает из оксидов только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C → Fe + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

Fe 2 O 3 + CO → Al 2 O 3 + CO 2

CuO + CO → Cu + CO 2

4.2. Восстановление водородом .

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H 2 → Cu + H 2 O

4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например , оксид цинка взаимодействует с алюминием:

3ZnO + 2Al → Al 2 O 3 + 3Zn

но не взаимодействует с медью:

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Например , цезий взрывается на воздухе .

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al → Al 2 O 3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + H 2 → Cu + H 2 O

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например , аммиак восстанавливает оксид меди (II):

3CuO + 2NH 3 → 3Cu + 3H 2 O + N 2

5. Взаимодействие основных оксидов с окислителями .

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe 2+ , Cr 2+ , Mn 2+ и др.) могут выступать в качестве восстановителей.

Например , оксид железа (II) можно окислить кислородом до оксида железа (III):

4FeO + O 2 → 2Fe 2 O 3