Легко ли решить уравнение шредингера. Волновая функция, ее физический смысл

В развитие идеи де-Бройля о волновых свойствах вещества Э. Шрёдингер получил в 1926 г. свое знаменитое уравнение. Шрёдингер сопоставил движению микрочастицы комплексную функцию координат и времени, которую он назвал волновой функцией и обозначил греческой буквой «пси» (). Мы будем называть ее пси-функцией.

Пси-функция характеризует состояние микрочастицы. Вид функции получается из решения уравнения Шрёдингера, которое выглядит следующим образом:

Здесь - масса частицы, i - мнимая единица, - оператор Лапласа, результат действия которого на некоторую функцию представляет собой сумму вторых частных производных по координатам:

Буквой U в уравнении (21.1) обозначена функция координат и времени, градиент которой, взятый с обратным знаком, определяет силу, действующую на частицу. В случае, когда функция U не зависит явно от времени, она имеет смысл потенциальной энергии частицы.

Из уравнения (21.1) следует, что вид пси-функции определяется функцией U, т. е. в конечном счете характером сил, действующих на частицу.

Уравнение Шрёдингера является основным уравнением нерелятивистской квантовой механики. Оно не может быть выведено из других соотношений. Его следует рассматривать как исходное основное предположение, справедливость которого доказывается тем, что все вытекающие из него следствия самым точным образом согласуются с опытными фактами.

Шрёдингер установил свое уравнение, исходя из оптико-механической аналогии. Эта аналогия заключается в сходстве уравнений, описывающих ход световых лучей, с уравнениями, определяющими траектории частиц в аналитической механике. В оптике ход лучей удовлетворяет принципу Ферма (см. § 115 2-го тома), в механике вид траектории удовлетворяет так называемому принципу наименьшего действия.

Если силовое поле, в котором движется частица, стационарно, то функция V не зависит явно от времени и имеет, как уже отмечалось, смысл потенциальной энергии. В этом случае решение уравнения Шрёдингера распадается на два множителя, один из которых зависит только от координат, другой - только от времени:

Здесь Е - полная энергия частицы, которая в случае стационарного поля остается постоянной. Чтобы убедиться в справедливости выражения (21.3), подставим его в уравнение (21.1). В результате получим соотношение

Сократив на общий множитель придем к дифференциальному уравнению, определяющему функцию

Уравнение (21.4) называется уравнением Шрёдингера для стационарных состояний. В дальнейшем мы будем иметь дело только с этим уравнением и для краткости будем называть его просто уравнением Шрёдингера. Уравнение, (21.4) часто пишут в виде

Поясним, как можно прийти к уравнению Шрёдингера. Для простоты ограничимся одномерным случаем. Рассмотрим свободно движущуюся частицу.

Согласно идее де-Бройля ей нужно сопоставить плоскую волну

(в квантовой механике принято показатель экспоненты брать со знаком минус). Заменив в соответствии с (18.1) и (18.2) через Е и , придем к выражению

Продифференцировав это выражение один раз по t, а второй раз дважды по х, получим

В нерелятивистской классической механике энергия Е и импульс свободной частицы связаны соотношением

Подставив в это соотношение выражения (21.7) для Е и и сократив затем на , получим уравнение

которое совпадает с уравнением (21.1), если в последнем положить

В случае частицы, движущейся в силовом поле, характеризуемом потенциальной энергией U, энергия Е и импульс связаны соотношением

Распространив и на этот случай выражения (21.7) для Е и получим

Умножив это соотношение на , перенеся член влево, придем к уравнению

совпадающему с уравнением (21.1).

Изложенные рассуждения не имеют доказательной силы и не могут рассматриваться как вывод уравнения Шрёдингера. Их цель - пояснить, каким образом можно было прийти к установлению этого уравнения.

В квантовой механике большую роль играет понятие Под оператором подразумевают правило, посредством которого одной функции (обозначим ее ) сопоставляется другая функция (обозначим ее ). Символически это записывается следующим образом:

Здесь - символическое обозначение оператора (с таким же успехом можно было взять любую другую букву с «шляпкой» над ней, например и т. д.). В формуле (21.2) роль Q играет роль - функция F, а роль f - правая часть формулы.

1. Введение

Квантовая теория родилась в 1900 г., когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением - вывод, который долгое время ускользал от других ученых, Как и его предшественники, Планк предположил, что излучение испускают атомные осцилляторы, но при этом считал, что энергия осцилляторов (и, следовательно, испускаемого ими излучения) существует в виде небольших дискретных порций, которые Эйнштейн назвал квантами. Энергия каждого кванта пропорциональна частоте излучения. Хотя выведенная Планком формула вызвала всеобщее восхищение, принятые им допущения оставались непонятными, так как противоречили классической физике.

В 1905 г. Эйнштейн воспользовался квантовой теорией для объяснения некоторых аспектов фотоэлектрического эффекта - испускания электронов поверхностью металла, на которую падает ультрафиолетовое излучение. Попутно Эйнштейн отметил кажущийся парадокс: свет, о котором на протяжении двух столетий было известно, что он распространяется как непрерывные волны, при определенных обстоятельствах может вести себя и как поток частиц.

Примерно через восемь лет Нильс Бор распространил квантовую теорию на атом и объяснил частоты волн, испускаемых атомами, возбужденными в пламени или в электрическом заряде. Эрнест Резерфорд показал, что масса атома почти целиком сосредоточена в центральном ядре, несущем положительный электрический заряд и окруженном на сравнительно больших расстояниях электронами, несущими отрицательный заряд, вследствие чего атом в целом электрически нейтрален. Бор предположил, что электроны могут находиться только на определенных дискретных орбитах, соответствующих различным энергетическим уровням, и что "перескок" электрона с одной орбиты на другую, с меньшей энергией, сопровождается испусканием фотона, энергия которого равна разности энергий двух орбит. Частота, по теории Планка, пропорциональна энергии фотона. Таким образом, модель атома Бора установила связь между различными линиями спектров, характерными для испускающего излучение вещества, и атомной структурой. Несмотря на первоначальный успех, модель атома Бора вскоре потребовала модификаций, чтобы избавиться от расхождений между теорией и экспериментом. Кроме того, квантовая теория на той стадии еще не давала систематической процедуры решения многих квантовых задач.

Новая существенная особенность квантовой теории проявилась в 1924 г., когда де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы (что показал Эйнштейн), то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны. В формулировке де Бройля частота, соответствующая частице, связана с ее энергией, как в случае фотона (частицы света), но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и ее скоростью (импульсом). Существование электронных волн было экспериментально доказано в 1927 г. Клинтоном Дэвиссоном и Лестером Джермером в Соединенных Штатах и Джоном-Паджетом Томсоном в Англии.

Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Шрёдингер предпринял попытку применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. В известном смысле он намеревался сблизить квантовую теорию с классической физикой, которая накопила немало примеров математического описания волн. Первая попытка, предпринятая Шрёдингер в 1925 г., закончилась неудачей.

Скорости электронов в теории II Шрёдингер были близки к скорости света, что требовало включения в нее специальной теории относительности Эйнштейна и учета предсказываемого ею значительного увеличения массы электрона при очень больших скоростях.

Одной из причин постигшей Шрёдингер неудачи было то, что он не учел наличия специфического свойства электрона, известного ныне под названием спина (вращение электрона вокруг собственной оси наподобие волчка), о котором в то время было мало известно.

Следующую попытку Шрёдингер предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой.

Вторая попытка увенчалась выводом волнового уравнения Шрёдингера, дающего математическое описание материи в терминах волновой функции. Шрёдингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории.

Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Эти таблицы представляют собой определенным образом упорядоченные математические множества, называемые матрицами, над которыми по известным правилам можно производить различные математические операции. Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время. Гейзенберг особенно настаивал на отказе от каких-либо простых наглядных представлений или моделей в пользу только таких свойств, которые могли быть определены из эксперимента.

Шрёдингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений. Многие физики отдавали предпочтение волновой механике, поскольку ее математический аппарат был им более знаком, а ее понятия казались более "физическими"; операции же над матрицами - более громоздкими.

Функция Ψ. Нормировка вероятности.

Обнаружение волновых свойств микрочастиц свидетельствовало о том, что классическая механика не может дать правильного описания поведения подобных частиц. Возникла необходимость создать механику микрочастиц, которая учитывала бы также и их волновые свойства. Новая механика, созданная Шрёдингером, Гайзенбергом, Дираком и другими, получила название волновой или квантовой механики.

Плоская волна де Бройля

(1)

является весьма специальным волновым образованием, соответствующим свободному равномерному движению частицы в определенном направлении и с определенным импульсом. Но частица, даже в свободном пространстве и в особенности в силовых полях, может совершать и другие движения, описываемые более сложными волновыми функциями. В этих случаях полное описание состояния частицы в квантовой механике дается не плоской волной де Бройля, а какой-то более сложной комплексной функцией

, зависящей от координат и времени. Она называется волновой функцией. В частном случае свободного движения частицы волновая функция переходит в плоскую волну де Бройля (1). Сама по себе волновая функция вводится как некоторый вспомогательный символ и не относится к числу непосредственно наблюдаемых величин. Но ее знание позволяет статистически предсказывать значения величин, которые получаются экспериментально и потому имеют реальный физический смысл.

Через волновую функцию определяется относительная вероятность обнаружения частицы в различных местах пространства. На этой стадии, когда говорится только об отношениях вероятностей, волновая функция принципиально определена с точностью до произвольного постоянного множителя. Если во всех точках пространства волновую функцию умножить на одно и то же постоянное (вообще говоря, комплексное) число, отличное от нуля, то получится новая волновая функция, описывающая в точности то же состояние. Не имеет смысла говорить, что Ψ равна нулю во всех точках пространства, ибо такая «волновая функция» никогда не позволяет заключить об относительной вероятности обнаружения частицы в различных местах пространства. Но неопределенность в определении Ψ можно значительно сузить, если от относительной вероятности перейти к абсолютной. Распорядимся неопределенным множителем в функции Ψ так, чтобы величина |Ψ|2dV давала абсолютную вероятность обнаружения частицы в элементе объема пространства dV. Тогда |Ψ|2 = Ψ*Ψ (Ψ* - комплексно сопряжённая с Ψ функция) будет иметь смысл плотности вероятности, которую следует ожидать при попытке обнаружения частицы в пространстве. При этом Ψ будет определена все еще с точностью до произвольного постоянного комплексного множителя, модуль которого, однако, равен единице. При таком определении должно быть выполнено условие нормировки:

(2)

где интеграл берется по всему бесконечному пространству. Оно означает, что во всем пространстве частица будет обнаружена с достоверностью. Если интеграл от |Ψ|2 берётся по определённому объёму V1 – мы вычисляем вероятность нахождения частицы в пространстве объёма V1.

Нормировка (2) может оказаться невозможной, если интеграл (2) расходится. Так будет, например, в случае плоской волны де Бройля, когда вероятность обнаружения частицы одинакова во всех точках пространства. Но такие случаи следует рассматривать как идеализации реальной ситуации, в которой частица не уходит на бесконечность, а вынуждена находиться в ограниченной области пространства. Тогда нормировка не вызывает затруднений.

Итак, непосредственный физический смысл связывается не с самой функцией Ψ, а с ее модулем Ψ*Ψ. Почему же в квантовой теории оперируют с волновыми функциями Ψ, а не непосредственно с экспериментально наблюдаемыми величинами Ψ*Ψ? Это необходимо для истолкования волновых свойств вещества - интерференции и дифракции. Здесь дело обстоит совершенно так же, как во всякой волновой теории. Она (во всяком случае в линейном приближении) принимает справедливость принципа суперпозиции самих волновых полей, а не их интенсивностей и, таким образом, достигает включения в теорию явлений интерференции и дифракции волн. Так и в квантовой механике принимается в качестве одного из основных постулатов принцип суперпозиции волновых функций, заключающийся в следующем.

Уравнение Шрёдингера названо в честь австрийского физика Эрвина Шрёдингера (E. Schrödinger). Это основной теоретический инструмент квантовой механики. В квантовой механике уравнение Шрёдингера играет такую же роль, как уравнение движения (второй закон Ньютона) в механике классической. Уравнение Шрёдингера записывается для так называемой y - функции (пси - функции). В общем случае пси - функция – это функция координат и времени: y = y (x,y,z,t ). Если микрочастица находится в стационарном состоянии, то пси - функция не зависит от времени: y = y (x,y,z ).

В простейшем случае одномерного движения микрочастицы (например, только по оси x ) уравнение Шрёдингера имеет вид:

где y (x) – пси - функция, зависящая только от одной координаты x ; m масса частицы; - постоянная Планка (=h/2π ); E – полная энергия частицы, U – потенциальная энергия. В классической физике величина (E –U ) равнялась бы кинетической энергии частицы. В квантовой механике вследствие соотношения неопределенностей понятие кинетической энергии лишено смысла. Заметим, что потенциальная энергия U – это характеристика внешнего силового поля , в котором движется частица. Это величина вполне определенная. Она также является функцией координат, в данном случае U = U (x,y,z).

В трехмерном случае, когда y = y (x,y,z), вместо первого слагаемого в уравнении Шрёдингера следует записать сумму трех частных производных от пси-функции по трем координатам.

Для чего применяется уравнение Шрёдингера? Как уже отмечалось, это основное уравнение квантовой механики. Если его записать и решить (что вообще не простая задача) для конкретной микрочастицы, то мы получим значение пси-функции в любой точке пространства, в котором движется частица. Что это дает? Квадрат модуля пси-функции характеризуетвероятность обнаружения частицы в той или иной области пространства. Возьмем некоторую точку в пространстве с координатами x , y , z (рис.6). Какова вероятность обнаружить частицу в этой точке? Ответ: эта вероятность равна нулю! (точка не имеет размеров, попасть в точку частица просто физически не может). Значит, вопрос поставлен некорректно. Поставим его иначе: какова вероятность обнаружить частицу в малой области пространства объемом dV = dx dy dz с центром в выбранной точке? Ответ:

где dP – элементарная вероятность обнаружить частицу в элементарном объеме dV . Уравнение (22) справедливо для действительной пси-функции (она может быть и комплексной, в этом случае в уравнение (22) надо подставлять квадрат модуля пси-функции). Если область пространства имеет конечный объем V , то вероятность P обнаружить частицу в этом объеме находится интегрированием выражения (22) по объему V :

Напомним, что вероятностное описание движения микрочастиц – основная идея квантовой механики. Таким образом, с помощью уравнения Шрёдингера решается основная задача квантовой механики: описание движения исследуемого объекта, в данном случае квантово-механической частицы.

Отметим еще ряд важных обстоятельств. Как видно из формулы (21), уравнение Шрёдингера является дифференциальным уравнением второго порядка. Следовательно, в процессе его решения появятся две произвольные постоянные. Как их найти? Для этого используют так называемые граничные условия : из конкретного содержания физической задачи должно быть известно значение пси-функции на границах области движения микрочастицы. Кроме того, используется так называемое условие нормировки , которому должна удовлетворять пси-функция:

Смысл этого условия прост: вероятность обнаружить частицу хоть где-нибудь внутри области ее движения есть достоверное событие, вероятность которого равна единице.

Именно граничные условия наполняют решение уравнения Шрёдингера физическим смыслом. Без этих условий решение уравнения есть чисто математическая задача, лишенная физического смысла. В следующем разделе на конкретном примере рассмотрено применение граничных условий и условия нормировки при решении уравнения Шрёдингера.

Пси-функция

Волнова́я фу́нкция (функция состояния , пси-функция , амплитуда вероятности ) - комплекснозначная функция , используемая вквантовой механике для вероятностного описания состоянияквантовомеханической системы . В широком смысле - то же самое, что и вектор состояния .

Вариант названия «амплитуда вероятности» связан со статистической интерпретацией волновой функции: плотность вероятности нахождения частицы в данной точке пространства в данный момент времени равна квадрату абсолютного значения волновой функции этого состояния.

Физический смысл квадрата модуля волновой функции

Волновая функция зависит от координат (или обобщённых координат) системы и, в общем случае, от времени, и формируется таким образом, чтобы квадрат её модуля представлял собой плотность вероятности (для дискретных спектров - просто вероятность) обнаружить систему в положении, описываемом координатами в момент времени :

Тогда в заданном квантовом состоянии системы, описываемом волновой функцией , можно рассчитать вероятность того, что частица будет обнаружена в любой области пространства конечного объема : .

Набор координат, которые выступают в роли аргументов функции , представляет собой полный набор физических величин , которые можно измерить в системе. В квантовой механике возможно выбрать несколько полных наборов величин, поэтому волновая функция одного и того же состояния может быть записана от разных аргументов. Выбранный для записи волновой функции полный набор величин определяетпредставление волновой функции . Так, возможны координатное представление, импульсное представление, в квантовой теории поля используется вторичное квантование и представление чисел заполнения или представление Фока и др.

Если волновая функция, например, электрона в атоме, задана в координатном представлении, то квадрат модуля волновой функции представляет собой плотность вероятности обнаружить электрон в той или иной точке пространства. Если эта же волновая функция задана в импульсном представлении, то квадрат её модуля представляет собой плотность вероятности обнаружить тот или иной импуль с .

Уравнение Шрёдингера - уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.

В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции. Пусть волновая функция задана в N-мерном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде: , где - внешняя по отношению к частице потенциальная энергия в точке .

Соотношение неопределенностей Гейзенберга. Описание движения в квантовой механике.

Принцип неопределённости Гейзенберга - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (ср. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей задает нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых.

Измеряя величину среднеквадратического отклонения Δx координаты и среднеквадратического отклонения Δp импульса, мы найдем что: , где -приведённая постоянная Планка.

Свойства волновой функции. Квантование.

Волновая функция (функция состояния, пси-функция) - комплекснозначная функция, используемая в квантовой механике для описания чистого состояния квантовомеханической системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному): , где - координатный базисный вектор, а - волновая функция в координатном представлении.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятности нахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния.

В физике квантование - построение квантового варианта некоторой неквантовой (классической) теории или физической модели в соответствии с аксиомами квантовой физики.

В соответствии с современной научной парадигмой фундаментальные физические теории должны быть квантовыми. Возможно как построение изначально квантовых теорий, так и квантование классических моделей. Существует несколько математических методов квантования. Наиболее распространены: каноническое квантование, квантование методом функционального интеграла (фейнмановское квантование), BRST-квантование, геометрическое квантование, вторичное квантование.

Эти методы не являются универсальными. Непосредственное применение тех или иных методов может оказаться невозможным. Например, в настоящий момент неизвестен метод построения квантовой теории гравитации. При квантовании модели могут возникать различные ограничения и физические эффекты. Например, различные квантовые теории струн могут быть сформулированы только для пространств определенной размерности (10, 11, 26 и т. д.). В квантованной теории также могут возникать новые объекты - квазичастицы.

Квантовые числа. Спин.

Квантовое число - численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы.

Некоторые квантовые числа связаны с движением в пространстве и характеризуют пространственное распределение волновой функции частицы. Это, например, радиальное (главное) (nr), орбитальное (l) и магнитное (m) квантовые числа электрона в атоме, которые определяются как число узлов радиальной волновой функции, значение орбитального углового момента и его проекция на заданную ось, соответственно.

Адроны- класс элементарных частиц, подверженных сильному взаимодействию.

Спин - собственный момент импульса элементарных частиц, имеющий квантовую природу и не связанный с перемещением частицы как целого. Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы. Спин измеряется в единицах .

  • В приближении идеального газа уравнение Клапейрона -Клаузиуса примет вид
  • Второе уравнение Максвелла является обобщением …: закона электромагнитной индукции
  • Где a - коэффициент трения. Это уравнение может быть переписано в виде
  • Гидростатика. Основные свойства гидростатического давления. Основное уравнение гидростатики.
  • Дифференциальное уравнение. Характеристический полином.
  • В развитие идеи де Бройля о волновых свойствах частиц Шредингер в 1926 г. получил уравнение

    104. (20)

    где m - масса частицы, - мнимая единица, U - потенциальная энергия частицы, D - оператор Лапласа [ см. (1.10)].

    Решение уравнения Шредингера позволяет найти волновую функцию Y(x, y, z, t) частицы, которая описывает микросостояние частицы и ее волновые свойства.

    Если поле внешних сил постоянно во времени (т.е. стационарно), то U не зависит явно от t. В этом случае решение уравнения (20) распадается на два множителя

    Y(x, y, z, t) =y(x, y, z) exp[-i(E/ )t] (21)

    В стационарном случае уравнение Шредингера имеет вид

    (22)

    где Е, U - полная и потенциальная энергия, m - масса частицы.

    Следует заметить, что исторически название "волновой функции" возникло в связи с тем, что уравнение (20) или (22), определяющее эту функцию, относится к виду волновых уравнений.


    104. Атом водорода и водородоподобные «атомы» (He + , Li 2+ и др.) как простейшие квантовомеханические системы: квантовые состояния, радиальная и угловая составляющие волновой функции, симметрия орбиталей.

    На основании своих исследований Резерфорд в 1911 г. предложил ядерную (планетарную) модель атома. Согласно этой модели вокруг положительного ядра по замкнутым орбитам движутся электроны, образуя электронную оболочку атома, в области с линейными размерами порядка 10 -10 м. Заряд ядра равен (Z. -- порядковый номер элемента в системе Менделеева, е - .элементарный заряд), размер 10 -15 – 10 -14 м, масса, практически равна массе атома. Так как атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т. е. вокруг ядра должно вращаться Z электронов.

    Атом водорода и водородоподобные системы – это системы, состоящие из ядра с зарядом Ze и одного электрона (например, ионы He + , Li 2+).

    Решение задачи об энергетических уровнях электрона для атома водорода (а также водородоподобных систем: иона гелия Не + , двукратно ионизованного лития Li + + и др.) сводится к задаче о движении электрона в кулоновском поле ядра.

    Потенциальная энергия взаимодействия электрона с ядром, обладающим зарядом (для атома водорода Z =1),

    где r – расстояние между электроном и ядром. Графически функция U (r )изображена жирной кривой на рис. 6, неограниченно убывающей (возрастающей.по модулю) при уменьшении r , т. е. при приближении электрона к ядру.



    Состояние электрона в атоме водорода описывается волновой функцией Ψ, удовлетворяющей стационарному уравнению Шредингера, учитывающему значение (1):"

    , (2)

    где m – масса электрона, Е – полная энергия электрона в атоме.

    Это так называемое стационарное уравнение Шрёдингера для электрона водородоподобного атома ВДПА.

    1. Энергия. В теории дифференциальных уравнений доказывается, что уравнения типа (2) имеют решения, удовлетворяющие требованиям однозначности, конечности и непрерывности волновой функции Ψ, только при собственных значениях энергии

    (n = 1, 2, 3,…), (3)

    т. е. для дискретною набора отрицательных значений энергии.

    Таким образом, как и в случае «потенциальной ямы» с бесконечно высокими «стенками» , решение уравнения Шредингера для атома водорода приводит к появлению дискретных энергетических уровней. Возможные значения Е 1 , Е 2 , Е 3 , ... показаны па рис. 6 в виде горизонтальных прямых. Самый нижний уровень Е 1 , отвечающий минимальной возможной энергии, – основной, все остальные (Е n >E 1 , n = 2, 3,…) – возбужденные . При Е < 0 движение электрона является связанным он находится внутри гиперболической «потенциальной ямы». Из рисунка следует, что по мере роста главного квантового числа п энергетические уровни располагаются теснее и при п=∞ Е ∞ = 0. При Е > 0 движение электрона является свободным; область непрерывного спектра Е >0 (заштрихована на рис. 6) соответствует ионизованному атому. Энергия ионизации атома водорода равна



    E i = - E 1 = me 4 / (8h 2 ε 0 2) = 13,55 эВ.

    2. Квантовые числа. В квантовой механике доказывается, что уравнению Шредингера (2) удовлетворяют собственные функции , определяемые тремя квантовыми числами: главным п, орбитальным l и магнитным m l .

    Главное квантовое число n,согласно (3), определяет энергетические уровни электрона в атоме и может принимать любые целочисленные значения, начиная с единицы: