Опасность водородной бомбы. Я пережил взрыв водородной бомбы

Водородная бомба (Hydrogen Bomb, HB, ВБ) — оружие массового поражения, обладающее невероятной разрушительной силой (ее мощность оценивается мегатоннами в тротиловом эквиваленте). Принцип действия бомбы и схема строения базируется на использовании энергии термоядерного синтеза ядер водорода. Процессы, протекающие во время взрыва, аналогичны тем, что протекают на звёздах (в том числе и на Солнце). Первое испытание пригодной для транспортировки на большие расстояния ВБ (проекта А.Д.Сахарова) было проведено в Советском Союзе на полигоне под Семипалатинском.

Термоядерная реакция

Солнце содержит в себе огромные запасы водорода, находящегося под постоянным действием сверхвысокого давления и температуры (порядка 15 млн градусов Кельвина). При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии.

Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. вещества в секунду, выделяя при этом в космическое пространство непрерывный поток энергии.

Изотопы водорода

Самым простым из всех существующих атомов является атом водорода. В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды (H2O), было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода. Она содержит «тяжёлые» изотопы водорода (2H или дейтерий), ядра которых, помимо одного протона, содержат так же один нейтрон (частицу, близкую по массе к протону, но лишённую заряда).

Науке известен также тритий — третий изотоп водорода, ядро которого содержит 1 протон и сразу 2 нейтрона. Для трития характерна нестабильность и постоянный самопроизвольный распад с выделением энергии (радиации), в результате чего образуется изотоп гелия. Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения. Получение трития возможно также и в ядерном реакторе путём облучения изотопа литий-6 мощным потоком нейтронов.

Разработка и первые испытания водородной бомбы

В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок (атолл в Тихом океане) было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза.

Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость (размером с трёхэтажный дом), наполненную жидким дейтерием.

В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А.Д. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 (данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор) имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике.

Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы (15 Мт) на испытательном полигоне на атолле Бикини (Тихий океан). Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно «Счастливый дракон» и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации.

Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза. Но расчёты и замеры реальных радиоактивных осадков сильно разнились, причём как по количеству, так и по составу. Поэтому в руководстве США было принято решение временно приостановить проектирование данного вооружения до полного изучения его влияния на окружающую среду и человека.

Видео: испытания в СССР

Царь-бомба — термоядерная бомба СССР

Жирную точку в цепи набора тоннажа водородных бомб поставил СССР, когда 30 октября 1961 года на Новой Земле было проведено испытание 50-мегатонной (крупнейшей в истории) «Царь-бомбы » — результата многолетнего труда исследовательской группы А.Д. Сахарова. Взрыв прогремел на высоте 4 километра, а ударную волную трижды зафиксировали приборы по всему земному шару. Несмотря на то, что испытание не выявило никаких сбоев, бомба на вооружение так и не поступила. Зато сам факт обладания Советами таким вооружением произвёл неизгладимое впечатление на весь мир, а в США прекратили набирать тоннаж ядерного арсенала. В России, в свою очередь, решили отказаться от ввода на боевое дежурство боеголовок с водородными зарядами.

Водородная бомба — сложнейшее техническое устройство, взрыв которого требует последовательного протекания ряда процессов.

Сначала происходит детонация заряда-инициатора, находящегося внутри оболочки ВБ (миниатюрная атомная бомба), результатом которой становится мощный выброс нейтронов и создание высокой температуры, требуемой для начала термоядерного синтеза в основном заряде. Начинается массированная нейтронная бомбардировка вкладыша из дейтерида лития (получают соединением дейтерия с изотопом лития-6).

Под действием нейтронов происходит расщепление лития-6 на тритий и гелий. Атомный запал в этом случае становится источником материалов, необходимых для протекания термоядерного синтеза в самой сдетонировавшей бомбе.

Смесь трития и дейтерия запускает термоядерную реакцию, вследствие чего происходит стремительное повышение температуры внутри бомбы, и в процесс вовлекается всё больше и больше водорода.
Принцип действия водородной бомбы подразумевает сверхбыстрое протекание данных процессов (устройство заряда и схема расположения основных элементов способствует этому), которые для наблюдателя выглядят мгновенными.

Супербомба: деление, синтез, деление

Последовательность процессов, описанных выше, заканчивается после начала реагирования дейтерия с тритием. Далее было решено использовать деление ядер, а не синтез более тяжёлых. После слияния ядер трития и дейтерия выделяется свободный гелий и быстрые нейтроны, энергии которых достаточно для инициации начала деления ядер урана-238. Быстрым нейтронам под силу расщепить атомы из урановой оболочки супербомбы. Расщепление тонны урана генерирует энергию порядка 18 Мт. При этом энергия расходуется не только на создание взрывной волны и выделения колоссального количества тепла. Каждый атом урана распадается на два радиоактивных «осколка». Образуется целый «букет» из различных химических элементов (до 36) и около двухсот радиоактивных изотопов. Именно по этой причине и образуются многочисленные радиоактивные осадки, регистрируемые за сотни километров от эпицентра взрыва.

После падения «железного занавеса», стало известно, что в СССР планировали разработку «Царь бомбы», мощностью в 100 Мт. Из-за того, что тогда не было самолёта, способного нести столь массивный заряд, от идеи отказались в пользу 50 Мт бомбы.

Последствия взрыва водородной бомбы

Ударная волна

Взрыв водородной бомбы влечёт масштабные разрушения и последствия, а первичное (явное, прямое) воздействие имеет тройственный характер. Самое очевидное из всех прямых воздействий — ударная волна сверхвысокой интенсивности. Её разрушительная способность уменьшается при удалении от эпицентра взрыва, а так же зависит от мощности самой бомбы и высоты, на которой произошла детонация заряда.

Тепловой эффект

Эффект от теплового воздействия взрыва зависит от тех же факторов, что и мощность ударной волны. Но к ним добавляется ещё один — степень прозрачности воздушных масс. Туман или даже незначительная облачность резко уменьшает радиус поражения, на котором тепловая вспышка может стать причиной серьёзных ожогов и потери зрения. Взрыв водородной бомбы (более 20 Мт) генерирует невероятное количество тепловой энергии, достаточной, чтобы расплавить бетон на расстоянии 5 км, выпарить воду практически всю воду из небольшого озера на расстоянии в 10 км, уничтожить живую силу противника, технику и постройки на том же расстоянии. В центре образуется воронка диаметром 1-2 км и глубиной до 50 м, покрытая толстым слоем стекловидной массы (несколько метров пород, имеющих большое содержание песка, почти мгновенно плавятся, превращаясь в стекло).

Согласно расчётам, полученным в ходе реальных испытаний, люди получают 50% вероятность остаться в живых, если они:

  • Находятся в железобетонном убежище (подземном) в 8 км от эпицентра взрыва (ЭВ);
  • Находятся в жилых домах на расстоянии 15 км от ЭВ;
  • Окажутся на открытой территории на расстоянии более 20 км от ЭВ при плохой видимости (для «чистой» атмосферы минимальное расстояние в этом случае составит 25 км).

С удалением от ЭВ резко возрастает и вероятность остаться в живых у людей, оказавшихся на открытой местности. Так, на удалении в 32 км она составит 90-95%. Радиус в 40-45 км является предельным для первичного воздействия от взрыва.

Огненный шар

Ещё одним явным воздействием от взрыва водородной бомбы являются самоподдерживающиеся огненные бури (ураганы), образующиеся вследствие вовлекания в огненный шар колоссальных масс горючего материала. Но, несмотря на это, самым опасным по степени воздействия последствием взрыва окажется радиационное загрязнение окружающей среды на десятки километров вокруг.

Радиоактивные осадки

Возникший после взрыва огненный шар быстро наполняется радиоактивными частицами в огромных количествах (продукты распада тяжёлых ядер). Размер частиц настолько мал, что они, попадая в верхние слои атмосферы, способны пребывать там очень долго. Всё, до чего дотянулся огненный шар на поверхности земли, моментально превращается в пепел и пыль, а затем втягивается в огненный столб. Вихри пламени перемешивают эти частички с заряженными частицами, образуя опасную смесь радиоактивной пыли, процесс оседания гранул которой растягивается на долгое время.

Крупная пыль оседает довольно быстро, а вот мелкая разносится воздушными потоками на огромные расстояния, постепенно выпадая из новообразованного облака. В непосредственной близости от ЭВ оседают крупные и наиболее заряженные частицы, в сотнях километров от него всё ещё можно встретить различимые глазом частицы пепла. Именно они образуют смертельно опасный покров, толщиной в несколько сантиметров. Каждый кто окажется рядом с ним, рискует получить серьёзную дозу облучения.

Более мелкие и неразличимые частицы могут «парить» в атмосфере долгие годы, многократно огибая Землю. К тому моменту, когда выпадут на поверхность, они изрядно теряют радиоактивность. Наиболее опасен стронций-90, имеющий период полураспада 28 лет и генерирующий стабильное излучение на протяжении всего этого времени. Его появление определяется приборами по всему миру. «Приземляясь» на траву и листву, он становится вовлечённым в пищевые цепи. По этой причине у людей, находящихся за тысячи километров от мест испытаний при обследовании обнаруживается стронций-90, накапливаемый в костях. Даже если его содержание крайне невелико, перспектива оказаться «полигоном для хранения радиоактивных отходов» не сулит человеку ничего хорошего, приводя к развитию костных злокачественных новообразований. В регионах России (а также других стран), близких к местам пробных запусков водородных бомб, до сих пор наблюдается повышенный радиоактивный фон, что ещё раз доказывает способность этого вида вооружения оставлять значительные последствия.

Видео о водородной бомбе

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

30 октября 1961 года на советском ядерном полигоне на Новой Земле прогремел самый мощный взрыв в истории человечества. Ядерный гриб поднялся на высоту 67 километров, а диаметр «шляпки» это гриба составил 95 километров. Ударная волна трижды обогнула земной шар (а взрывной волной сносило деревянные постройки на расстоянии нескольких сотен километров от полигона). Вспышку взрыва было видно с расстояния в тысячу километров, невзирая на то, что над Новой Землей висела густая облачность. В течение почти часа во всей Арктике не работала радиосвязь. Мощность взрыва по разным данным составила от 50 до 57 мегатонн (миллионов тонн тротила).

Впрочем, как пошутил Никита Сергеевич Хрущев, мощность бомбы не стали доводить до 100 мегатонн, только потому, что в этом случае в Москве выбило бы все стекла. Но, в каждой шутке есть доля шутки – первоначально планировалось взорвать именно 100 мегатонную бомбу. И взрыв на Новой Земле убедительно доказал, что создание бомбы мощностью хоть в 100 мегатонн, хоть в 200, - вполне осуществимая задача. Но и 50 мегатонн – это почти в десять раз больше мощности всех боеприпасов, истраченных за всю Вторую Мировую войну всеми странами - участницами. К тому же, в случае испытания изделия мощностью в 100 мегатонн от полигона на Новой Земле (да и от большей части этого острова) остался бы только оплавленный кратер. В Москве стекла, скорее всего, уцелели бы, но вот в Мурманске могли и вылететь.


Макет водородной бомбы. Историко-мемориальный Музей ядерного оружия в Сарове

Устройство, взорванное на высоте 4200 метров над уровнем моря 30 октября 1961 года, вошло в историю под именем «Царь-Бомба». Еще одно неофициальное название - «Кузькина Мать». А официальное название этой водородной бомбы было не столь громким – скромное изделие АН602. Военного значения это чудо-оружие не имело – не тоннах тротилового эквивалента, а в обычных метрических тоннах «изделие» весило 26 тонн и его было бы проблематично доставить до «адресата». Это была демонстрация силы – наглядное доказательство того, что Стране Советов по силам создать оружие массового уничтожения любой мощности. Что же заставило руководство нашей страны пойти на столь беспрецедентный шаг? Разумеется, не что иное, как обострение отношений с Соединенными Штатами. Еще совсем недавно казалось, что США и Советский Союз достигли взаимопонимания по всем вопросам – в сентябре 1959 года Хрущев посетил США с официальным визитом, планировался и ответный визит в Москву президента Дуайта Эйзенхауэра. Но 1 мая 1960 года над советской территорией был сбит американский самолет-разведчик U-2. В апреле 1961 года американские спецслужбы организовали высадку на Кубу отрядов хорошо подготовленных и обученных кубинских эмигрантов в заливе Плайя-Хирон (эта авантюра завершилась убедительной победой Фиделя Кастро). В Европе великие державы не могли определиться со статусом Западного Берлина. В итоге,13 августа 1961 года столица Германии оказалась перегороженной знаменитой Берлинской стеной. Наконец, в том 1961 году США разместили в Турции ракеты PGM-19 «Юпитер» - европейская часть России (включая Москву) находилась в пределах дальности действия этих ракет (годом позже Советский Союз разместит ракеты на Кубе и начнется знаменитый Карибский Кризис). Это не говоря уж о том, что паритета по числу ядерных зарядов и их носителей тогда между Советским Союзом и Америкой тогда не было – 6 тысячам американских боеголовок мы могли противопоставить всего триста. Так что, демонстрация термоядерной мощи была в сложившейся ситуации совсем не лишней.

Советский короткометражный фильм про испытание Царь-бомбы

Существует популярный миф, что сверхбомбу разработали по приказу Хрущева все в том же 1961 году в рекордно короткие сроки – всего за 112 дней. На самом деле разработку бомбы вели с 1954 года. А в 1961 разработчики просто довели уже имеющиеся «изделие» до нужной мощности. Параллельно КБ Туполева занималось модернизацией самолетов Ту-16 и Ту-95 под новое оружие. По первоначальным расчетам вес бомбы должен был составить не менее 40 тонн, но авиаконструкторы объяснили ядерщикам, что на данный момент носителей для изделия с таким весом нет и быть не может. Ядерщики пообещали снизить вес бомбы до вполне приемлемых 20 тонн. Правда, и такой вес и такие габариты требовали полной переделки бомбовых отсеков, креплений, бомболюков.


Взрыв водородной бомбы

Работа над бомбой велась группой молодых физиков-ядерщиков под руководством И.В. Курчатова. В эту группу входил и Андрей Сахаров, который в ту пору еще не помышлял о диссидентстве. Более того, он был одним из ведущих разработчиков изделия.

Такой мощности удалось добиться благодаря применению многоступенчатой конструкции – урановый заряд, мощностью в «всего» полторы мегатонны запускал ядерную реакцию в заряде второй ступени, мощностью в 50 мегатонн. Не меняя габаритов бомбы можно было сделать ее и трехступенчатой (это уже за 100 мегатонн). Теоретически – число зарядов ступеней могло быть ничем не ограниченным. Конструкция бомбы была уникальной для своего времени.

Хрущев торопил разработчиков – в октябре в только что построенном Кремлевском Дворце Съездов отрывался XXII съезд КПСС и огласить новость о самом мощном взрыве в истории человечества надо бы именно с трибуны съезда. И 30 октября 30 октября 1961 года Хрущев получил долгожданную телеграмму за подписью министра среднего машиностроения Е. П. Славского и Маршала Советского Союза К. С. Москаленко (руководителей испытания):


"Москва. Кремль. Н. С. Хрущеву.

Испытание на Новой Земле прошло успешно. Безопасность испытателей и близлежащего населения обеспечена. Полигон и все участники выполнили задание Родины. Возвращаемся на съезд".

Взрыв Царь-Бомбы почти сразу же послужил благодатной почвой для разного рода мифов. Некоторые из них распространялись … официальной печатью. Так, например, «Правда» называла «Царь-Бомбу» не иначе как вчерашним днем атомного оружия и утверждала, что сейчас уже созданы более мощные заряды. Не обошлось и без слухов о самоподдерживающейся термоядерной реакции в атмосфере. Снижение мощности взрыва, по мнению некоторых, было вызвано страхом расколоть земную кору или … вызвать термоядерную реакцию в океанах.

Но, как бы то ни было, годом позже, во время Карибского кризиса США все еще имели подавляющее превосходство по числу ядерных зарядов. Но применить их так и не решились.

Кроме того, считается, что этот мега-взрыв помог сдвинуть с мертвой точки переговоры о запрете ядерных испытаний в трех средах, которые велись в Женеве с конца пятидесятых годов. В 1959-60 все ядерные державы, за исключением Франции, приняли односторонний отказ от испытаний, пока идут эти переговоры. Но о причинах, которые заставили Советский Союз не соблюдать взятые на себя обязательства, мы говорили ниже. После взрыва на Новой Земле переговоры возобновились. И 10 октября 1963 года в Москве был подписан «Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой». Пока этот Договор соблюдается, советская Царь-Бомба останется самым мощным взрывным устройством в человеческой истории.

Современная компьютерная реконструкция

Все уже успели обсудить одну из самых неприятных новостей декабря - успешные испытания Северной Кореей водородной бомбы. Ким Чен Ын не преминул намекнуть (прямо заявить) о том, что готов в любой момент превратить оружие из оборонительного в наступательное, чем вызывал небывалый ажиотаж в прессе всего мира. Впрочем, нашлись и оптимисты, заявившие о фальсификации испытаний: мол, и тень от чучхе не туда падает, и радиоактивных осадков что-то не видно. Но почему наличие у страны-агрессора водородной бомбы является столь значительным фактором для свободных стран, ведь даже ядерные боеголовки, которые у Северной Кореи имеются в достатке, еще никого так не пугали?

Водородная бомба, известная также как Hydrogen Bomb или HB - оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Принцип действия HB основан на энергии, которая вырабатывается при термоядерном синтезе ядер водорода - точно такой же процесс происходит на Солнце.

Чем водородная бомба отличается от атомной

Термоядерный синтез - процесс, который происходит во время детонации водородной бомбы - самый мощный тип доступной человечеству энергии. В мирных целях его использовать мы еще не научились, зато приспособили к военным. Эта термоядерная реакция, подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии. В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее.

Первое испытание

И Советский Союз вновь опередил многих участников гонки холодной войны. Первую водородную бомбу, изготовленную под руководством гениального Сахарова, испытали на секретном полигоне Семипалатинска - и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков.

Ударная волна

Прямое разрушительное воздействие водородной бомбы - сильнейшая, обладающая высокой интенсивностью ударная волна. Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда.

Тепловой эффект

Водородная бомба всего в 20 мегатонн (размеры самой большой испытанной на данный момент бомбы - 58 мегатонн) создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки. Диаметр воронки, образованной взрывом, превысит два километра, а глубина ее будет колебаться около пятидесяти метров.

Огненный шар

Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала.

Радиационное заражение

Но самым опасным последствием взрыва станет, конечно же, радиационное заражение. Распад тяжелых элементов в бушующем огненном вихре наполнит атмосферу мельчайшими частицами радиоактивной пыли - она настолько легка, что попадая в атмосферу, может обогнуть земной шар два-три раза и только потом выпадет в виде осадков. Таким образом, один взрыв бомбы в 100 мегатонн может иметь последствия для всей планеты.

Царь-бомба

58 мегатонн - вот, сколько весила самая крупная водородная бомба, взорванная на полигоне архипелага Новая Земля. Ударная волна три раза обогнула земной шар, заставив противников СССР лишний раз увериться в огромной разрушительной силе этого оружия. Весельчак Хрущев на пленуме шутил, что бомбу не сделали больше только из опасений разбить стекла в Кремле.

Геополитические амбиции крупных держав всегда веди к гонке вооружения. Разработка новых военных технологий давала той или иной стране преимущества перед другими. Так семимильными шагами человечество подошло к возникновению страшного оружия - ядерной бомбы . С какой даты пошел отчет атомной эры, сколько стран нашей планеты обладают ядерным потенциалом и в чем принципиальное отличие водородной бомбы от атомной? На эти и другие вопросы вы сможете найти ответ, прочитав данную статью.

Чем отличается водородная бомба от ядерной

Любое ядерное оружие основывается на внутриядерной реакции , мощь которой способна почти мгновенно уничтожить как большое количество живой единицы, так и технику, и всевозможные здания и сооружения. Рассмотрим классификацию ядерных боеголовок, находящихся на вооружении некоторых стран:

  • Ядерная (атомная) бомба. В процессе ядерной реакции и деления плутония и урана, происходит выделение энергии колоссальных масштабов. Обычно в одной боеголовке находится от двух зарядов плутония одинаковой массы, которые взрываются друга от друга.
  • Водородная (термоядерная) бомба. Энергия выделяется на основе синтеза ядер водорода (отсюда пошло и название). Интенсивность ударной волны и количество выделяемой энергии превышает атомную в разы.

Что мощнее: ядерная или водородная бомба?

Пока ученые ломали голову над тем, как пустить атомную энергию полученную в процессе термоядерного синтеза водорода в мирные цели, военные уже провели не с один десяток испытаний. Выяснилось, что заряд в несколько мегатонн водородной бомбы мощнее атомной в тысячи раз . Даже трудно представить, что было бы с Хиросимой (да и с самой Японией), если бы в брошенной на нее 20-ти килотонной бомбе был водород.

Рассмотрим мощную разрушительную силу, которая получается при взрыве водородной бомбы в 50 мегатонн:

  • Огненный шар : диаметр в 4,5 -5 километра в диаметре.
  • Звуковая волна : взрыв можно услышать, находясь на расстоянии в 800 километров.
  • Энергия : от освобожденной энергии, человек может получить ожоги кожного покрова, находясь от эпицентра взрыва до 100 километров.
  • Ядерный гриб : высота более 70 км в высоту, радиус шапки - около 50 км.

Атомные бомбы такой мощности еще ни разу не взрывали. Есть показатели бомбы сброшенной на Хиросиму в 1945 году, но своими размерами она значительно уступала водородному разряду описанному выше:

  • Огненный шар : диаметр около 300 метров.
  • Ядерный гриб : высота 12 км, радиус шапки - около 5 км.
  • Энергия : температура в центре взрыва достигала 3000С°.

Сейчас на вооружении ядерных держав стоят именно водородные бомбы . Кроме того, что они опережают по своим характеристикам своих «малых братьев », они значительно дешевле в производстве.

Принцип действия водородной бомбы

Разберем пошагово, этапы приведения в действие водородных бомб :

  1. Детонация заряда . Заряд находится в специальной оболочке. После детонации идет выброс нейтронов и создается высокая температура, требуемая для начала ядерного синтеза в главном заряде.
  2. Расщепление лития . Под воздействием нейтронов, литий расщепляется на гелий и тритий.
  3. Термоядерный синтез . Тритий и гелий запускают термоядерную реакцию, вследствие чего в процесс вступает водород, и температура внутри заряда мгновенно возрастает. Происходит термоядерный взрыв.

Принцип действия атомной бомбы

  1. Детонация заряда . В оболочке бомбы находится несколько изотопов (уран, плутоний и т.п.), которые поле детонации распадаются и захватывают нейтроны.
  2. Лавинообразный процесс . Разрушение одного атома, инициируют к распаду еще нескольких атомов. Идет цепной процесс, который влечет за собой к разрушению большого количества ядер.
  3. Ядерная реакция . За очень короткое времени все части бомбы образуют одно целое, и масса заряда начинает превышать критическую массу. Освобождается огромное количество энергии, после этого происходит взрыв.

Опасность ядерной войны

Еще в середине прошлого века опасность ядерной войны была маловероятна. В своем арсенале атомное оружие имели две страны - СССР и США. Лидеры двух супердержав прекрасно понимали опасность применения оружия массового поражения, и гонка вооружений велась, скорее всего, как «соревнующее» противостояние.

Безусловно напряженные моменты в отношении держав были, но здравый смысл всегда брал верх над амбициями.

Ситуация изменилась в конце 20 века. «Ядерной дубинкой» завладели не только развитые страны западной Европы, но и представители Азии.

Но, как вы наверное знаете, «ядерный клуб » состоит из 10 стран. Неофициально считается, что ядерные боеголовки имеет Израиль, и возможно Иран. Хотя последние, после наложения на них экономических санкций, отказались от развития ядерной программы.

После возникновения первой атомной бомбы, ученые СССР и США начали думать об оружии, которое бы не несло такие большие разрушения и заражения территорий противника, а целенаправленно действовало на организм человека. Возникла идея о создании нейтронной бомбы .

Принцип действия заключается во взаимодействии нейтронного потока с живой плотью и военной техникой . Образованные радиоактивнее изотопы моментально уничтожают человека, а танки, транспортеры и другое оружие на кратковременное время становятся источниками сильного излучения.

Нейтронная бомба взрывается на расстоянии 200 метров до уровня земли, и особенно эффективна при танковой атаке противника. Броня военной техники толщиной в 250 мм, способна уменьшить действия ядерной бомбы в разы, но бессильна перед гамма-излучениями нейтронной бомбы. Рассмотрим действия нейтронного снаряда мощностью до 1 килотонна на экипаж танка:

Как вы поняли, отличие водородной бомбы от атомной огромна. Разница в реакции ядерного деления между этими зарядами, делает водородную бомбу разрушительнее атомной в сотни раз .

При использовании термоядерной бомбы в 1 мегатонн, в радиусе 10 километров будет уничтожено все. Пострадают не только постройки и техника, но и все живое.

Об этом должны помнить главы ядерных стран, и использовать «ядерную» угрозу исключительно как сдерживающий инструмент, а не в качестве наступательного оружия.

Видео о различиях атомной и водородной бомбы

На этом видео будет подробно и пошагово описан принцип действия атомной бомбы, а также основные отличия от водородной:


Атомная бомба и водородная бомбы являются мощным оружием, которое использует ядерные реакции в качестве источника взрывной энергии. Ученые впервые разработали технологию ядерного оружия в ходе Второй мировой войны.

Атомные бомбы в реальной войне использовались только дважды, и оба раза Соединенными Штатами — против Японии в конце Второй мировой войны. После войны последовал период распространения ядерного оружия, а во время «холодной войны» Соединенные Штаты и Советский Союз боролись за господство в глобальной гонке ядерных вооружений.

Что такое водородная бомба, как она устроена, принцип действия термоядерного заряда и когда проведены первые испытания в СССР — написано ниже.

Как устроена атомная бомба

После того, как в Берлине, в 1938 году, германские физики Отто Хан, Лиза Мейтнер и Фриц Штрассман открыли явление ядерного деления, появилась возможность создания оружия необычайной мощности.

Когда атом радиоактивного материала расщепляется на более легкие атомы, происходит внезапное, мощное высвобождение энергии.

Открытие ядерного деления открыло возможность использования ядерных технологий, включая оружие.

Атомная бомба — оружие, которое получает свою взрывную энергию только от реакции деления.

Принцип действия водородной бомбы или термоядерного заряда, основаны на комбинации ядерного деления и ядерного синтеза.


Ядерный синтез — еще один тип реакции, в котором более легкие атомы объединяются для высвобождения энергии. Например, в результате реакции ядерного синтеза из атомов дейтерия и трития образуется атом гелия с высвобождением энергии.


Проект «Манхэттен»

Проект «Манхэттен» — кодовое название американского проекта по разработке практической атомной бомбы во время Второй мировой войны. Проект «Манхэттен» был начат как ответ усилиям немецких ученых, работавших над оружием, использующим ядерную технологию, с 1930-х годов.

28 декабря 1942 года президент Франклин Рузвельт санкционировал создание Манхэттенского проекта для объединения различных ученых и военных должностных лиц, работающих над ядерными исследованиями.

Большая часть работы была выполнена в Лос-Аламосе, штат Нью-Мексико, под руководством физика-теоретика Дж. Роберта Оппенгеймера.

16 июля 1945 года в отдаленном пустынном месте недалеко от Аламогордо, штат Нью-Мексико, первая атомная бомба, эквивалентная по мощности 20 килотоннам тротила, была успешно испытана. Взрыв водородной бомбы создал огромное грибоподобное облако высотой около 150 метров и открыл атомный век.


Единственное фото первого в мире атомного взрыва, сделанное американским физиком Джеком Аэби

Малыш и Толстяк

Ученые из Лос-Аламоса разработали два различных типа атомных бомб к 1945 году — проект на основе урана под названием «Малыш» и оружие на основе плутония под названием «Толстяк».


В то время как война в Европе закончилась в апреле, боевые действия в Тихоокеанском регионе продолжались между японскими войсками и войсками США.

В конце июля президент Гарри Трумэн призвал к капитуляции Японии в Потсдамской декларации. Декларация обещала «быстрое и полное уничтожение», если бы Япония не сдалась.

6 августа 1945 года Соединенные Штаты сбросили свою первую атомную бомбу с бомбардировщика B-29 под названием «Энола Гей» в японском городе Хиросима.

Взрыв «Малыша» соответствовал 13 килотоннам в тротиловом эквиваленте, сравнял с землёй пять квадратных миль города и мгновенно убил 80 000 человек. Десятки тысяч людей позже умрут от радиационного облучения.

Японцы продолжали сражаться, и Соединенные Штаты сбросили вторую атомную бомбу через три дня в городе Нагасаки. Взрыв «Толстяка» убил около 40 000 человек.


Ссылаясь на разрушительную силу «новой и самой жестокой бомбы», японский император Хирохито объявил о капитуляции своей страны 15 августа, закончив Вторую мировую войну.

Холодная Война

В послевоенные годы Соединенные Штаты были единственной страной с ядерным оружием. Сначала у СССР не хватало научных наработок и сырья для создания ядерных боеголовок.

Но, благодаря усилиям советских учёных, данным разведки и обнаруженным региональным источникам урана в Восточной Европе, 29 августа 1949 года СССР опробовал свою первую ядерную бомбу. Устройство водородной бомбы разработано академиком Сахаровым.

От атомного оружия к термоядерному

Соединенные Штаты ответили в 1950 запуском программы разработки более совершенного термоядерного оружия. Началась гонка вооружений «холодной войны», а ядерные испытания и исследования стали широкомасштабными целями для нескольких стран, особенно для Соединенных Штатов и Советского Союза.

в этом году, США провели взрыв термоядерной бомбы мощностью 10 мегатонн в тротиловом эквиваленте

1955 год — СССР ответил своим первым термоядерным испытанием — всего-то лишь 1,6 мегатонн. Но главные успехи советского ВПК были впереди. Только в 1958 году СССР испытал 36 ядерных бомб различного класса. Но ничто из того, что испытал Советский Союз, не сравнится с Царь — бомбой.

Испытание и первый врыв водородной бомбы в СССР

Утром 30 октября 1961 года советский бомбардировщик Ту-95 взлетел с аэродрома Оленя на Кольском полуострове на крайнем севере России.

Самолёт был специально измененной версией, появившейся в эксплуатации несколько лет назад — огромный четырехмоторный монстр, которому поручено носить советский ядерный арсенал.


Модифицированная версия ТУ-95 «Медведь», специально подготовленная для первого испытания водородной Царь-бомбы в СССР

Ту-95 нёс под собой огромную 58-мегатонную бомбу, устройство слишком большое, чтобы вместить внутри бомбового отсека самолета, где такие боеприпасы обычно перевозились. Бомба длиной 8 м имела диаметр около 2,6 м и весила более 27 тонн и в истории осталась с именем Царь-бомба — «Tsar Bomba».

Царь-бомба не была обычной ядерной бомбой. Это был результат напряженных усилий ученых СССР создать самое мощное ядерное оружие.

Туполев достиг своей целевой точки — Новая Земля, малонаселенный архипелаг в Баренцевом море, над замерзшими северными краями СССР.


Царь Бомба взорвалась в 11:32 по московскому времени. Результаты испытания водородной бомбы в СССР продемонстрировали весь букет поражающих факторов данного вида оружия. Прежде, чем ответить на вопрос, что мощнее, атомная или водородная бомба, следует знать, что мощность последней ихмеряется мегатоннами, а у атомных — килотоннами.

Световое излучение

В мгновение ока бомба создала огненный шар шириной в семь километров. Огненный шар пульсировал от силы собственной ударной волны. Вспышку можно было увидеть за тысячи километров — на Аляске, в Сибири и в Северной Европе.

Ударная волна

Последствия взрыва водородной бомбы Новой Земле были катастрофическими. В селе Северный, примерно в 55 км от Ground Zero, все дома были полностью разрушены. Сообщалось о том, что на советской территории в сотнях километров от зоны взрыва было повреждено все — разрушались дома, падали крыши, повреждались двери, разрушались окна.

Радиус действия водородной бомбы несколько сотен километров.

В зависимости от мощности заряда и поражающих факторов.

Датчики регистрировали взрывную волну, обернувшуюся вокруг Земли не один раз, не дважды, а три раза. Звуковую волну зафиксировали у острова Диксон на расстоянии около 800 км.

Электромагнитный импульс

Более часа была нарушена радиосвязь во всей Арктике.

Проникающая радиация

Получил некоторую дозу радиации экипаж.

Радиоактивное заражение местности

Взрыв Царь-бомбы на Новой Земле оказался на удивление «чистым». Испытатели прибыли в точку взрыва через два часа. Уровень радиации в этом месте не представлял большой опасности — не более 1 мР/час в радиусе всего 2-3 км. Причинами были особенности конструкции бомбы и выполнение взрыва на достаточно большом расстоянии от поверхности.

Тепловое излучение

Несмотря на то, что самолет-носитель, покрытый особой свето- и теплоотражающей краской, в момент подрыва бомбы ушёл на расстояние 45 км, он вернулся на базу со значительными термическими повреждениями обшивки. У незащищенного человека излучение вызвало бы ожоги третьей степени на расстоянии до 100 км.

Гриб после взрыва виден на расстоянии 160 км, диаметр облака в момент съёмки — 56 км
Вспышка от взрыва Царь-бомбы, около 8 км в диаметре

Принцип действия водородной бомбы


Устройство водородной бомбы.

Первичная ступень выполняет роль включателя – триггера. Реакция деления плутония в триггере инициирует термоядерную реакцию синтеза во вторичной ступени, при которой температура внутри бомбы мгновенно достигает 300 миллионов °С. Происходит термоядерный взрыв. Первое испытание водородной бомбы шокировало мировое сообщество своей разрушительной силой.

Видео взрыва на ядерном полигоне