Что такое космическая пыль определение. Состав и характеристика компонентов космической пыли

Космический вакуум уже давно стал понятием весьма условным. Пространство между планетами и даже между звёздами далеко не пусто – оно заполнено материей в виде разнообразных излучений, полей, потоков элементарных частиц и… вещества. Большую часть этого вещества – 99% – составляет газ (в основном водород, в меньшей степени гелий), но есть и твёрдые частицы. Вот и эти частицы и называются космической пылью.

Она поистине вездесуща: есть пыль межзвёздная и межпланетная – правда, разграничить их не всегда бывает легко, ведь и межзвёздная пыль может попадать в межпланетное пространство… а вот если выйти за пределы Солнечной системы, желательно подальше, можно обнаружить межзвёздную пыль «в чистом виде», без примеси межпланетной… Да что Солнечная система – космическая пыль постоянно оседает на Землю, и счёт идёт на десятки килотонн в год, существует даже предположение, что 24% пыли, которая оседает за две недели в запертой квартире – это именно космическая пыль!

Что же представляет из себя космическая пыль? Как уже говорилось, это рассеянные в космическом пространстве твёрдые частицы. Размер их невелик: самые крупные частицы достигают 0,1 микрометра (тысячной дли миллиметра), а самые мелкие – вообще в несколько молекул. Химический состав межпланетной пыли практически не отличается от состава метеоритов, которые время от времени падают на Землю, а вот межзвёздная пыль в этом планет интереснее. Частицы её имеют – кроме твёрдого ядра – ещё и оболочку, отличающуюся от яда по составу. Ядро – углерод, кремний металлы, его окружают ядра атомов газообразных элементов, которые в условиях межзвёздного пространства быстро кристаллизуются («намерзают» на ядро) – вот это и есть оболочка. Впрочем, процессы кристаллизации могут затрагивать и ядра пылевых частиц – в частности те, которые состоят из углерода. При этом могут образовываться кристаллы… алмаза (так и вспоминается космический пират из произведения Кира Булычёва, который подсыпал алмазную пыль в смазку роботам на планете Шелезяка!).

Но это ещё не самое большое чудо, которое может происходить при кристаллизации углерода – при этом атомы углерода могут выстраиваться в полые шарики (т.н. фуллерены), внутри которых заключены частицы атмосферы древних звёзд… исследование такого вещества могло бы пролить свет на многое!

Хотя частицы космической пыли столь малы, не заметить её трудно, если она собирается в пылевые облака. Толщина газопылевого слоя нашей галактики измеряется в сотнях световых лет, большая часть вещества сосредоточена в спиральных рукавах.

В ряде случаев пылевые облака прямо-таки «заслоняют» для нас звёзды и даже из скопления, поглощая их свет – в этом случае облака пыли выглядят как чёрные провалы. Лучше всего космическая пыль поглощает синие лучи, а менее всего – красные, поэтому свет звезды, проходящий через заполненную космической пылью межзвёздную среду, «краснеет».

Откуда же берётся всё это великолепие? Начнём с того, что изначально во Вселенной были только молекулярные облака водорода… все остальные элементы зародились (и продолжают рождаться) в ядрах звёзд – этих грандиозных «термоядерных реакторах». Атмосферы молодых звёзд – красных карликов – медленно истекают в космическое пространство, старые массивные звёзды, взрываясь в конце своего «жизненного цикла», выбрасывают в пространство огромное количество вещества. В межзвёздном пространстве эти вещества (поначалу находящиеся в газообразном состоянии) конденсируются, образуя устойчивые группы атомов или даже молекул. К таким группам присоединяются другие атомы или молекулы, вступая в химическую реакцию с имеющимися (этот процесс называется хемосорбцией), а если концентрация таких частиц достаточно велика, они могут даже слипаться друг с другом, не разрушаясь.

Вот так и рождается космическая пыль… и можно с полным правом сказать, что у неё большое будущее: ведь именно из газопылевых облаков рождаются новые звёзды с планетарными системами!

Ученые Гавайского университета сделали сенсационное открытие — космическая пыль содержит органические вещества , включая и воду, что подтверждает возможность переноса различных форм жизни из одной галактики в другую. Кометы и астероиды, курсирующие в космосе, регулярно приносят в атмосферу планет массы звездной пыли. Таким образом, межзвездная пыль выступает в роли своеобразного «транспорта», который может доставлять воду с органикой на Землю и к прочим планетам Солнечной системы. Возможно, когда-то, поток космической пыли привел к зарождению жизни на Земле. Не исключено, что жизнь на Марсе, существование которой вызывает много споров в ученых кругах, могла возникнуть таким же образом.

Механизм образования воды в структуре космической пыли

В процессе передвижения в космосе поверхность частиц межзвездной пыли облучается , что приводит к образованию соединений воды. Более подробно этот механизм можно описать так: ионы водорода, присутствующие в солнечных вихревых потоках, бомбардируют оболочку космических пылинок, выбивая отдельные атомы из кристаллической структуры силикатного минерала — основного строительного материала межгалактических объектов. В результате данного процесса высвобождается кислород, который входит в реакцию с водородом. Таким образом, формируются молекулы воды, содержащие включения органических веществ.

Сталкиваясь с поверхностью планеты, астероиды, метеориты и кометы приносят на ее поверхность смесь воды и органики

То, что космическая пыль — спутница астероидов, метеоритов и комет, несет в себе молекулы органических соединений углерода, было известно и раньше. Но то, что звездная пыль транспортирует еще и воду, доказано не было. Только сейчас американские ученые впервые обнаружили, что органические вещества переносятся частицами межзвездной пыли совместно с молекулами воды.

Как вода попала на Луну?

Открытие ученых из США может помочь приподнять завесу таинственности над механизмом формирования странных ледовых образований . Несмотря на то, что поверхность Луны полностью обезвожена, на ее теневой стороне при помощи зондирования было обнаружено соединение ОН. Данная находка свидетельствует в пользу возможного присутствия воды в недрах Луны.

Обратная сторона Луны сплошь покрыта льдами. Возможно, именно с космической пылью попали на ее поверхность молекулы воды много биллионов лет тому назад

Со времен эры луноходов Apollo в исследовании Луны, когда на Землю были доставлены пробы лунного грунта, ученые пришли к выводу, что солнечный ветер вызывает изменения в химическом составе звездной пыли, покрывающей поверхности планет. О возможности образования молекул воды в толще космической пылина Луне еще тогда шли дебаты, однако доступные на тот момент аналитические методы исследований были не в состоянии либо доказать, либо опровергнуть данную гипотезу.

Космическая пыль — носитель жизненных форм

За счет того, что вода образовывается в совсем небольшом объеме и локализуется в тонкой оболочке на поверхности космической пыли , только сейчас стало возможным увидеть ее при помощи электронного микроскопа высокого разрешения. Ученые считают, что подобный механизм перемещения воды с молекулами органических соединений возможен и в других галактиках, где вращается вокруг «родительской» звезды. В своих дальнейших исследованиях ученые предполагают более подробно идентифицировать, какие неорганические и органические вещества на основе углерода присутствуют в структуре звездной пыли.

Интересно знать! Экзопланета — это такая планета, которая находится вне Солнечной системы и вращается вокруг звезды. На данный момент в нашей галактике визуально обнаружено порядка 1000 экзопланет, образующих около 800 планетных систем. Однако непрямые методы детектирования свидетельствуют о существовании 100 млрд. экзопланет, из которых 5-10 млрд. обладают параметрами, схожими с Землей, то есть являются . Значительный вклад в миссию поиска планетарных групп, подобных Солнечной системе, сделал астрономический спутник-телескоп Кеплер, запущенный в космос в 2009 году, совместно с программой «Охотники за планетами» (Planet hunters).

Как могла возникнуть жизнь на Земле?

Весьма вероятно, что кометы, путешествующие в пространстве с высокой скоростью, способны при столкновении с планетой создать достаточно энергии, чтобы из компонентов льда начался синтез более сложных органических соединений, в том числе молекул аминокислот. Аналогичный эффект возникает при столкновении метеорита с ледяной поверхностью планеты. Ударная волна создает тепло, которое запускает процесс формирования аминокислот из отдельных молекул космической пыли, обработанной солнечным ветром.

Интересно знать! Кометы состоят из больших глыб льда, сформированных путем конденсации водяного пара на начальном этапе создания Солнечной системы, приблизительно около 4.5 биллионов лет тому назад. В своей структуре кометы содержат углекислый газ, воду, аммиак, метанол. Эти вещества при столкновении комет с Землей, на ранней стадии ее развития, могли продуцировать достаточное количество энергии для производства аминокислот — строительных белков, необходимых для развития жизни.

Компьютерное моделирование продемонстрировало, что ледяные кометы, разбившиеся о поверхность Земли миллиарды лет тому назад, возможно, содержали пребиотические смеси и простейшие аминокислоты типа глицина, из которых, впоследствии, и зародилась жизнь на Земле.

Количество энергии, высвобождающейся при столкновении небесного тела и планеты, достаточно для запуска процесса формирования аминокислот

Ученые обнаружили, что ледяные тела с идентичными органическими соединениями, присущими кометам, можно найти внутри Солнечной системы. Например, Энцелад — один из спутников Сатурна, или Европа — спутник Юпитера, содержат в своей оболочке органические вещества , смешанные со льдом. Гипотетически, любая бомбардировка спутников метеоритами, астероидами или кометами может привести к возникновению жизни на данных планетах.

Вконтакте

КОСМИЧЕСКАЯ ПЫЛЬ, твёрдые частицы с характерными размерами от около 0,001 мкм до около 1 мкм (и, возможно, до 100 мкм и более в межпланетной среде и протопланетных дисках), обнаруженные почти во всех астрономических объектах: от Солнечной системы до очень далёких галактик и квазаров. Характеристики пыли (концентрация частиц, химический состав, размер частиц и т. д.) значительно меняются от одного объекта к другому, даже для объектов одного типа. Космическая пыль рассеивает и поглощает падающее излучение. Рассеянное излучение с той же длиной волны, что и падающее, распространяется во все стороны. Излучение, поглощённое пылинкой, трансформируется в тепловую энергию, и частица излучает обычно в более длинноволновой области спектра по сравнению с падающим излучением. Оба процесса дают вклад в экстинкцию - ослабление излучения небесных тел пылью, находящейся на луче зрения между объектом и наблюдателем.

Пылевые объекты исследуют почти во всём диапазоне электромагнитных волн - от рентгеновского до миллиметрового. Электрическое дипольное излучение быстро вращающихся ультрамелких частиц, по-видимому, даёт некоторый вклад в микроволновое излучение на частотах 10-60 ГГц. Важную роль играют лабораторные эксперименты, в которых измеряют показатели преломления, а также спектры поглощения и матрицы рассеяния частиц - аналогов космических пылинок, моделируют процессы образования и роста тугоплавких пылинок в атмосферах звёзд и протопланетных дисках, изучают образование молекул и эволюцию летучих пылевых компонентов в условиях, похожих на существующие в тёмных межзвёздных облаках.

Космическую пыль, находящуюся в различных физических условиях, непосредственно изучают в составе упавших на поверхность Земли метеоритов, в верхних слоях земной атмосферы (межпланетная пыль и остатки небольших комет), при полётах КА к планетам, астероидам и кометам (околопланетная и кометная пыль) и за пределы гелиосферы (межзвёздная пыль). Наземные и космические дистанционные наблюдения космической пыли охватывают Солнечную систему (межпланетная, околопланетная и кометная пыль, пыль около Солнца), межзвёздную среду нашей Галактики (межзвёздная, околозвёздная и небулярная пыль) и других галактик (внегалактическая пыль), а также очень удалённые объекты (космологическая пыль).

Частицы космической пыли в основном состоят из углеродистых веществ (аморфный углерод, графит) и магниево-железистых силикатов (оливины, пироксены). Они конденсируются и растут в атмосферах звёзд поздних спектральных классов и в протопланетарных туманностях, а затем выбрасываются в межзвёздную среду давлением излучения. В межзвёздных облаках, особенно плотных, тугоплавкие частицы продолжают расти в результате аккреции атомов газа, а также при столкновении и слипании частиц друг с другом (коагуляции). Это ведёт к появлению оболочек из летучих веществ (в основном льдов) и к образованию пористых агрегатных частиц. Разрушение пылинок происходит в результате распыления в ударных волнах, возникающих после вспышек сверхновых звёзд, или испарения в процессе звездообразования, начавшемся в облаке. Оставшаяся пыль продолжает эволюционировать вблизи сформировавшейся звезды и позднее проявляется в форме межпланетного пылевого облака или кометных ядер. Парадоксально, но вокруг проэволюционировавших (старых) звёзд пыль является «свежей» (недавно образовавшейся в их атмосфере), а вокруг молодых звёзд - старой (проэволюционировавшей в составе межзвёздной среды). Предполагается, что космологическая пыль, возможно существующая в удалённых галактиках, сконденсировалась в выбросах вещества после взрывов массивных сверхновых звёзд.

Лит. смотри при ст. Межзвёздная пыль.

В течение 2003–2008гг. группа российских и австрийских ученых при участии Хайнца Кольманна, известного палеонтолога, куратора Национального парка «Айзенвурцен», проводила изучение катастрофы, случившейся 65 млн. лет назад, когда на Земле вымерло более 75% всех организмов, в том числе и динозавры. Большинство исследователей считают, что вымирание было связано с падением астероида, хотя есть и другие точки зрения.

Следы этой катастрофы в геологических разрезах представлены тонким слоем черных глин мощностью от 1 до 5 см. Один из таких разрезов находится в Австрии, в Восточных Альпах, в Национальном парке недалеко от маленького городка Гамс, расположенного в 200 км к юго-западу от Вены. В результате изучения образцов из этого разреза c помощью сканирующего электронного микроскопа обнаружены необычные по форме и составу частицы, которые в наземных условиях не образуются и относятся к космической пыли.

Космическая пыль на Земле

Впервые следы космического вещества на Земле обнаружены в красных глубоководных глинах английской экспедицией, исследовавшей дно Мирового океана на судне «Челленджер» (1872–1876). Их описали Меррей и Ренард в 1891 г. На двух станциях в южной части Тихого океана при драгировании с глубины 4300 м были подняты образцы железомарганцевых конкреций и магнитных микросфер диаметром до 100 мкм, получивших впоследствии название «космические шарики». Однако детально микросферы железа, поднятые экспедицией на «Челленджере», были исследованы только в последние годы. Выяснилось, что шарики на 90% состоят из металлического железа, на 10% – из никеля, а их поверхность покрыта тонкой корочкой оксида железа.

Рис. 1. Монолит из разреза Гамс 1, подготовленный для отбора образцов. Латинскими буквами обозначены слои разного возраста. Переходный слой глины между меловым и палеогеновым периодами (возраст около 65 млн. лет), в котором найдено скопление металлических микросфер и пластин отмечен буквой «J». Фото А.Ф. Грачёва


С обнаружением загадочных шариков в глубоководных глинах, собственно, и связано начало изучения космического вещества на Земле. Однако взрыв интереса исследователей к этой проблеме произошел после первых запусков космических аппаратов, с помощью которых стало возможным отбирать лунный грунт и образцы пылевых частиц из разных участков Солнечной системы. Важное значение имели также работы К.П. Флоренского (1963), изучавшего следы Тунгусской катастрофы, и Е.Л. Кринова (1971), исследовавшего метеорную пыль на месте падения Сихотэ-Алиньского метеорита.

Интерес исследователей к металлическим микросферам привел к тому, что их стали обнаруживать в осадочных породах разного возраста и происхождения. Металлические микросферы найдены во льдах Антарктики и Гренландии, в глубоководных океанических осадках и марганцевых конкрециях, в песках пустынь и приморских пляжей. Часто встречаются они в метеоритных кратерах и рядом с ними.

В последнее десятилетие металлические микросферы внеземного происхождения находят в осадочных породах разного возраста: от нижнего кембрия (около 500 млн. лет назад) до современных образований.

Данные о микросферах и других частицах из древних отложений позволяют судить об объемах, а также о равномерности или неравномерности поступления космического вещества на Землю, об изменении состава поступавших на Землю частиц из космоса и о первоисточниках этого вещества. Это важно, поскольку эти процессы влияют на развитие жизни на Земле. Многие из этих вопросов еще далеки от разрешения, однако накопление данных и всестороннее их изучение, несомненно, позволит ответить на них.

Сейчас известно, что общая масса пыли, обращающейся внутри земной орбиты, порядка 1015 т. На поверхность Земли ежегодно выпадает от 4 до 10 тыс. т космического вещества. 95% падающего на поверхность Земли вещества составляют частицы размером 50–400 мкм. Вопрос же о том, как меняется во времени скорость поступления космического вещества на Землю, остается спорным до сих пор, несмотря на множество исследований, проведенных в последние 10 лет.

Исходя из размеров частиц космической пыли, в настоящее время выделяют собственно межпланетную космическую пыль размером менее 30 мкм и микрометеориты крупнее 50 мкм. Еще раньше Е.Л. Кринов предложил мельчайшие оплавленные с поверхности осколочки метеорного тела называть микрометеоритами.

Строгие критерии разграничения космической пыли и метеоритных частиц пока не разработаны, и даже на примере изученного нами разреза Гамс показано, что металлические частицы и микросферы разнообразнее по форме и составу, чем предусмотрено имеющимися классификациями. Практически идеальная сферическая форма, металлический блеск и магнитные свойства частиц рассматривались как доказательство их космического происхождения. По мнению геохимика Э.В. Соботовича, «единственным морфологическим критерием оценки космогенности исследуемого материала является наличие оплавленных шариков, в том числе магнитных». Однако помимо формы, крайне разнообразной, принципиально важен химический состав вещества. Исследователи выяснили, что наряду с микросферами космического происхождения существует огромное количество шариков иного генезиса – связанные с вулканической деятельностью, жизнедеятельностью бактерий или метаморфизмом. Известны данные о том, что железистые микросферы вулканогенного происхождения значительно реже бывают идеальной сферической формы и к тому же имеют повышенную примесь титана (Ti) (более 10%).

Российско-австрийская группа геологов и съемочная группа Венского телевидения на разрезе Гамс в Восточных Альпах. На переднем плане – А.Ф.Грачев

Происхождение космической пыли

Вопрос о происхождении космической пыли по-прежнему предмет дискуссии. Профессор Э.В. Соботович полагал, что космическая пыль может представлять собой остатки первоначального протопланетного облака, против чего в 1973 г. возражали Б.Ю. Левин и А.Н. Симоненко, считая, что мелкодисперсное вещество не могло долго сохраняться (Земля и Вселенная, 1980, № 6).

Существует и другое объяснение: образование космической пыли связано с разрушением астероидов и комет. Как отмечал Э.В. Соботович, если количество космической пыли, поступающей на Землю, не меняется во времени, то правы Б.Ю. Левин и А.Н. Симоненко.

Несмотря на большое число исследований, ответ на этот принципиальный вопрос в настоящее время не может быть дан, ибо количественных оценок очень мало, а их точность дискусcионна. В последнее время данные изотопных исследований по программе NASA частиц космической пыли, отобранных в стратосфере, позволяют предполагать существование частиц досолнечного происхождения. В составе этой пыли были обнаружены такие минералы, как алмаз, муассанит (карбид кремния) и корунд, которые по изотопам углерода и азота позволяют относить их образование ко времени до формирования Солнечной системы.

Важность изучения космической пыли в геологическом разрезе очевидна. В данной статье приведены первые результаты исследования космического вещества в переходном слое глин на границе мела и палеогена (65 млн. лет назад) из разреза Гамс, в Восточных Альпах (Австрия).

Общая характеристика разреза Гамс

Частицы космического происхождения получены из нескольких разрезов переходных слоев между мелом и палеогеном (в германоязычной литературе – граница К/Т), расположенных недалеко от альпийской деревни Гамс, где одноименная река в нескольких местах вскрывает эту границу.

В разрезе Гамс 1 из обнажения был вырезан монолит, в котором граница К/T выражена очень хорошо. Его высота – 46 см, ширина – 30 см в нижней части и 22 см – в верхней, толщина – 4 см. Для общего изучения разреза монолит был разделен через 2 см (снизу вверх) на слои, обозначенные буквами латинского алфавита (A, B,C…W), а в пределах каждого слоя также через 2 см проведена маркировка цифрами (1, 2, 3 и т.д.). Более детально изучался переходный слой J на границе К/T, где были выделены шесть субслоев мощностью около 3 мм.

Результаты исследований, полученные в разрезе Гамс 1, во многом повторены при изучении другого разреза – Гамс 2. В комплекс исследований входило изучение шлифов и мономинеральных фракций, их химический анализ, а также рентгено-флуоресцентный, нейтронно-активиационный и рентгено-структурный анализы, изотопный анализ гелия, углерода и кислорода, определение состава минералов на микрозонде, магнитоминералогический анализ.

Многообразие микрочастиц

Железные и никелевые микросферы из переходного слоя между мелом и палеогеном в разрезе Гамс: 1 – микросфера Fe с грубой сетчато-бугристой поверхностью (верхняя часть переходного слоя J); 2 – микросфера Fe с грубой продольно-параллельной поверхностью (нижняя часть переходного слоя J); 3 – микросфера Fe с элементами кристаллографической огранки и грубой ячеисто-сетчатой текстурой поверхности (слой M); 4 – микросфера Fe с тонкой сетчатой поверхностью (верхняя часть переходного слоя J); 5 – микросфера Ni с кристаллитами на поверхности (верхняя часть переходного слоя J); 6 – агрегат спекшихся микросфер Ni с кристаллитами на поверхности (верхняя часть переходного слоя J); 7 – агрегат микросфер Ni с микроалмазами (С; верхняя часть переходного слоя J); 8, 9 – характерные формы металлических частиц из переходного слоя между мелом и палеогеном в разрезе Гамс в Восточных Альпах.


В переходном слое глины между двумя геологическими границами – мелом и палеогеном, а также на двух уровнях в вышележащих отложениях палеоцена в разрезе Гамс найдено множество металлических частиц и микросфер космического происхождения. Они значительно разнообразнее по форме, текстуре поверхности и химическому составу, чем все известные до сих пор в переходных слоях глины этого возраста в других регионах мира.

В разрезе Гамс космическое вещество представлено мелкодисперсными частицами различной формы, среди которых наиболее распространенными являются магнитные микросферы размером от 0.7 до 100 мкм, состоящие на 98% из чистого железа. Такие частицы в виде шариков или микросферул в большом количестве встречены не только в слое J, но и выше, в глинах палеоцена (слои K и М).

Микросферы состоят из чистого железа или магнетита, некоторые из них имеют примеси хрома (Cr), сплава железа и никеля (аваруита), а также из чистого никеля (Ni). Некоторые частицы Fe-Ni содержат примесь молибдена (Mo). В переходном слое глины между мелом и палеогеном все они обнаружены впервые.

Никогда прежде не попадались и частицы с высоким содержанием никеля и значительной примесью молибдена, микросферы с наличием хрома и куски спиралевидного железа. Кроме металлических микросфер и частиц в переходном слое глины в Гамсе обнаружены Ni-шпинель, микроалмазы с микросферами чистого Ni, а также рваные пластины Au, Cu, которые не встречены в ниже- и вышележащих отложениях.

Характеристика микрочастиц

Металлические микросферы в разрезе Гамс присутствуют на трех стратиграфических уровнях: в переходном слое глины сосредоточены разнообразные по форме железистые частицы, в вышележащих мелкозернистых песчаниках слоя K, а третий уровень образуют алевролиты слоя M.

Некоторые сферы имеют гладкую поверхность, другие - сетчато-бугристую поверхность, третьи покрыты сеткой мелких полигональных или системой параллельных трещин, отходящих от одной магистральной трещины. Они бывают полыми, скорлуповидными, заполненными глинистым минералом, могут иметь и внутреннее концентрическое строение. Металлические частицы и микросферы Fe встречаются по всему переходному слою глины, но в основном сосредоточены на нижних и средних горизонтах.

Микрометеориты представляют собой оплавленные частицы чистого железа или железо-никелевого сплава Fe-Ni (аваруит); их размеры – от 5 до 20 мкм. Многочисленные частицы аваруита приурочены к верхнему уровню переходного слоя J, тогда как чисто железистые присутствуют в нижней и верхней частях переходного слоя.

Частицы в виде пластин с поперечно-бугристой поверхностью состоят только из железа, их ширина – 10–20 мкм, длина – до 150 мкм. Они слегка дугообразно изогнуты и встречаются в основании переходного слоя J. В его нижней части также встречены пластины Fe-Ni с примесью Mo.

Пластины из сплава железа и никеля имеют удлиненную форму, слегка изогнуты, с продольными бороздками на поверхности, размеры колеблются в длину от 70 до 150 мкм при ширине около 20 мкм. Чаще они встречаются в нижней и средней частях переходного слоя.

Железистые пластины с продольными бороздками по форме и размерам идентичны пластинам сплава Ni-Fe. Они приурочены к нижней и средней частям переходного слоя.

Особый интерес представляют частицы чистого железа, имеющие форму правильной спирали и изогнутые в виде крючка. В основном они состоят из чистого Fe, редко это сплав Fe-Ni-Mo. Частицы спиралевидного железа встречаются в верхней части переходного слоя J и в вышележащем прослое песчаника (слой K). Спиралевидная частица Fe-Ni-Mo найдена в основании переходного слоя J.

В верхней части переходного слоя J присутствовало несколько зерен микроалмазов, спекшихся с Ni-микросферами. Микрозондовые исследования никелевых шариков, проведенные на двух приборах (с волновыми и энергодисперсионными спектрометрами), показали, что эти шарики состоят из практически чистого никеля под тонкой пленкой окиси никеля. Поверхность всех никелевых шариков усеяна четкими кристаллитами с выраженными двойниками размером 1–2 мкм. Столь чистый никель в виде шариков с хорошо раскристаллизованной поверхностью не встречается ни в магматических породах, ни в метеоритах, где никель обязательно содержит значимое количество примесей.

При изучении монолита из разреза Гамс 1 шарики чистого Ni встречены только в самой верхней части переходного слоя J (в самой верхней его части – очень тонком осадочном слое J 6, толщина которого не превышает 200 мкм), а по данным термагнитного анализа металлический никель присутствует в переходном слое, начиная с субслоя J4. Здесь наряду с шариками Ni обнаружены и алмазы. В слое, снятом с кубика площадью 1 см2, количество найденных зерен алмаза исчисляется десятками (с размером от долей микронов до десятков микронов), а никелевых шариков таких же размеров – сотнями.

В образцах верхней части переходного слоя, взятых непосредственно из обнажения, были обнаружены алмазы с мелкими частицами никеля на поверхности зерна. Существенно, что при изучении образцов из этой части слоя J, выявлено также присутствие и минерала муассанита. Ранее микроалмазы были найдены в переходном слое на границе мела и палеогена в Мексике.

Находки в других районах

Микросферы Гамса с концентрическим внутренним строением аналогичны тем, что были добыты экспедицией «Челленджер» в глубоководных глинах Тихого океана.

Частицы железа неправильной формы с оплавленными краями, а также в виде спиралей и изогнутых крючков и пластин обладают большим сходством с продуктами разрушения падающих на Землю метеоритов, их можно рассматривать как метеоритное железо. К этой же категории могут быть отнесены частицы аваруита и чистого никеля.

Изогнутые железные частицы близки разнообразным формам слез Пеле – капель лавы (лапиллей), которые выбрасывают в жидком состоянии вулканы из жерла при извержениях.

Таким образом, переходный слой глины в Гамсе имеет гетерогенное строение и отчетливо подразделяется на две части. В нижней и средней частях преобладают частицы и микросферы железа, тогда как верхняя часть слоя обогащена никелем: частицами аваруита и микросферами никеля с алмазами. Это подтверждается не только распределением частиц железа и никеля в глине, но также данными химического и термомагнитного анализов.

Сравнение данных термомагнитного анализа и микрозондового анализа свидетельствует о чрезвычайной неоднородности в распределении никеля, железа и их сплава в пределах слоя J, однако по результатам термомагнитного анализа чистый никель фиксируется только, со слоя J4. Обращает на себя внимание и то, что спиралевидное железо встречается преимущественно в верхней части слоя J и продолжает встречаться в перекрывающем его слое K, где, однако, мало частиц Fe, Fe-Ni изометричной или пластинчатой формы.

Подчеркнем, что столь явная дифференциация по железу, никелю, иридию, проявленная в переходном слое глины в Гамсе, имеется и в других районах. Так, в американском штате Нью-Джерси в переходном (6 см) сферуловом слое иридиевая аномалия резко проявилась в его основании, а ударные минералы сосредоточены только в верхней (1 см) части этого слоя. На Гаити на границе мела и палеогена и в самой верхней части сферулового слоя отмечается резкое обогащение Ni и ударным кварцем.

Фоновое явление для Земли

Многие особенности найденных сферул Fe и Fe-Ni аналогичны шарикам, обнаруженным экспедицией «Челленджер» в глубоководных глинах Тихого океана, в районе Тунгусской катастрофы и местах падения Сихотэ-Алиньского метеорита и метеорита Нио в Японии, а также в осадочных горных породах разного возраста из многих районов мира. Кроме районов Тунгусской катастрофы и падения Сихотэ-Алиньского метеорита, во всех других случаях образование не только сферул, но и частиц различной морфологии, состоящих из чистого железа (иногда с содержанием хрома) и сплава никеля с железом, никакой связи с импактным событием не имеет. Мы рассматриваем появление таких частиц как результат падения на поверхность Земли космической межпланетной пыли – процесса, который непрерывно продолжается с момента образования Земли и представляет собой своего рода фоновое явление.

Многие частицы, изученные в разрезе Гамс близки по составу к валовому химическому составу метеоритного вещества в месте падения Сихотэ-Алиньского метеорита (по данным Е.Л. Кринова, это 93.29% железа, 5.94% никеля, 0.38% кобальта).

Присутствие молибдена в некоторых частицах не является неожиданным, поскольку его включают метеориты многих типов. Содержание молибдена в метеоритах (железных, каменных и углистых хондритах) находится в пределах от 6 до 7 г/т. Самым важным стала находка молибденита в метеорите Алленде в виде включения в сплаве металла следующего состава (вес.%): Fe – 31.1, Ni – 64.5, Co – 2.0, Cr – 0.3, V – 0.5, P – 0.1. Следует отметить, что самородный молибден и молибденит были обнаружены и в лунной пыли, отобранной автоматическими станциями «Луна-16», «Луна-20» и «Луна-24».

Впервые найденные шарики чистого никеля с хорошо раскристаллизованной поверхностью не известны ни в магматических породах, ни в метеоритах, где никель обязательно содержит значимое количество примесей. Такая структура поверхности никелевых шариков могла возникнуть в случае падения астероида (метеорита), которое привело к выделению энергии, позволившей не только расплавить материал упавшего тела, но и испарить его. Пары металла могли быть подняты взрывом на большую высоту (вероятно, на десятки километров), где и происходила кристаллизация.

Частицы, состоящие из аваруита (Ni3Fe), найдены вместе с металлическими шариками никеля. Они относятся к метеорной пыли, а оплавленные частицы железа (микрометеориты) следует рассматривать как «метеоритную пыль» (по терминологии Е.Л. Кринова). Кристаллы алмаза, встреченные вместе с шариками никеля, вероятно, возникли в результате абляции (плавления и испарения) метеорита из того же облака пара при его последующем охлаждении. Известно, что синтетические алмазы получают методом спонтанной кристаллизации из раствора углерода в расплаве металлов (Ni, Fe) выше линии фазового равновесия графит–алмаз в форме монокристаллов, их сростков, двойников, поликристаллических агрегатов, каркасных кристаллов, кристаллов игольчатой формы, неправильных зерен. Практически все из перечисленных типоморфных особенностей кристаллов алмаза были обнаружены в изученном образце.

Это позволяет сделать вывод о схожести процессов кристаллизации алмаза в облаке никель-углеродного пара при его охлаждении и спонтанной кристаллизации из раствора углерода в расплаве никеля в экспериментах. Однако окончательный вывод о природе алмаза можно будет сделать после детальных изотопных исследований, для чего необходимо получить достаточно большое количество вещества.

Таким образом, изучение космического вещества в переходном глинистом слое на границе мела и палеогена показало его присутствие во всех частях (от слоя J1 до слоя J6), но признаки импактного события фиксируются только со слоя J4, возраст которого 65 млн. лет. Этот слой космической пыли можно сопоставить со временем гибели динозавров.

А.Ф.ГРАЧЁВ доктор геолого-минералогических наук, В.A.ЦЕЛЬМОВИЧ кандидат физико-математических наук, Институт физики Земли РАН (ИФЗ РАН), О.А.КОРЧАГИН кандидат геолого-минералогических наук, Геологический институт РАН (ГИН РАН).

Журнал "Земля и Вселенная" № 5 2008 год.

Космическая пыль

частицы вещества в межзвёздном и межпланетном пространстве. Поглощающие свет сгущения К. п. видны как тёмные пятна на фотографиях Млечного Пути. Ослабление света вследствие влияния К. п. - т. н. межзвёздное поглощение, или экстинкция, - неодинаково для электромагнитных волн разной длины λ , вследствие чего наблюдается покраснение звёзд. В видимой области экстинкция приблизительно пропорциональна λ -1 , в близкой же ультрафиолетовой области почти не зависит от длины волны, но около 1400 Å имеется дополнительный максимум поглощения. Большая часть экстинкции объясняется рассеянием света, а не его поглощением. Это следует из наблюдений содержащих К. п. отражательных туманностей, видимых вокруг звёзд спектрального класса B и некоторых др. звёзд, достаточно ярких, чтобы осветить пыль. Сопоставление яркости туманностей и освещающих их звёзд показывает, что Альбедо пыли велико. Наблюдаемые экстинкция и альбедо приводят к заключению, что К. п. состоит из диэлектрических частиц с примесью металлов при размере немного меньше 1 мкм. Ультрафиолетовый максимум экстинкции может быть объяснён тем, что внутри пылинок имеются графитовые чешуйки размером около 0,05 × 0,05 × 0,01 мкм. Из-за дифракции света на частице, размеры которой сравнимы с длиной волны, свет рассеивается преимущественно вперёд. Межзвёздное поглощение часто приводит к поляризации света, которая объясняется анизотропией свойств пылинок (вытянутой формой у диэлектрических частиц или анизотропией проводимости графита) и их упорядоченной ориентацией в пространстве. Последняя объясняется действием слабого межзвёздного поля, которое ориентирует пылинки их длинной осью перпендикулярно силовой линии. Т. о., наблюдая поляризованный свет далёких небесных светил, можно судить об ориентации поля в межзвёздном пространстве.

Относительное количество пыли определяется из величины среднего поглощения света в плоскости Галактики - от 0,5 до нескольких звёздных величин на 1 килоПарсек в визуальной области спектра. Масса пыли составляет около 1% массы межзвёздного вещества. Пыль, как и газ, распределена неоднородно, образуя облака и более плотные образования - Глобулы . В глобулах пыль является охлаждающим фактором, экранируя свет звёзд и излучая в инфракрасном диапазоне энергию, получаемую пылинкой от неупругих столкновений с атомами газа. На поверхности пыли происходит соединение атомов в молекулы: пыль является катализатором.

С. Б. Пикельнер.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Космическая пыль" в других словарях:

    Частицы конденсированного вещества в межзвездном и межпланетном пространстве. По современным представлениям, космическая пыль состоит из частиц размером ок. 1 мкм с сердцевиной из графита или силиката. В Галактике космическая пыль образует… … Большой Энциклопедический словарь

    КОСМИЧЕСКАЯ ПЫЛЬ, очень мелкие частицы твердого вещества, находящиеся в любой части Вселенной, в том числе, метеоритная пыль и межзвездное вещество, способное поглощать звездный свет и образующее темные ТУМАННОСТИ в галактиках. Сферические… … Научно-технический энциклопедический словарь

    КОСМИЧЕСКАЯ ПЫЛЬ - метеорная пыль, а также мельчайшие частицы вещества, образующие пылевые и др. туманности в межзвёздном пространстве … Большая политехническая энциклопедия

    космическая пыль - Очень маленькие частицы твердого вещества, присутствующие в мировом пространстве и выпадающие на Землю … Словарь по географии

    Частицы конденсированного вещества в межзвёздном и межпланетном пространстве. По современной представлениям, космическая пыль состоит из частиц размером около 1 мкм с сердцевиной из графита или силиката. В Галактике космическая пыль образует… … Энциклопедический словарь

    Образуется в космосе частицами размером от нескольких молекул до 0,1 мм. 40 килотонн космической пыли каждый год оседает на планете Земля. Космическую пыль можно также различать по её астрономическому положению, например: межгалактическая пыль,… … Википедия

    космическая пыль - kosminės dulkės statusas T sritis fizika atitikmenys: angl. cosmic dust; interstellar dust; space dust vok. interstellarer Staub, m; kosmische Staubteilchen, m rus. космическая пыль, f; межзвёздная пыль, f pranc. poussière cosmique, f; poussière… … Fizikos terminų žodynas

    космическая пыль - kosminės dulkės statusas T sritis ekologija ir aplinkotyra apibrėžtis Atmosferoje susidarančios meteorinės dulkės. atitikmenys: angl. cosmic dust vok. kosmischer Staub, m rus. космическая пыль, f … Ekologijos terminų aiškinamasis žodynas

    Частицы конденсированного в ва в межзвёздном и межпланетном пространстве. По совр. представлениям, К. п. состоит из частиц размером ок. 1 мкм с сердцевиной из графита или силиката. В Галактике К. п. образует сгущения облака и глобулы. Вызывает… … Естествознание. Энциклопедический словарь

    Частицы конденсированного вещества в межзвёздном и межпланетном пространстве. Состоит из частиц размером около 1 мкм с сердцевиной из графита или силиката, в Галактике образует облака, которые вызывают ослабление света, испускаемого звёздами и… … Астрономический словарь

Книги

  • Детям о космосе и космонавтах , Г. Н. Элькин. Эта книга знакомит с удивительным миром космоса. На ее страницах ребенок найдет ответы на многие вопросы: что такое звезды, черные дыры, откуда появляются кометы, астероиды, из чего состоит…