Чем осуществляется передача энергии теплопроводность. Способы распространения тепла

Теплообменом называется перенос тепла от одних тел к другим или одних частей тела к другим, вызываемый разностью температур. Процесс теплообмена – это сложный процесс, он связан с конвективной и молекулярной диффузией и определяется законами аэродинамики, газодинамики, термодинамики, передачи энергии в форме теплоты, передачи лучистой энергии и превращением ее в теплоту и наоборот.

Теплообмен характеризуется выравниванием температуры и осуществляется тремя способами: теплопроводностью, конвекцией, излучением.

Теплопроводность – это передача тепла молекулярной диффузией, т.е. перенос тепловой энергии осуществляется от частиц обладающих большей энергией к частицам с меньшей энергией. Теплопроводность наблюдается только в твердых телах и неподвижных слоях жидкости или газа.

Конвекция – передача тепла потоками жидкости или газа из одной области пространства в другую. Конвекция бывает свободной и вынужденной.

Свободная конвенция возникает из-за разности плотностей нагретой и холодной среды. При вынужденной конвенции движущиеся потоки создаются принудительно – компрессором, вентилятором и т.д.

Конвекция сопровождается переносом тепла теплопроводностью в пограничных слоях. Совместный процесс конвекции и теплопроводности называется конвективным теплообменом.

Излучение – это передача тепловой энергии путем электромагнитных колебаний. Процесс передачи тепла излучением можно условно разделить на 3 этапа:

1. Преобразование внутренней энергии системы в энергию электромагнитных волн;

2. Распространение этих волн в среде, разделяющей источник и приемник.

3.Реакция приемника на излучение.

В реальных условиях названные способы переноса тепла протекают одновременно: такое физическое явление называется сложным теплообменом . Его закономерности могут быть установлены на основе закономерностей простых видов теплообмена.

Тепловой поток – это количество тепловой энергии, которая передается через произвольную поверхность в единицу времени:

Удельный тепловой поток – это количество тепловой энергии, которая передается через 1м 2 поверхности за единицу времени:

где F – площадь поверхности, м 2 ; Ф – тепловой поток, Вт

. 2.2 Теплопроводность

Если выделить в теле слой толщиной , то через площадку dF , нормальную к направлению теплового потока, за время пройдет количество теплоты, равное

где – коэффициент теплопроводности, Вт/м·К ;

– разность температур в слое, К;

– толщина слоя, м;

– время, с;

dF - площадь, м 2 .

Дифференциальная зависимость (2.3) называется основным уравнением теплопроводности или уравнением Фурье


Рис. 2.1 Схема переноса тепла через плоскую однородную

Величина показывает изменение температуры в слое и называется градиентом температур. Распространение тепла в теле происходит лишь в сторону понижения температуры, поэтому величина отрицательна, на что показывает знак минус в уравнении Фурье.

Теплопередача - это один из способов изменения внутренней энергии тела (или системы тел), при этом внутренняя энергия одного тела переходит во внутреннюю энергию другого тела без совершения механической работы.

Существует 3 вида теплопередачи:

Теплообмен между двумя средами происходит через разделяющую их твердую стенку или через поверхность раздела между ними.
Теплота способна переходить только от тела с более высокой температурой к телу менее нагретому.

Теплообмен всегда протекает так, что убыль внутренней энергии одних тел всегда сопровождается таким же приращением внутренней энергии других тел, участвующих в теплообмене.
Это является частным случаем закона сохранения энергии.

ИНТЕРЕСНО

Куропатки, утки и другие птицы зимой не мерзнут потому, что температура лап у них может отличаться от температуры тела более чем на 30 градусов. Низкая температура лап сильно понижает теплоотдачу. Таковы защитные силы организма!

Теплопроводность - это перенос энергии от более нагретых участков тела к менее нагретым за счет теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.), который приводит к выравниванию температуры тела.
Не сопровождается переносом вещества!

Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей и газов.
Теплопроводность различных веществ разная.
Металлы обладают самой высокой теплопроводностью,

причем у разных металлов теплопроводность отличается.

Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости.

При нагревании верхнего конца закрытой пальцем пробирки с воздухом внутри можно не бояться обжечь палец, т.к. теплопроводность газов очень низкая.
Интересно, что можно было бы поднести руку почти вплотную к пламени, например, газовой горелки (температура больше 1000 градусов) и не обжечь ее, если бы …

А что если бы?

Газ, как правило, очень плохой проводник тепла, поэтому достаточно было бы лишь небольшой прослойки воздуха между рукой и пламенем. Но!
Но существует такое явление, как конвекция в газах, поэтому вблизи пламени руку сильно жжет.

ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ

Знаешь ли ты, что...

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.
Это не сказка, не фантастика!
Такой проект реально разработан и испытан!

Итальянские ученые изобрели рубашку, позволяющую поддерживать постоянную температуру тела. Ученые обещают, что летом в ней не будет жарко, а зимой – холодно, поскольку она сшита из специальных материалов. Подобные материалы уже используются при космических полетах.

В старых пулеметах "Максим" нагревание воды предохраняло оружие от расплавления.

На кухне, поднимая посуду, наполненную горячей жидкостью, чтобы не обжечься, можно использовать только сухую тряпку. Теплопроводность воздуха намного меньше, чем у воды! А ткань структура очень рыхлая, и все прмежутки между волокнами заполнены у сухой тряпки воздухом, а у влажной - водой. Смотри, не обожгись!

Огонь в решете

Явление, о котором рассказано ниже демонстрирует свойство металлов хорошо проводить тепло.
Если изготовить сетку из проволоки, обеспечив хорошее соединение металла в местах перекрещивания проволоки, и поместить ее над газовой горелкой, то можно при включенном вентиле поджечь газ над сеткой, в то время как под сеткой он гореть не будет. А если зажечь газ под сеткой, то наверх через сетку огонь « не просочится»!

В те времена, когда еще не было электрических шахтерских лампочек, пользовались лампой Дэви.
Это была свеча, «посаженная» в металлическую клетку. И даже, если шахта наполнялась легковоспламеняющимися газами, лампа Дэви была безопасна и не вызывала взрыва - пламя не выходило за пределы лампы,благодаря металлической сетке.

Положить на лежащие рядом на столе кусок пенопласта (или дерева) и зеркало ладони, то ощущения от этих предметов будут разными: пенопласт покажется теплее, а зеркало - холоднее.
Почему?
Ведь температура окружающего воздуха одинаковая!
Стекло - хороший проводник тепла (обладает высокой теплопроводностью), и сразу начнет "отбирать" от руки тепло. Рука будет ощущать холод! Пенопласт хуже проводит тепло. Он тоже будет, нагреваясь, "отбирать" тепло у руки, но медленнее, поэтому и покажется теплее.


ДОМАШНИЕ ОПЫТЫ

Оберните толстый гвоздь или металлический стержень полоской бумаги в один слой. Подержите над пламенем свечи до момента возгорания, засеките время. Объясните, почему бумага загорелась не сразу.

Используйте свои руки как термодатчики – обследуйте окружающие вас предметы. Найдите самые холодные на ощупь, сделайте вывод об их теплопроводности. По своим ощущениям составьте список веществ, обладающих разной теплопроводностью, от самой хорошей до самой плохой.

Подберите ложки из разных материалов (алюминиевую, мельхиоровую, стальную, деревянную и т.д.). Опустите их наполовину в сосуд с горячей водой. Через 1–2 мин проверьте, одинаково ли нагрелись их ручки. Проанализируйте результат.

Приготовьте три одинаковых кусочка льда, один из них заверните в фольгу, второй – в бумагу, третий– в вату и оставьте на блюдцах в комнате. Определите время полного таяния. Объясните разницу.

Приготовьте в морозилке лед. Сложите его в целлофановый пакет и оберните пуховым платком или обложите ватой. Можно дополнительно завернуть в шубу. Оставьте этот сверток на 5–7 ч,затем проверьте сохранность льда. Объясните наблюдаемое состояние. Предложите дома способ сохранения замороженных продуктов при размораживании холодильника.


ЗАДАЧИ ДЛЯ УМЕЮЩИХ ДУМАТЬ

(или " покумекаем"?)

1. Какая почва прогревается солнцем быстрее: влажная или сухая? Почему?

2. Почему толстый человек в холодной воде меньше мерзнет, чем худой?

3. Человек не чувствует прохлады на воздухе при температуре 20 градусов Цельсия, но в воде мерзнет при температуре 25 градусов Цельсия. Почему?

4. Если зимой к замерзшему стеклу(покрытому инеем) трамвая или автобуса приложить на одинаковое время палец, а другим пальцем прижать монету, то площадь оттаивания под монетой окажется больше.
Почему?

Любое материальное тело обладает такой характеристикой как теплота, которая может увеличиваться и уменьшаться. Теплота не является материальной субстанцией: как часть внутренней энергии вещества она возникает вследствие движения и взаимодействия молекул. Поскольку теплота различных веществ может отличаться, происходит процесс передачи тепла от более нагретой субстанции к веществу с меньшим количеством теплоты. Этот процесс носит название теплопередача. Основные и механизмы их действия мы рассмотрим в этой статье.

Определение теплопередачи

Теплообмен, или процесс переноса температуры, может происходить как внутри материи, так и от одного вещества к другому. При этом интенсивность теплообмена во многом зависит от физических свойств материи, температуры веществ (если в теплообмене участвуют несколько субстанций) и законов физики. Теплопередача - это процесс, который всегда протекает в одностороннем порядке. Главный принцип теплообмена заключается в том, что наиболее нагретое тело всегда отдаёт тепло объекту с меньшей температурой. Например, при глажке одежды горячий утюг отдаёт тепло брюкам, а не наоборот. Теплопередача - явление, зависимое от временного показателя, характеризующее необратимое распространение тепла в пространстве.

Механизмы теплопередачи

Механизмы теплового взаимодействия веществ могут приобретать разные формы. Известны три вида теплообмена в природе:

  1. Теплопроводность - механизм межмолекулярной передачи тепла из одного участка тела в другой или в иной объект. Свойство основывается на неоднородности температуры в рассматриваемых субстанциях.
  2. Конвекция - теплообмен между текучими средами (жидкая, воздушная).
  3. Лучевое воздействие - передача тепла от нагретых и нагреваемых за счёт своей энергии тел (источников) в виде электромагнитных волн с постоянным спектром.

Рассмотрим перечисленные виды теплообмена более подробно.

Теплопроводность

Чаще всего теплопроводность наблюдается в твёрдых телах. Если под воздействием каких-либо факторов у одного и того же вещества появляются участки с разными температурами, то тепловая энергия из более нагретого участка перейдёт к холодному. Подобное явление в некоторых случаях можно наблюдать даже визуально. Например, если взять металлический стержень, скажем, иголку, и нагреть его на огне, то через какое-то время увидим, как тепловая энергия передаётся по иголке, образуя на определённом участке свечение. При этом в месте, где температура выше, свечение ярче и, наоборот, где t ниже, оно темнее. Теплопроводность может наблюдаться также между двумя телами (кружкой горячего чая и рукой)

Интенсивность передачи теплового потока зависит от многих факторов, соотношение которых выявил французский математик Фурье. К этим факторам относится в первую очередь градиент температуры (соотношение разности температур на концах стержня к расстоянию от одного конца к другому), площадь сечения тела, а также коэффициент теплопроводности (у всех веществ он разный, но самый высокий наблюдается у металлов). Самый значительный коэффициент теплопроводности наблюдается у меди и алюминия. Неудивительно что именно эти два металла чаще используются в изготовлении электропроводов. Следуя закону Фурье, величину теплового потока можно увеличить или уменьшить, изменив один из этих параметров.

Конвекционные виды теплообмена

Конвекция, свойственная в основном для газов и жидкостей, имеет два компонента: межмолекулярную теплопроводность и движение (распространение) среды. Механизм действия конвекции происходит следующим образом: при повышении температуры текучей субстанции её молекулы начинают более активное движение и при отсутствии пространственных ограничений объём вещества увеличивается. Следствием данного процесса будет уменьшение плотности субстанции и её движение вверх. Яркий пример конвекции - это движение нагретого радиатором воздуха от батареи к потолку.

Различают свободные и вынужденные конвективные виды теплообмена. Теплопередача и движение массы при свободном типе происходит за счёт неоднородности субстанции, то есть горячая жидкость поднимается над холодной естественным образом без оказания влияния внешних сил (например, обогрев комнаты посредством центрального отопления). При вынужденной конвекции движение массы происходит под действием внешних сил, например, помешивание чая ложкой.

Лучистый теплообмен

Лучистая или радиационная теплопередача может происходить без контакта с другим объектом или субстанцией, поэтому возможна даже в Радиационный теплообмен присущ всем телам в большей или меньшей степени и проявляется в виде электромагнитных волн с непрерывным спектром. Яркий тому пример - солнечные лучи. Механизм действия выглядит следующим образом: тело непрерывно излучает определённое количество теплоты в окружающее его пространство. Когда эта энергия попадает на другой объект или субстанцию, часть её поглощается, вторая часть проходит насквозь, а третья отражается в окружающую среду. Любой объект может как излучать тепло, так и поглощать, при этом тёмные вещества способны поглощать больше тепла, чем светлые.

Комбинированные механизмы теплопередачи

В природе виды процессов теплообмена редко встречаются по отдельности. Гораздо чаще их можно наблюдать в совокупности. В термодинамике эти сочетания даже имеют названия, скажем, теплопроводность + конвекция - это конвективный теплообмен, а теплопроводность + тепловое излучение называют радиационно-кондуктивной теплопередачей. Кроме этого, выделяют такие комбинированные виды теплообмена, как:

  • Теплоотдача - движение тепловой энергии между газом или жидкостью и твёрдым веществом.
  • Теплопередача - передача t от одной материи к другой через механическое препятствие.
  • Конвективно-лучистый теплообмен образуется при совмещении конвекции и теплового излучения.

Виды теплообмена в природе (примеры)

Теплообмен в природе играет огромную роль и не ограничивается нагреванием земного шара солнечными лучами. Обширные конвекционные потоки, такие как передвижение воздушных масс, во многом определяют погоду на всей нашей планете.

Теплопроводность ядра Земли приводит к появлению гейзеров и извержению вулканических пород. Это лишь малая часть в глобальных масштабах. В совокупности они образуют виды конвективного теплообмена и радиационно-кондуктивные типы теплопередачи необходимые для поддержания жизни на нашей планете.

Использование теплообмена в антропологической деятельности

Тепло - это важная составляющая почти всех производственных процессов. Сложно сказать, какой вид теплообмена человеком используется больше всего в народном хозяйстве. Наверное, все три одновременно. Благодаря процессам теплопередачи происходит выплавка металлов, производство огромного количества товаров, начиная с предметов повседневного использования и заканчивая космическими судами.

Крайне важное значение для цивилизации имеют тепловые агрегаты, способные преобразовывать тепловую энергию в полезную силу. Среди них можно назвать бензиновые, дизельные, компрессорные, турбинные установки. Для своей работы они используют различные виды теплообмена.

Способы передачи теплоты - теплота всегда передается от тел более нагретых к менее нагретым. Способы передачи теплоты от твердого тела (стенки) к обтекающей его жидкости или газу называются теплоотдачей. Способы передачи теплоты из одной среды в другую, разделенных перегородкой (стенкой), называются теплопередачей. Различают три способа переноса теплоты: теплопроводность, конвекцию и излучение (радиацию).

Теплопроводностью называется процесс распространения теплоты в теле (одном) посредством передачи кинетической энергии от более нагретых молекул к менее нагретым, находящимся в соприкосновении друг с другом. В чистом виде теплопроводность имеет место в твердых телах очень тонких, неподвижных слоях жидкости и газа.

Способы передачи теплоты распространяются через стенки котла. Теплопроводность различных веществ различна. Хорошими проводниками теплоты являются металлы. Весьма незначительна теплопроводность воздуха. Слабо проводят теплоту пористые тела, асбест, войлок и сажа.

Конвекцией называется перенос, теплоты за счет перемещения молярных объемов среды. Обычно конвективный способ перенос теплоты происходит совместно с теплопроводностью и осуществляется в результате свободного или вынужденного движения молярных объемов жидкости или газов (естественная или вынужденная конвекция). Естественной конвекцией распространяется теплота от печей, отопительных приборов, при нагревании воды в паровых котлах, охлаждении обмуровки котлов и других тепловых устройств. Свободное движение жидкости или газов обусловлено различной плотностью нагретых и холодных частиц среды. Например, воздух около поверхности печи нагревается становится легче, поднимается вверх, а на его место поступает более тяжелый, холодный. В результате этого в комнате возникает циркуляция воздуха, которая переносит теплоту.

Способы передачи теплоты включают в себя конвекцию. Вынужденная конвекция имеет место при передаче теплоты от внутренней стенки котла к воде, движущейся под действием насоса.

Излучением (радиацией) называется передача теплоты от одного тела к другому путем электромагнитных волн через прозрачную для теплового излучения среду. Этот процесс передачи теплоты сопровождается превращением энергии тепловой в лучистую и, наоборот, лучистой в тепловую. Радиацией передается теплота от факела горящего топлива к поверхности чугунных секций или стальных труб котла. Радиация - это наиболее эффективный способ передачи теплоты, особенно если излучающее тело имеет высокую температуру, а лучи от него направлены перпендикулярно к нагреваемой поверхности.

Понятие о теплопередаче. Рассмотренные выше три вида теплообмена в чистом виде встречаются очень редко. В большинстве случаев один вид сопровождается другим. Примером этого может служить передача теплоты от газообразных продуктов сгорания к стенке водогрейного котла (рис. 7). Слева поверхность ее соприкасается с горячими газообразными продуктами сгорания и имеет температуру t 1 справа омывается водой и имеет температуру t 2 Температура в стенке снижается в направлении оси х.

Рис. 7.Передача теплоты от газообразных продуктов сгорания к стенке водогрейного котла.

В данном случае теплота от газа к стенке передается одновременно путем конвекции, теплопроводности и излучением (лучистый теплообмен). Одновременная передача теплоты конвекцией, теплопроводностью и излучением называется сложным теплообменом.

Результат одновременного действия отдельных элементарных явлений приписывают одному из них, которое и считают главным. Так, радиация (излучение), называемая еще прямой отдачей, в передаче теплоты в топочной камере от топочных газов к внешней поверхности нагрева котла играет главенствующую роль, хотя наряду с ней в передаче теплоты участвуют и конвекция, и теплопроводность.

Способы передачи теплоты от внешней поверхности нагрева к внутренней через слой сажи, металлическую стенку и слой накипи осуществляются только путем теплопроводности. Наконец, от внутренней поверхности нагрева котла к воде теплота передается только конвекцией. В газоходах котла процесс теплообмена между стенкой секции и омывающими ее газами также является результатом совокупного действия конвекции, теплопроводности и радиации. Однако в качестве основного явления принимается конвекция.

Количественной характеристикой передачи теплоты от одного теплоносителя к другому через разделяющую их стенку является коэффициент теплопередачи К. Для плоской стенки коэффициент К количество теплоты, переданной в единицу времени: от одной жидкости к другой на площади 1 м 2 при разности температура между ними в один град. - определяется по формуле:

К = (1/α 1 +δ 3 /λ 3 + δ ст /λ ст +δ н /λ н + 1/α 2) -1

где α 1 - коэффициент теплоотдачи от газов к стенке поверхности нагрева, Вт/(м 2 ×град); δ 3 - толщина золовых или сажевых отложений (так называемые наружные загрязнения), м; δ ст - толщина стенки секций или труб, м; δ н - толщина накипи (так называемое внутреннее загрязнение), м; λ 3 , λ ст, λ в - соответствующие коэффициенты теплопроводности золы или сажи, стенки и накипи, Вт/(м×град); α 2 -. коэффициент теплоотдачи от стенки к воде/ Вт/(м 2 ×град).

В соответствии с приведенным примером сложного теплообмена (см. рис. 7) общий коэффициент теплоотдачи, а от газов к стенке котла соответственно равен:

α 1 = α к + α л

где α к и α л - коэффициенты, теплоотдачи конвекцией и излучением.

Величина, обратная коэффициенту теплопередачи, называется термическим сопротивлением теплопередачи. Для данного случая:

R = 1/K = 1/α 1 +δ 3 /λ 3 +δ cт /λ ст +δ н /λ н + 1/α 2

Различные вещества имеют разные коэффициенты теплопроводности.

Коэффициент теплопроводности К - количество теплоты, передаваемое через единицу площади поверхности нагрева в единицу времени при разности температур в 1 град и толщине стенки в 1 м. При использовании внесистемных единиц (ккал в ч) размерность коэффициента теплопроводности ккал×м/(м 2 ×ч×град), в системе СИ - Вт/ (м × град).

Коэффициенты теплопроводности различных материалов, наиболее часто встречающихся в отопительно - котельной технике, приведены ниже, Вт/(м×град).

Количество теплоты Q, передаваемое через стенку, определяется по формуле:

где К - коэффициент теплопередачи, Вт/ (мг×град); ∆t - средняя разность температур греющей и нагреваемой сред или среднелогарифмический температурный напор, град; Н - площадь поверхности нагрева, м 2 .

Среднелогарифмический температурный напор ∆t определяется по формуле:

∆t = ∆t - ∆t м /2,31 g (∆t 0 /∆t м)

где ∆t g и ∆t м - наибольшая и наименьшая разности температур греющей и нагреваемой среды.

Рис. 8. Характер изменения температур рабочих жидкостей при

а - прямотоке; б - противотоке.

Характер изменения температур рабочих жидкостей показан на рис. 8. Если в теплообменном аппарате греющая и нагреваемая жидкости протекают в одном направлении, то такая схема движения называется прямотоком (см. рис. 8, а), а в противоположных - противотоком (см. рис. 8, б).

Для единицы площади теплопередающей поверхности удельный поток, обозначаемый q, будет равен:

Из приведенных формул видно, что количество передаваемой теплоты тем больше, чем больше площадь поверхности нагрева Н и чем больше средняя разность температур или температурный напор и коэффициент теплопередачи К. Наличие на стенке котла накипи, золы или сажи значительно снижает коэффициент теплопередачи (см. ниже пример).

Определяющим фактором в передаче теплоты радиацией являются температура излучающего тела и степень его черноты. Поэтому, чтобы интенсифицировать передачу теплоты радиацией, необходимо увеличить температуру излучающего тела, повысив шероховатость поверхности.

Теплоотдача конвекцией зависит: от скорости движения газов, разности температур греющей и нагреваемой среды, характера обтекания газами поверхности нагрева - продольное или поперечное, вида поверхности - гладкая или оребренная. Основными способами интенсификации передачи теплоты конвекцией являются: повышение скорости газов, их завихрение в газоходах, увеличение площади поверхности нагрева за счет ее оребрения, повышение разности температур между греющей и нагреваемой средами, осуществление встречного (противоточного) омывания.

Пример. Рассмотрим влияние накипи и сажи на теплопередачу в котле, используя данные настоящего раздела. Принимаем толщину стенки секции чугунного котла δ 1 = 8 мм, а отложившиеся на ней слой накипи толщиной δ 2 = 2 мм и слой сажи δ 3 = 1 Гмм. Коэффициенты теплопроводности стенки λ 1 , накипи λ 2 и сажи λ 3 соответственно принимаем равными 54; 0,1 и 0,05 ккал/(м×ч×град) (√62,7; 0,116 и 0,058 Вт/ (м 2 × К). Значения коэффициентов теплоотдачи: от, газов к стенке α 1 = 20 ккал/(м 2 ×град); от стенки к воде α 2 = 1000 ккал/(м 2 ×ч×град). Температуру газов принимаем равной t газ = 800°С, воды t = 95 С.

Расчеты производим для чистой и загрязненной стенок чугунного котла.

А. Стенка котла чистая.

Найдем коэффициент теплопередачи:

К = (l/α 1 + δ/λ + l/α 2) -1 = (1/20 + 0,008/54 + 1/1000) -1 = 1/0,0512 = 19,5 ккал/(м 2 × ч ×град) = 22,6 Вт/ (м 2 × град) и тепловой поток через стенку.

q = K∆t = 19,5 (800-95) = 13700 ккал/(м 2 ×ч) = 15850 Вт/ (м 2).

Определим температуру наружной поверхности стенки чугунной секции, воспользовавшись формулой

q =α 1 (t газ - t cт) -1 q = α 1 t газ - α 1 t ст; α i t ст = α 1 t газ

t cт = t газ - q/α 1 = 800 - 13700/20 = 115 °С.

Из расчета видно, что при чистой стенке котла температура ее мало отличается от температуры воды внутри котла.

Б. Стенка котла загрязненная.

Повторив весь расчет, найдем:

К = (l/α 1 +δ 1 /λ 1 + δ 2 /λ 2 + δ 3 /λ 3 + 1/α 2) -1 = (1/20+0,008/54+0,002/0,1 (+0,001/0,05+ 1=1000) -1 = (0,0912) -1 = 11ккал/ (м 2 ×ч×1×град) = 12,7 Вт/ (м 2 ×град)

q = 11 (800 - 95) = 7750 ккал/ (м 2 ×ч) = 8960 Вт/ (м 2), t ст = 800 - 7750/20 = 412C.

Из расчета видно, что отложение сажи нежелательно тем, что она, обладая малой теплопроводностью, затрудняет передачу теплоты от топочных газов к стенкам котла. Это приводит к перерасходу топлива, снижению выработки котлами пара или горячей воды.

Накипь, имея малую теплопроводность - значительно уменьшает передачу теплоты oт стенки котла к воде, в результате чего стенки, сильно перегреваются и в некоторых случаях; разрываются, вызывая аварии котлов.

Сравнивая результаты расчета, видим, что теплопередача через загрязненную стенку уменьшилась почти в два раза, температура стенки чугунной секции при накипи возросла до опасных, по условиям прочности металла, пределов, что может привести к разрыву секции. Этот пример наглядно показывает необходимость регулярной очистки котла как от накипи, так и от сажи или золы.

На рисунке показаны три способа теплообмена: теплопроводность, излучение и конвекция. Путём теплопроводности через дно и стенки котелка внутренняя энергия пламени переходит во внутреннюю энергию туристской похлёбки. Путём излучения – во внутреннюю энергию ладоней туриста и других тел. А путём конвекции – во внутреннюю энергию воздуха над костром.

Теплообмен теплопроводностью. Многочисленные опыты показывают: теплопроводность различных веществ различна: при одинаковых условиях они передают теплоту с разной скоростью.

Проделаем опыт (см. рисунок). Две проволоки, например медную и стальную одинаковой длины и толщины, укрепим так, чтобы их концы попали в пламя свечи. Мы увидим, что маленькие гвоздики, приклеенные воском, с медной проволоки начнут падать раньше. Значит, теплота по медной проволоке распространяется быстрее, чем по стальной.

Тела и вещества, способные передавать теплоту с большой скоростью, называются теплопроводниками. К ним в первую очередь относятся все металлы. Большинство газов передают теплоту очень медленно. Теплопроводность жидкостей (кроме жидких металлов) занимает промежуточное положение между теплопроводностью твёрдых тел и газов. Тела и вещества, передающие теплоту с малой скоростью, называются теплоизоляторами. К ним, например, относятся пенопласт, поролон, древесина, мех, вата и др.

Теплообмен конвекцией. На рисунке вы видите тень руки с зажжённой спичкой при освещении её фонариком. Волнистые тени над пламенем создают струйки поднимающегося тёплого воздуха. Это – пример конвекции. Так называют явление возникновения струй или потоков в нагреваемых или охлаждаемых жидкостях и газах (где действует сила Архимеда). Кроме того, с точки зрения термодинамики конвекция – это способ теплообмена, при котором внутренняя энергия переносится потоками неравномерно нагретых веществ.

Теплоообмен конвекцией часто встречается вокруг нас. Например, отопительные батареи располагают вблизи пола, но из-за конвекции тепло распространяется по всей высоте комнаты. Конвективные потоки также возникают в атмосфере, способствуя возникновению ветров и облаков, а также внутри кастрюль, которые нагреваются на кухонной плите, и так далее.

Теплообмен излучением. Известно, что тела, которые нагреты сильнее, чем окружающая среда, способны излучать энергию. Обратимся к опыту (см. рисунок). Нагреем в пламени гвоздь и приблизим его к ладони, не касаясь её, – ладонь почувствует тепло. Освободим вторую руку и приложим ладони друг к другу. Мы почувствуем, что ладонь, находившаяся вблизи раскалённого гвоздя, теплее, чем вторая. То есть происходит переход теплоты от гвоздя к ладони через слой воздуха.

Однако при теплообмене излучением энергия может переноситься без участия вещества. Так, например, энергия Солнца достигает нашей планеты, преодолевая огромные расстояния через космический вакуум, в котором вещество отсутствует.

Обобщим изученное в этом параграфе. При теплообмене конвекцией энергия переносится струями или потоками неравномерно нагретого вещества. При теплообмене теплопроводностью энергия переносится через слой вещества, но само вещество при этом не движется. При теплообмене излучением энергия переносится без участия вещества.