Нейроны и нервная ткань. в) нейрон двигательный, передние рога спинного мозга

Нейроны – основные структурные и функциональные единицы нервной ткани.

Морфологическая классификация:

По количеству отходящих от тела нервной клетки отростков различают одноотросчатые (униполярные), двуотросчатые (биполярные, разновидностью которых являются ложноуниполярные нейроны), многоотросчатые (мультиполярные) нейроны.

Униполярный нейрон имеет один отросток, который по функции является аксоном. Униполярные нейроны встречаются в развивающейся Н.С. и называются нейробласты.

Биполярные нейроны имеют один отросток, который является дендритом, и второй, являющийся аксоном. Встречаются в чувствительных оболочках органов чувств. Например, палочковые и колбочковые клетки, сетчатые оболочки глаза, обонятельные клетки обонятельного нейроэпителия носовой полости.

Ложноуниполярные (псевдоуниполярные) нейроны имеют один отросток, который на некотором расстоянии от тела делится, образуя 2 отростка: аксон и дендрит. Расположены в спинномозговых и черепномозговых нервных узлах, т.е. в органах периферической Н.С.

Мультиполярные нейроны являются самыми распространенным типом нейронов, у которых только один отросток – аксон, а все остальные отростки – дендриты. Образуют основную массу серого вещества головного и спинного мозга. Фора их может быть разная (пирамидная, звездчатая).

Функциональная классификация нейронов.

Согласно функциональной классификации выделяют 3 типа нейронов:

1) Чувствительные

2) Двигательный

3) Переключательные (вставочные)

Чувствительные (рецепторные, афферентные) нейроны по форме – ложноуниполярные нейроны или биполярные. Эти нейроны располагаются всегда в периферической Н.С., т.е. в спинномозговых или черепномозговых нервных узлах.

Двигательные (моторные, эфферентные, эффекторные) нейроны по форме – как правило, мультиполярные нейроны. В соматической Н.С. эти нейроны локализированы только в ядрах передних рогов серого вещества спинного мозга всех его сегментов и в двигательных ядрах ствола головного мозга.

Примечание: в вегетатиной Н.С. тела двигательных нейронов лежат около внутр. органов или в их стенках, образуя вегетативные нервные сплетения.

Вставочные (переключательные, ассоциативные, интернейроны) нейроны по форме – мультиполярные нейроны. Расположены между чувствительными и двигательными нейронами. Образуют нервные цепи, по которым проводится информация. Являются самыми многочисленными нейронами. Именно они образуют всё серое вещество больших полушарий и промежуточного мозга.

Химическая классификация нейронов.

Определенные группы нейронов способны синтезировать и выделять определенные химические вещества – медиаторы. Исходя из этого, различают:

1) Холинергические нейроны – их медиатором является ацетилхолин. Они распространены особенно в периферической Н.С., а в ЦНС есть в конечном мозге.

2) Катехоломинергические нейроны – их медиатором являются адреналин, норадреналин, серотонин, дофамин. Например, большим скоплением норадренергических нейронов является голубое пятно ствола головного мозга, а дофаминергические нейроны в основном расположены в черной субстанции среднего мозга. Большое количество серотонина сосредоточено в структурах эпифиза, а также гиппокампа, гипоталамуса. Кроме медиаторов в Н.С. встречается ряд нейропептидов, таких как энкефолин, эндорфин и др.

Глия.

Клетками нервной ткани являются нервные клетки и клетки-глии . Глия - ткань, заполняющая пространства между нервными клетками, их отростками и сосудами в центральной нервной системе. Количество глиальных клеток в 10 раз превосходит количество нейронов. Различают макроглию и микроглию. Макроглия развивается вместе с нервными клетками из эктодермы, в состав ее входит астроглия , олигоглия и эпиндимная глия.

Астроглия имеет хорошо развитые отростки, в цитоплазме клетки есть все клеточные органеллы и включения в виде гликогена. Различают плазматическую и волокнистую астроглию. Волокнистая расположена в белом веществе, плазматическая – в сером веществе головного мозга. Основные функции астроглии:

1) Опорная (участвует в формировании твердого каркаса нервной ткани, внутри которого лежат нейроны)

2) В эмбриональный период развития отростки астроглии обеспечивают процессы миграции нейробластов.

3) При помощи сосудистых ножек, идущих к капиллярам, участвует в формировании гематоэнцифалического барьера, который отделяет нейроны от крови и ткани внутр. среды.

4) Окружая область синаптических контактов, поддерживает опроеделенную концентрацию ионов калия (К) и медиаторов.

5) Защитная функция. В основном репаративная, т.е. участвует в восстановлении поврежденных участков нервной ткани, формируя глиальные рубцы.

Олигоглия – это малоотросчатые клетки с хорошо развитым ядром, они составляют основную часть популяции глии. Олигоглия в периферической Н.С. называется шванновской глией. Она обеспечивает миелинизацию нервных волокон. В ЦНС, вероятно, участвует в миелинизации, однако ее основными функциями считают метаболические функции и считают ее своеобразным резервуаром питательных веществ и РНК для нейронов.

Эпендимная глия образует однослойные пласты клеток, выстилающих полости мозга. Клетки эпендимной глии полярны; на одном из полюсов, обращенных в полости, располагаются подвижные микроворсинки, которые обеспечивают ток цереброспинальной жидкости. Предполагают, что эта форма глии способна синтезировать и выделять в жидкость некоторые биологически активные вещества. Эта форма глии участвует и в образовании сосудистых сплетений головного мозга.

Микроглия – это небольшого размера клетки, не имеющие нервного происхождения и развивающиеся из эмбриональной зародышевой ткани (мезенхима). Предшественником микроглии являются клетки крови моноциты. Проникая в ткани мозга вместе с кровью, моноцит трансформируется в микроглиальную клетку и является тканевым макрофагом. Эти клетки способны фагоцитировать крупные частицы (погибшие нейроны, остатки отростков и кровеносных сосудов). Они очень подвижны и первыми пребывают в места поражения.


Похожая информация.


Нейрон (от греч. neuron - нерв) - это структурно-функциональная единица нервной системы. Эта клетка имеет сложное строение, высоко специализирована и по структуре содержит ядро, тело клетки и отростки. В организме человека насчитывается более 100 миллиардов нейронов.

Функции нейронов Как и другие клетки, нейроны должны обеспечивать поддержание собственной структуры и функций, приспосабливаться к изменяющимся условиям и оказывать регулирующее влияние на соседние клетки. Однако основная функция нейронов - это переработка информации: получение, проведение и передача другим клеткам. Получение информации происходит через синапсы с рецепторами сенсорных органов или другими нейронами, или непосредственно из внешней среды с помощью специализированных дендритов. Проведение информации происходит по аксонам, передача - через синапсы.

Строение нейрона

Тело клетки Тело нервной клетки состоит из протоплазмы (цитоплазмы и ядра), снаружи ограничена мембраной из двойного слоя липидов (билипидный слой). Липиды состоят из гидрофильных головок и гидрофобных хвостов, расположены гидрофобными хвостами друг к другу, образуя гидрофобный слой, который пропускает только жирорастворимые вещества (напр. кислород и углекислый газ). На мембране находятся белки: на поверхности (в форме глобул), на которых можно наблюдать наросты полисахаридов (гликокаликс), благодаря которым клетка воспринимает внешнее раздражение, и интегральные белки, пронизывающие мембрану насквозь, в них находятся ионные каналы.

Нейрон состоит из тела диаметром от 3 до 100 мкм, содержащего ядро (с большим количеством ядерных пор) и органеллы (в том числе сильно развитый шероховатый ЭПР с активными рибосомами, аппарат Гольджи), а также из отростков. Выделяют два вида отростков: дендриты и аксон. Нейрон имеет развитый цитоскелет, проникающий в его отростки. Цитоскелет поддерживает форму клетки, его нити служат «рельсами» для транспорта органелл и упакованных в мембранные пузырьки веществ (например, нейромедиаторов). В теле нейрона выявляется развитый синтетический аппарат, гранулярная ЭПС нейрона окрашивается базофильно и известна под названием «тигроид». Тигроид проникает в начальные отделы дендритов, но располагается на заметном расстоянии от начала аксона, что служит гистологическим признаком аксона. Различается антероградный (от тела) и ретроградный (к телу) аксонный транспорт.

Дендриты и аксон

Аксон - обычно длинный отросток, приспособленный для проведения возбуждения от тела нейрона. Дендриты - как правило, короткие и сильно разветвлённые отростки, служащие главным местом образования влияющих на нейрон возбуждающих и тормозных синапсов (разные нейроны имеют различное соотношение длины аксона и дендритов). Нейрон может иметь несколько дендритов и обычно только один аксон. Один нейрон может иметь связи со многими (до 20-и тысяч) другими нейронами. Дендриты делятся дихотомически, аксоны же дают коллатерали. В узлах ветвления обычно сосредоточены митохондрии. Дендриты не имеют миелиновой оболочки, аксоны же могут её иметь. Местом генерации возбуждения у большинства нейронов является аксонный холмик - образование в месте отхождения аксона от тела. У всех нейронов эта зона называется триггерной.

Синапс Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Одни синапсы вызывают деполяризацию нейрона, другие - гиперполяризацию; первые являются возбуждающими, вторые - тормозящими. Обычно для возбуждения нейрона необходимо раздражение от нескольких возбуждающих синапсов.

Структурная классификация нейронов

На основании числа и расположения дендритов и аксона нейроны делятся на безаксонные, униполярные нейроны, псевдоуниполярные нейроны, биполярные нейроны и мультиполярные (много дендритных стволов, обычно эфферентные) нейроны.

  • Безаксонные нейроны - небольшие клетки, сгруппированы вблизи спинного мозга в межпозвоночных ганглиях, не имеющие анатомических признаков разделения отростков на дендриты и аксоны. Все отростки у клетки очень похожи. Функциональное назначение безаксонных нейронов слабо изучено.
  • Униполярные нейроны - нейроны с одним отростком, присутствуют, например в сенсорном ядре тройничного нерва в среднем мозге.
  • Биполярные нейроны - нейроны, имеющие один аксон и один дендрит, расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях;
  • Мультиполярные нейроны - Нейроны с одним аксоном и несколькими дендритами. Данный вид нервных клеток преобладает в центральной нервной системе
  • Псевдоуниполярные нейроны - являются уникальными в своём роде. От тела отходит один отросток, который сразу же Т-образно делится. Весь этот единый тракт покрыт миелиновой оболочкой и структурно представляет собой аксон, хотя по одной из ветвей возбуждение идёт не от, а к телу нейрона. Структурно дендритами являются разветвления на конце этого (периферического) отростка. Триггерной зоной является начало этого разветвления (т. е. находится вне тела клетки). Такие нейроны встречаются в спинальных ганглиях.

Функциональная классификация нейронов По положению в рефлекторной дуге различают афферентные нейроны (чувствительные нейроны), эфферентные нейроны (часть из них называется двигательными нейронами, иногда это не очень точное название распространяется на всю группу эфферентов) и интернейроны (вставочные нейроны).

Афферентные нейроны (чувствительный, сенсорный или рецепторный). К нейронам данного типа относятся первичные клетки органов чувств и псевдоуниполярные клетки, у которых дендриты имеют свободные окончания.

Эфферентные нейроны (эффекторный, двигательный или моторный). К нейронам данного типа относятся конечные нейроны - ультиматные и предпоследние - неультиматные.

Ассоциативные нейроны (вставочные или интернейроны) - эта группа нейронов осуществляет связь между эфферентными и афферентными, их делят на комиссуральные и проекционные (головной мозг).

Морфологическая классификация нейронов Морфологическое строение нейронов многообразно. В связи с этим при классификации нейронов применяют несколько принципов:

  1. учитывают размеры и форму тела нейрона,
  2. количество и характер ветвления отростков,
  3. длину нейрона и наличие специализированные оболочки.

По форме клетки, нейроны могут быть сферическими, зернистыми, звездчатыми, пирамидными, грушевидными, веретеновидными, неправильными и т. д. Размер тела нейрона варьирует от 5 мкм у малых зернистых клеток до 120-150 мкм у гигантских пирамидных нейронов. Длина нейрона у человека составляет от 150 мкм до 120 см. По количеству отростков выделяют следующие морфологические типы нейронов: - униполярные (с одним отростком) нейроциты, присутствующие, например, в сенсорном ядре тройничного нерва в среднем мозге; - псевдоуниполярные клетки, сгруппированные вблизи спинного мозга в межпозвоночных ганглиях; - биполярные нейроны (имеют один аксон и один дендрит), расположенные в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях; - мультиполярные нейроны (имеют один аксон и несколько дендритов), преобладающие в ЦНС.

Развитие и рост нейрона Нейрон развивается из небольшой клетки - предшественницы, которая перестаёт делиться ещё до того, как выпустит свои отростки. (Однако, вопрос о делении нейронов в настоящее время остаётся дискуссионным.) Как правило, первым начинает расти аксон, а дендриты образуются позже. На конце развивающегося отростка нервной клетки появляется утолщение неправильной формы, которое, видимо, и прокладывает путь через окружающую ткань. Это утолщение называется конусом роста нервной клетки. Он состоит из уплощенной части отростка нервной клетки с множеством тонких шипиков. Микрошипики имеют толщину от 0,1 до 0,2 мкм и могут достигать 50 мкм в длину, широкая и плоская область конуса роста имеет ширину и длину около 5 мкм, хотя форма её может изменяться. Промежутки между микрошипиками конуса роста покрыты складчатой мембраной. Микрошипики находятся в постоянном движении - некоторые втягиваются в конус роста, другие удлиняются, отклоняются в разные стороны, прикасаются к субстрату и могут прилипать к нему. Конус роста заполнен мелкими, иногда соединёнными друг с другом, мембранными пузырьками неправильной формы. Непосредственно под складчатыми участками мембраны и в шипиках находится плотная масса перепутанных актиновых филаментов. Конус роста содержит также митохондрии, микротрубочки и нейрофиламенты, имеющиеся в теле нейрона. Вероятно, микротрубочки и нейрофиламенты удлиняются главным образом за счёт добавления вновь синтезированных субъединиц у основания отростка нейрона. Они продвигаются со скоростью около миллиметра в сутки, что соответствует скорости медленного аксонного транспорта в зрелом нейроне.

Поскольку примерно такова и средняя скорость продвижения конуса роста, возможно, что во время роста отростка нейрона в его дальнем конце не происходит ни сборки, ни разрушения микротрубочек и нейрофиламентов. Новый мембранный материал добавляется, видимо, у окончания. Конус роста - это область быстрого экзоцитоза и эндоцитоза, о чём свидетельствует множество находящихся здесь пузырьков. Мелкие мембранные пузырьки переносятся по отростку нейрона от тела клетки к конусу роста с потоком быстрого аксонного транспорта. Мембранный материал, видимо, синтезируется в теле нейрона, переносится к конусу роста в виде пузырьков и включается здесь в плазматическую мембрану путём экзоцитоза, удлиняя таким образом отросток нервной клетки. Росту аксонов и дендритов обычно предшествует фаза миграции нейронов, когда незрелые нейроны расселяются и находят себе постоянное место.

Нейроны

Нейрон - это главный элемент «биологического процессора», позволяющего животным приспосабливаться к окружающей среде, а человеку - еще и мыслить и чувствовать. По своему строению нейрон - высокоспециализированная клетка нервной системы, способная генерировать и проводить электрические импульсы . В процессе онтогенеза нейроны потеряли способность к размножению.

Как правило, нейрон имеет звездчатую форму, благодаря чему в нём различают тело (сому ) и отростки (аксон и дендриты ). Аксон у нейрона всегда один, хотя он может ветвиться, образуя два и более нервных окончания, а дендритов может быть достаточно много. По форме тела можно выделить звездчатые, шаровидные, веретенообразные, пирамидные, грушевидные ит.д. Некоторые разновидности нейронов, отличающихся по форме тела, приведены на Рис. 4.5.

Другой, более распространенной классификацией нейронов является их разделение на группы по числу и строению отростков. В зависимости от их количества нейроны делятся на униполярные (один отростков), биполярные (два отростка) и мультиполярные (много отростков) (Рис. 4.4). Униполярные клетки (без дендритов), не характерны для взрослых людей, и наблюдаются только в процессе эмбриогенеза. Вместо них в организме человека имеются так называемые псевдоуниполярные клетки, у которых единственный аксон разделяется на две ветви сразу же после выхода из тела клетки. Биполярные нейроны имеют один дендрит и один аксон. Они имеются в сетчатке глаза, и передают возбуждение от фоторецепторов к ганглионарным клеткам, образующим зрительный нерв. Мультиполярные нейроны (имеющие большое количество дендритов) составляют большинство клеток нервной системы.


Размеры нейронов колеблются от 5 до 120 мкм и составляют в среднем 10-30 мкм. Самыми большими нервными клетками человеческого тела являются мотонейроны спинного мозга и гигантские пирамиды Беца коры больших полушарий. И те и другие клетки являются по своей природе двигательными, и их величина обусловлена необходимостью принять на себя огромное количество аксонов от других нейронов. Подсчитано, что на некоторых мотонейронах спинного мозга имеется до десяти тысяч синапсов.

Третья классификация нейронов - по выполняемым функциям. Согласно этой классификации, все нервные клетки можно разделить на чувствительные , вставочные и двигательные (Рис.6.5). Так как «двигательные» клетки могут посылать приказы не только к мышцам, но и железам, то нередко к их аксонам применяют термин эфферентный , то есть направляющий импульсы от центра к периферии. Тогда чувствительные клетки будут называться афферентными (по которым нервные импульсы движутся от периферии к центру).

Таким образом, все классификации нейронов можно свести к трем, наиболее часто применяемым (см. Рис. 4.7):

КЛАССИФИКАЦИЯ НЕЙРОНОВ

Классификация нейронов осуществляется по трем признакам: морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество их отростков и подразделяет все нейроны на три типа (рис.8.6): униполярные, биполярные и мультиполярные.

Рис. 8.6. Морфологическая классификация нейронов. УН – униполярный нейрон, БН – биполярный нейрон, ПУН – псевдоуниполярный нейрон, МН – мультиполярный нейрон, ПК – перикарион, А – аксон, Д – дендрит.

1. Униполярные нейроны имеют один отросток. По мнению боль­шинства исследователей, в нервной системе человека и других млеко­питающих они не встречаются. Некоторые авторы к таким клеткам все же относят амакринные нейроны сетчатки глаза и межклубочковые нейроны обонятельной луковицы.

2. Биполярные нейроны имеют два отростка - аксон и дендрит обычно отходящие от противоположных полюсов клетки. В нервной системе человека встречаются редко. К ним относят биполярные клетки сетчатки глаза, спирального и вестибулярного ганглиев.

Псевдоуниполярные нейроны - разновидность биполярных, в них оба клеточных отростка (аксон и дендрит) отходят от тела клетки в виде единого выроста, который далее Т-образно делится. Эти клетки встречаются в спинальных и краниальных ганглиях.

3. Мультиполярные нейроны имеют три или большее число отростков: аксон и несколько дендритов. Они наиболее распространены и нервной системе человека. Описано до 80 вариантов этих клеток: веретенообразные, звездчатые, грушевидные, пирамидные, корзинчатые и др. По длине аксона выделяют клетки Гольджи I типа (с длинным аксоном) и клетки Гольджи II типа (с коротким аксоном).

Функциональная классификация нейронов разделяет их по характеру выполняемой ими функции (в соответствии с их местом в рефлекторной дуге) на три типа: чувствительные, двигательные и ассоциативные .

1. Чувствительные (афферентные) нейроны генерируют нервные импульсы под влиянием изменений внешней или внутренней среды.

2. Двигательные (эфферентные) нейроны передают сигналы на рабочие органы (скелетные мышцы, железы, кровеносные сосуды).

3. Ассоциативные (вставочные) нейроны (интернейроны) осуществляют связи между нейронами и количественно преобладают над нейронами других типов, составляя в нервной системе около 99.98% от общего числа этих клеток.

Биохимическая классификация нейронов основана на химических особенностях нейромедиаторов, используемых нейронами в синаптической передаче нервных импульсов. Выделяют много различных групп нейронов, в частности, холинергические (медиатор – ацетилхолин), адренергические (медиатор – норадреналин), серотонинергические (медиатор – серотоиин), дофаминергические (медиатор – дофамин), ГАМК-ергические (медиатор - гамма-аминомасляная кислота, ГАМК), пуринергические (медиатор – АТФ и его производные), пептидергические (медиаторы - субстанция Р, энкефалины, эндорфины, вазоактивный интестинальный пептид, холецистокинин, нейротензин, бомбезин и другие нейропептиды). В некоторых нейронах терминали содержат одновременно два типа нейромедиатора.

Распределение нейронов, использующих различные медиаторы, в нервной системе неравномерно. Нарушение выработки некоторых медиаторов в отдельных структурах мозга связывают с патогенезом ряда нервно-психических заболеваний. Так, содержание дофамина снижено при паркинсонизме и повышено при шизофрении, снижение уровней норадреналина и серотонина типично для депрессивных состояний, а их повышение - для маниакальных.

НЕЙРОГЛИЯ

Нейроглия - обширная гетерогенная группа элементов нервной ткани, обеспечивающая деятельность нейронов и выполняющая неспецифические функции: опорную, трофическую, разграничительную, барьерную, секреторную и защитную функции. Является вспомагательным компанентом нервной ткани.

Эти отростки отходят от противоположных концов клетки, и она обычно имеет веретеновидную форму (см. рис.).

Часто встречаются в специализированных сенсорных органах - сетчатке глаза, обонятельном эпителии и луковице, слуховом и вестибулярном ганглиях. Биполярные клетки участвуют, в частности, в передаче импульсов от сенсорных клеток к центральным отделам анализаторов . Один из типичных примеров биполярный нейронов - биполярные клетки сетчатки . Биполярными также являются чувствительные нейроны спинномозговых ганглиев позвоночных на определенных стадиях эмбрионального развития (позднее они превращаются в псевдоуниполярные нейроны) .

Напишите отзыв о статье "Биполярные нейроны"

Примечания

Отрывок, характеризующий Биполярные нейроны

– И прекрасно, – закричал он. – Он тебя возьмет с приданным, да кстати захватит m lle Bourienne. Та будет женой, а ты…
Князь остановился. Он заметил впечатление, произведенное этими словами на дочь. Она опустила голову и собиралась плакать.
– Ну, ну, шучу, шучу, – сказал он. – Помни одно, княжна: я держусь тех правил, что девица имеет полное право выбирать. И даю тебе свободу. Помни одно: от твоего решения зависит счастье жизни твоей. Обо мне нечего говорить.
– Да я не знаю… mon pere.
– Нечего говорить! Ему велят, он не только на тебе, на ком хочешь женится; а ты свободна выбирать… Поди к себе, обдумай и через час приди ко мне и при нем скажи: да или нет. Я знаю, ты станешь молиться. Ну, пожалуй, молись. Только лучше подумай. Ступай. Да или нет, да или нет, да или нет! – кричал он еще в то время, как княжна, как в тумане, шатаясь, уже вышла из кабинета.
Судьба ее решилась и решилась счастливо. Но что отец сказал о m lle Bourienne, – этот намек был ужасен. Неправда, положим, но всё таки это было ужасно, она не могла не думать об этом. Она шла прямо перед собой через зимний сад, ничего не видя и не слыша, как вдруг знакомый шопот m lle Bourienne разбудил ее. Она подняла глаза и в двух шагах от себя увидала Анатоля, который обнимал француженку и что то шептал ей. Анатоль с страшным выражением на красивом лице оглянулся на княжну Марью и не выпустил в первую секунду талию m lle Bourienne, которая не видала ее.