Тема: Лабораторная работа «Изучение треков заряженных частиц по готовым фотографиям. Изучение треков заряженных частиц по готовым фотографиям

Лабораторная работа

«Изучение треков заряженных частиц по готовым фотографиям»

Цель работы : сформировать элементарные навыки и умения анализировать фотографии треков заряженных частиц

Задание 1. Изучение треков заряженных частиц, полученных в камере Вильсона.

Оборудование : фотографии треков заряженных частиц, полученных в камере Вильсона.

Задание 2. Изучение треков заряженных частиц, полученных в пузырьковой камере.

Оборудование : фотографии треков заряженных частиц, полученных в пузырьковой камере.

Задание 3. Изучение треков заряженных частиц, полученных в фотоэмульсии

Оборудование : фотографии треков заряженных частиц, полученных в фотоэмульсии.

Задание 4. На рисунке показаны два трека заряженных частиц в камере Вильсона, помещенной в однородное магнитное поле, перпендикулярное плоскости рисунка. Трек I принадлежит протону.

Какой из частиц (протону, электрону или α -частице) принадлежит трек II ? Известно, что частицы влетели в камеру Вильсона в плоскости рисунка с одинаковыми скоростями. Ответ поясните, указав, какие физические закономерности вы использовали для объяснения.

Ответы

Работа 1. 1. Cверху вниз. 2. Камера Вильсона находится в магнитном поле. 3. Перпендикулярно фотографии сверху вниз. 4. Уменьшалась скорость -частиц.

Работа 2. 1. Потому что он двигался в магнитном поле с убывающей скоростью. 2. От внешнего витка спирали к её центру. 3. Перпендикулярно фотографии сверху вниз.

Работа 3. 1. Не одинаковы заряды ядер. 2. Левый трек принадлежит ядру атома магния, средний – ядру калия, правый – ядру железа. 3. Толщина трека тем больше, чем больше заряд ядра атома. 4. Треки частиц в фотоэмульсии короче и толще и имеют неровные края.

Цель работы: изучить треки заряженных частиц по готовым фотографиям.

Теория: При помощи камеры Вильсона наблюдают и фотографируют треки (следы) движущихся заряженных частиц. Трек частицы представляет собой цепочку из микроскопических капелек воды или спирта, образовавшихся вследствие конденсации пересыщенных паров этих жидкостей на ионах. Ионы же образуются в результате взаимодействия заряженной частицы с атомами и молекулами паров и газов, находящихся в камере.

Рисунок 1.

Пусть частица с зарядом Ze движется со скоростью V на расстоянии r от электрона атома (рис. 1). Вследствие кулоновского взаимодействия с этой частицей электрон получает некоторый импульс в направлении, перпендикулярном к линии движения частицы. Взаимодействие частицы и электрона наиболее эффективно во время прохождения ее по отрезку траектории, ближайшему к электрону и сравнимому с расстоянием r, например равному 2r. Тогда в формуле , где - время за которое частица проходит отрезок траектории 2r,т.е. ,a F - средняя сила взаимодействия частицы и электрона за это время.

Сила F по закону Кулона прямо пропорциональна зарядам частицы (Ze) и электрона (e ) и обратно про­порциональна квадрату расстояния между ними. Следовательно, сила взаимодействия частицы с электроном примерно равна:

(примерно, так как в наших расчетах не учитывалось влияние ядра атома других электронов и атомов среды):

Итак, импульс, полученный электроном, находится в прямой зависимости от заряда проходящей около него частицы и в обратной зависимости от ее скорости.

При некотором достаточно большом импульсе электрон отрывается от атома и последний превращается в ион. На каждой единице пути частицы образуется тем больше ионов

(а следовательно, и капелек жидкости), чем больше заряд частицы и чем меньше ее скорость. Отсюда следуют выводы, которые необходимо знать, чтобы уметь «прочесть» фотографию треков частицы:

1. При прочих одинаковых условиях трек толще у той частицы, которая имеет больший заряд. Например, при одинаковых скоростях трек - частицы толще, чем трек протона и электрона.

2. Если частицы имеют одинаковые заряды, то трек толще у той, которая имеет меньшую скорость, движется медленнее, отсюда очевидно, что к концу движения трек частицы толще, чем вначале, так как скорость частицы уменьшается вследствие потери энергии на ионизацию атомов среды.

3. Исследуя излучение на разных расстояниях от радиоактивного препарата, обнаружили, что ионизи­рующие и другие действия - излучения резко обрываются на некотором характерном для каждого ра­диоактивного вещества расстоянии. Это расстояние называют пробегом частицы. Очевидно, пробег зависит от энергии частицы и плотности среды. Например, в воздухе при температуре 15 0 С и нормальном давлении пробег - частицы, имеющей начальную энергию 4,8 МэВ, равен 3,3 см, а пробег - частицы с начальной энергией 8,8 МэВ - 8,5см. В твердом же теле. например в фотоэмульсии, пробег - частиц с такой энергией равен нескольким десяткам микрометра.



Если камера Вильсона помещена в магнитное поле, то на движущиеся в ней заряженные частицы действует сила Лоренца, которая равна (для случая, когда скорость частицы перпендикулярна линиям поля):

Где Ze - заряд частицы, - скорость и В - индукция магнитного поля. Правило левой руки позволяет показать, что сила Лоренца направлена всегда перпендикулярно скорости частицы и, следовательно, является центростремительной силой:

Где т - масса частицы, r - радиус кривизны ее трека. Отсюда (1).

Если частица имеет скорость, много меньшую скорости света (т.е. частица не релятивистская), то соотношение между кинетической энергией и радиусом ее кривизны имеет вид: (2)

Из полученных формул можно сделать выводы, которые также необходимо использовать для анализа фотографий треков частиц.

1. Радиус кривизны трека зависит от массы, скорости и заряда частицы. Радиус тем меньше (т е. отклонение частицы от прямолинейного движения больше), чем меньше масса и скорость частицы и чем больше ее заряд. Например, в одном и том же магнитном поле при одинаковых начальных скоростях отклонение электрона будет больше отклонения протона, а на фотографии будет видно, что трек электрона - окружность с меньшим радиусом, чем радиус трека протона. Быстрый электрон отклонится меньше, чем медленный. Атом гелия, у которого недостает электрона (ион Не +), отклонится слабее - частицы, так как при одинаковых массах заряд - частицы больше заряда однократно ионизированного атома гелия. Из соотношения между энергией частицы и радиусом кривизны ее трека видно, что отклонение от прямолинейного движения больше в том слу­чае, когда энергия частицы меньше.



2. Так как скорость частицы к концу пробега уменьшается, то уменьшается и радиус кривизны трека(увеличивается отклонение от прямолинейного движения). По изменению радиуса кривизны можно определить направление движения частицы - начало ее движения там, где кривизна трека меньше.

3. Измерив радиус кривизны трека и зная некоторые другие величины, можно для частицы вычислить отношение ее заряда к массе:

Это отношение служит важнейшей характеристикой частицы и позволяет определить, что это за частица, или, как говорят, идентифицировать частицу, т.е. установить ее идентичность (отождествление, подобие) известной частице

Если в камере Вильсона произошла реакция распада ядра атома, то по трекам частиц - продуктов распада можно установить, какое ядро распалось. Для этого нужно вспомнить, что в ядерных реакциях выполняются законы сохранения полного электрического заряда и полного числа нуклонов. Например, в реакции: суммарный заряд частиц, вступающих в реакцию, равен 8(8+0) и заряд частиц-продуктов реакции также равен 8 (4* 2+0). Полное число нуклонов слева равно 17 (16+1) и справа также равно 17 (4 *4+1). Если не было известно, ядро какого элемента распалось, то можно вычислить его заряд с помощью простых арифметических расчетов, а затем по таблице Д.И. Менделеева узнать название элемента. Закон сохранения полного числа нуклонов позволит установить, какому изотопу этого элемента принадлежит ядро. Например, в реакции:

Z = 4 – 1 = 3 и А = 8 – 1 = 7, следовательно - есть изотоп лития.

Приборы и принадлежности: фотографии треков, прозрачная бумага, угольник, циркуль, карандаш.

Порядок проведения работы:

На фотографии (рис. 2) видны треки ядер легкихэлементов (последние 22 см их пробега). Ядра двигались в магнитном поле индукцией В = 2,17 Тл, направленной перпендикулярно фотографии. Начальные скорости всех ядер одинаковы и перпендикулярны линиям поля.

Рисунок 2.

1. Изучение треков заряженных частиц (теоретический материал).

1.1. Определите направление вектора индукции магнитного поля и сделайте пояснительный рисунок, учитывая то, что направление скорости движения частиц определяются по изменению радиуса кривизны трека заряженной частицы (начало ее движения там, где кривизна трека меньше).

1.2. Объясните, почему траектории частиц представляют собой окружности, используя теорию к лабораторной работе.

1.3. Какова причина различия в кривизне траекторий разных ядер и почему кривизна каждой траектории изменяется от начала к концу пробега частицы? Ответить на данные вопросы, используя теорию к лабораторной работе.

2. Изучение треков заряженных частиц по готовым фотографиям (рис. 2.).

2.1. Наложите на фотографию лист прозрачной бумаги (можно использовать кальку) и осторожно переведите на нее трек 1 и правый край фотографии.

2.2. Измерьте радиус кривизны R трека частицы 1 примерно в начале и в конце пробега, для этого нужно сделать следующие построения:

а) из начала трека провести 2 различные хорды;

б) найти середину хорды 1, а затем 2 с помощью циркуля и угольника;

в) затем провести линии через середины отрезков хорд;) ;

в) полученное число будет являться порядковым номером элемента;

г) используя периодическую систему химических элементов, определить, ядром какого элемента является частица III.

3. Сделать вывод о проделанной работе.

4. Ответить на контрольные вопросы.

Контрольные вопросы:

Какому именно ядру – дейтерия или трития – принадлежат треки II и IV(используя для ответа фотографии треков заряженных частиц и соответственно им построения)?

ЛАБОРАТОРНАЯ РАБОТА № 20.






Описание работы: Работа проводится с готовой фотографией треков двух заряженных частиц (один принадлежит протону, другой – частице, которую надо идентифицировать). Линии индукции магнитного поля перпендикулярны плоскости фотографии. Начальные скорости обеих частиц одинаковы и перпендикулярны краю фотографии.


Идентификация неизвестной частицы осуществляется путём сравнения её удельного заряда q /m с удельным зарядом протона. Под действием силы Лоренца заряженная частица движется по окружности радиусом R 1. Согласно второму закону Ньютона F л = ma или qνB=mv 2 /R 1. Откуда Для протона аналогично


Отношение удельных зарядов обратно пропорционально отношению радиусов треков: Для измерения радиуса кривизны трека вычерчивают две хорды и восстанавливают к ним перпендикуляры из центров хорд. Центр окружности лежит на пересечении этих перпендикуляров. Её радиус измеряют линейкой.


Выполнение работы: 1. Ознакомьтесь с фотографией треков двух заряженных частиц – ядер легких элементов. Трек I принадлежит протону, трек II – частице, которую надо идентифицировать 2. Определите знак электрического заряда неизвестной частицы на фотографии


3. Перенесите на кальку треки частиц с фотографии и измерьте радиус R 1 трека неизвестной частицы. 4. Аналогично измерьте радиус R 2 трека протона на фотографии. 5. Сравните удельные заряды неизвестной частицы и протона. 6. Все полученные результаты занесите в таблицу. 7. Идентифицируйте частицу 8. Запишите вывод: что вы измеряли и какой получен результат. R 1,мR 2,м


Домашнее задание Повторить § Р. 1199, 1202

Тема: Лабораторная работа «Изучение треков заряженных частиц по готовым фотографиям»

I уровень. Теоретические сведения

При помощи камеры Вильсона наблюдают и фотографируют треки (следы) движущихся заряженных частиц. Трек частицы представляет собой цепочку из микроскопических капелек воды или спирта, образовавшихся в результате конденсации пересыщенных паров этих жидкостей на ионах. Ионы же образуются в результате взаимодействия заряженной частицы с атомами и молекулами паров и газов, находящихся в камере.

При взаимодействии частицы с электроном атома электрон получает импульс, прямо пропорциональный заряду частицы и обратно пропорциональный скорости частицы. При некоторой достаточно большой величине импульса электрон отрывается от атома и последний превращается в ион. На каждой единице пути частицы образуется тем больше ионов (а, следовательно, и капелек жидкости), чем больше заряд частицы и чем меньше ее скорость. Отсюда следуют выводы, которые необходимо знать, чтобы уметь «прочесть» фотографию треков частиц:

Если камера Вильсона помещена в магнитное поле, то на движущиеся в ней заряженные частицы действует сила Лоренца, которая равна (для случая, когда скорость частицы перпендикулярна магнитным линиям):
, где – заряд частицы; – скорость; – магнитная индукция.

Правило левой руки показывает, что сила Лоренца направлена перпендикулярно скорости частицы и, следовательно, является центростремительной силой:
, где
– масса частицы; – радиус кривизны ее трека.

Отсюда получаем:
.

Если
(т.е. частица нерелятивистская), то ее кинетическая энергия равна:
.

Из полученных формул можно сделать выводы, которые необходимо тоже использовать для анализа фотографий треков частиц:

    Радиус кривизны трека зависит от массы, скорости и заряда частицы. Радиус тем меньше (т.е. кривизна трека больше), чем меньше масса и скорость частицы и чем больше ее заряд. Из соотношения между энергией частицы и кривизной ее трека видно, что отклонение от прямолинейного движения больше в том случае, когда энергия частицы меньше.

    Так как скорость частицы к концу пробега уменьшается, то уменьшается и радиус кривизны трека. По изменению радиуса кривизны можно определить направление движения частицы: начало ее движения там, где кривизна трека меньше.

Это отношение является важнейшей характеристикой частицы и позволяет «идентифицировать» частицу, т.е. отождествить ее с известной частицей.

Треки частиц в камере Вильсона Треки протонов

II уровень. Вспомним основные положения теории

Для начала неплохо. Попытайтесь ответить на вопросы

III уровень. Попробуйте выполнить задания

    В каком из перечисленных ниже приборов для регистрации ядерных излучений прохождение быстрой заряженной частицы вызывает появление следа из капелек жидкости в газе?

А. Счетчик Гейгера;

Б. Камера Вильсона;

В. Пузырьковая камера;

Г. Толстослойная фотоэмульсия;

Д. Экран, покрытый сернистым цинком.

    А. … пузырьков пара;

    Б. …капелек жидкости;

    В. … удельный заряд частицы;

    Г. … энергию и массу частицы.

    Становите соответствие.

1. Трек в камере Вильсона состоит из …

2. По длине и толщине трека можно определить …

3. По радиусу трека можно определить …


    На рисунке изображен трек электрона в камере Вильсона, помещенной в магнитное поле. В каком направлении двигался электрон?


    На рисунке показан трек протона в камере Вильсона, помещенной в магнитное поле. В каком направлении летит частица?


    На рисунке показаны треки двух частиц в камере Вильсона. Каков знак заряда частиц, если линии магнитной индукции перпендикулярны плоскости чертежа и направлены от читателя? Одинакова ли масса частиц?


IV уровень. Проверьте, все ли Вы усвоили

    Для определения движения отрицательного мезона на его пути в камере Вильсона помещают свинцовые пластины, а камера находится в магнитном поле. Объясните, как при этом определяют направление движения частицы.

V уровень. Это сложная задача, однако, если Вы ее решите, то сделаете заметный шаг в познании физики, у Вас будут все основания относиться к себе с большим уважением, чем прежде

МКОУ ШР «СОШ №5»

«Школа Мудрости»

Лабораторная работа №6 11 класс

«Изучение треков заряженных частиц по готовым фотографиям»

2015 год

г. Шелехов


  • Тема работы: « Изучение треков заряженных частиц по готовым фотографиям»
  • Цель работы: объяснить характер движения заряженных частиц.
  • Оборудование: фотографии треков заряженных частиц, полученных в камере Вильсона, пузырьковой камере и фотоэмульсии.

Пояснения к работе.

При выполнении данной лабораторной работы необходимо помнить, что:

А) длина трека зависит от энергии частицы. Длина трека тем больше, чем больше энергия частицы (и чем меньше плотность среды);

Б) толщина трека зависит от величины заряда частицы . Толщина трека тем больше, чем больше заряд частицы и чем меньше её скорость;

В) Кривизна трека зависит от массы и скорости движения частицы. При движении заряженной частицы в магнитном поле трек её получается искривленным, причем радиус кривизны трека тем больше, чем больше масса и скорость частицы и чем меньше её заряд и модуль индукции магнитного поля. Частицы двигаются от конца трека с большим радиусом кривизны к концу с меньшим радиусом кривизны.


Задание 1.

  • На двух из трех представленных фотографий (рис.188.189 и 190) изображены треки заряженных частиц, движущихся в магнитном поле. Укажите на каких. Ответ обоснуйте.

Задание 2.

  • Рассмотрите фотографию треков α -частиц, двигавшихся в камере Вильсона (рис. 188) и ответьте на вопросы.
  • А) В каком направлении двигались α -частицы?
  • Б) Длина треков α -частиц примерно одинакова. О чем это говорит?
  • В) Как менялась толщина трека по мере движения частиц? Что из этого следует?

Рис.190


Задание 3.

  • На рисунке 189 дана фотография треков α -частиц в камере Вильсона, находившейся в магнитном поле. Определите по этой фотографии:
  • А) Почему менялся радиус кривизны и толщина треков по мере движения α -частиц?
  • Б) В какую сторону двигались α -частицы?

Рис.190


Задание 4.

  • На рисунке 190 дана фотография трека электрона в пузырьковой камере, находившейся в магнитном поле. Определите по этой фотографии:
  • А) Почему трек имеет форму спирали?
  • Б) в каком направлении двигался электрон?
  • Что могло послужить причиной того, что трек электрона на рисунке 190 гораздо длиннее треков α -частиц на рисунке 189?

Рис.190


Сделайте вывод к исследованию, ответив на вопросы.

1. Почему треки разных частиц различны?

2. Почему толщина треков разных частиц не одинакова?

3. Почему изменяется кривизна трека частицы с течением времени?