Закон всемирного тяготения представлен уравнением. Сила всемирного тяготения

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.

Закон всемирного тяготения

Ньютон обобщил законы движения небесных тел и выяснил, что сила \(F \) равна:

\[ F = G \dfrac{m_1 m_2}{R^2} \]

где \(m_1 \) и \(m_2 \) - массы взаимодействующих тел, \(R \) - расстояние между ними, \(G \) - коэффициент пропорциональности, который называется гравитационной постоянной . Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если \(m_1 = m_2 = 1 \text{кг} \) , \(R = 1 \text{м} \) , то \(G = F \) , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.

Численное значение:

\(G = 6,67 \cdot{} 10^{-11} Н \cdot{} м^2/ кг^2 \) .

Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Сила тяжести

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения.

В соответствии со вторым законом Ньютона \(g = F_Т /m \) , следовательно, \(F_T = mg \) .

Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна

\(F = G \dfrac{M}{R^2}m = mg \) .

Сила тяжести всегда направлена к центру Земли. В зависимости от высоты \(h \) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с 2 .

Вес тела

В технике и быту широко используется понятие веса тела.

Вес тела обозначается \(P \) . Единица веса - ньютон (Н ). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

При этом предполагается, что тело неподвижно относительно опоры или подвеса.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
  • Кто открыл закон всемирного тяготения

    Ни для кого не секрет, что закон всемирного тяготения был открыт великим английским ученым Исааком Ньютоном, по легенде гуляющим в вечернем саду и раздумывающем над проблемами физики. В этот момент с дерева упало яблоко (по одной версии прямо на голову физику, по другой просто упало), ставшее впоследствии знаменитым яблоком Ньютона, так как привело ученого к озарению, эврике. Яблоко, упавшее на голову Ньютону и вдохновило того к открытию закона всемирного тяготения, ведь Луна в ночном небе оставалась не подвижной, яблоко же упало, возможно, подумал ученый, что какая-то сила воздействует как на Луну (заставляя ее вращаться по орбите), так и на яблоко, заставляя его падать на землю.

    Сейчас по заверениям некоторых историков науки вся эта история про яблоко лишь красивая выдумка. На самом деле падало яблоко или нет, не столь уж важно, важно, что ученый таки действительно открыл и сформулировал закон всемирного тяготения, который ныне является одним из краеугольных камней, как физики, так и астрономии.

    Разумеется, и задолго до Ньютона люди наблюдали, как падающие на землю вещи, так и звезды в небе, но до него они полагали, что существует два типа гравитации: земная (действующая исключительно в пределах Земли, заставляющая тела падать) и небесная (действующая на звезды и Луну). Ньютон же был первым, кто объединил эти два типа гравитации в своей голове, первым кто понял, что гравитация есть только одна и ее действие можно описать универсальным физическим законом.

    Определение закона всемирного тяготения

    Согласно этому закону, все материальные тела притягивают друг друга, при этом сила притяжения не зависит от физических или химических свойств тел. Зависит она, если все максимально упростить, лишь от веса тел и расстояния между ними. Также дополнительно нужно принять во внимание тот факт, что на все тела находящиеся на Земле действует сила притяжения самой нашей планеты, получившая название – гравитация (с латыни слово «gravitas» переводиться как тяжесть).

    Попробуем же теперь сформулировать и записать закон всемирного тяготения максимально кратко: сила притяжения между двумя телами с массами m1 и m2 и разделенными расстоянием R прямо пропорциональна обеим массам и обратно пропорциональна квадрату расстояния между ними.

    Формула закона всемирного тяготения

    Ниже представляем вашему вниманию формулу закона всемирного тяготения.

    G в этой формуле это гравитационная постоянная, равная 6,67408(31) 10 −11 эта величина воздействия на любой материальный объект силы гравитации нашей планеты.

    Закон всемирного тяготения и невесомость тел

    Открытый Ньютоном закон всемирного тяготения, а также сопутствующий математический аппарат позже легли в основу небесной механики и астрономии, ведь с помощью него можно объяснить природу движения небесных тел, равно как и явление невесомости. Находясь в космическом пространстве на значительном удалении от силы притяжения-гравитации такого большого тела как планета, любой материальный объект (например, космический корабль с астронавтами на борту) окажется в состоянии невесомости, так как сила гравитационного воздействия Земли (G в формуле закона тяготения) или какой-нибудь другой планеты, больше не будет на него влиять.

  • Когда он пришел к великому результату: одна и та же причина вызывает явления поразительно широкого диапазона - от падения брошенного камня на Землю до движения огромных космических тел. Ньютон нашел эту причину и смог точно выразить ее в виде одной формулы - закона всемирного тяготения.

    Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:



    Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причем эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

    Определение закона всемирного тяготения

    Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:



    Коэффициент пропорциональности G называется гравитационной постоянной .

    Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при m 1 =m 2 =1 кг и R =1 м получаем G=F (численно).

    Нужно иметь в виду, что закон всемирного тяготения (4.5) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис.4.2 ). Подобного рода силы называются центральными.



    Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками), также взаимодействуют с силой, определяемой формулой (4.5). В этом случае R - расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. (Такие силы и называются центральными.) Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R≈6400 км). Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (4.5), имея в виду, что R есть расстояние от данного тела до центра Земли.

    Определение гравитационной постоянной

    Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определенное наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения дает новую связь между известными величинами с определенными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ:

    Н м 2 /кг 2 =м 3 /(кг с 2).

    Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами. Использовать для этого астрономические наблюдения нельзя, так как определить массы планет , Солнца, да и Земли, можно лишь на основе самого закона всемирного тяготения, если значение гравитационной постоянной известно. Опыт должен быть проведен на Земле с телами, массы которых можно измерить на весах.

    Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы - самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

    Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 4.3. На тонкой упругой нити подвешено легкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжелых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.



    Из этих опытов было получено следующее значение для гравитационной постоянной:



    Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большой величины. Например, Земля и Луна притягиваются друг к другу с силой F ≈2 10 20 H.

    Зависимость ускорения свободного падения тел от географической широты

    Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до ее поверхности у полюсов меньше, чем на экваторе. Другой, более существенной причиной является вращение Земли.

    Равенство инертной и гравитационной масс

    Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие ее на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

    Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Факт этот не может не вызывать удивления, если над ним хорошенько задуматься. Ведь масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определенное ускорение под действием данной силы. Эту массу естественно назвать инертной массой и обозначить через m и .

    Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Массу, определяющую способность тел притягиваться друг к другу, следует назвать гравитационной массой m г .

    Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что



    Равенство (4.6) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.

    Закон всемирного тяготения является одним из самых универсальных законов природы. Он справедлив для любых тел, обладающих массой.

    Значение закона всемирного тяготения

    Но если подойти к этой теме, более кардинально, то выясняется, что закон всемирного тяготения не везде есть возможность его применения. Этот закон нашел свое применение для тел, которые имеют форму шара, его можно использовать для материальных точек, а также он приемлем для шара, имеющего большой радиус, где этот шар может взаимодействовать с телами, гораздо меньшими, чем его размеры.

    Как вы уже догадались из информации, предоставленной на этом уроке, что закон всемирного тяготения является основой в изучении небесной механики. А как вы знаете, небесная механика изучает движение планет.

    Благодаря этому закону всемирного тяготения, появилась возможность в более точном определении расположения небесных тел и возможность вычисления их траектории.

    Но вот для тела и бесконечной плоскости, а также для взаимодействия бесконечного стержня и шара эту формулу применять нельзя.

    С помощью этого закона Ньютон смог объяснить не только то, как движутся планеты, но и почему возникают морские приливы и отливы. По истечении времени, благодаря трудам Ньютона, астрономам удалось открыть такие планеты Солнечной системы, как Нептун и Плутон.

    Важность открытия закона всемирного тяготения заключается в том, что с его помощью появилась возможность делать прогнозы солнечных и лунных затмений и с точностью рассчитывать движения космических кораблей.

    Силы всемирного тяготения являются наиболее универсальными со всех сил природы. Ведь их действие распространяется на взаимодействие между любыми телами, имеющими массу. А как известно, то любое тело обладает массой. Силы тяготения действуют сквозь любые тела, так как для сил тяготения нет приград.

    Задача

    А теперь, чтобы закрепить знания о законе всемирного тяготения, давайте попробуем рассмотреть и решить интересную задачу. Ракета поднялась на высоту h равную 990 км. Определите, насколько уменьшилась сила тяжести, действующая на ракету на высоте h, по сравнению с силой тяжести mg, действующей на нее у поверхности Земли? Радиус Земли R = 6400 км. Обозначим через m массу ракеты, а через M массу Земли.




    На высоте h сила тяжести равняется:


    Отсюда вычислим:


    Подстановка значение даст результат:

    Легенду про то, как Ньютон открыл закон всемирного тяготения, получив яблоком по макушке, придумал Вольтер. Причем сам Вольтер уверял, что эту правдивую историю ему рассказала любимая племянница Ньютона Кэтрин Бартон. Вот только странно, что ни сама племянница, ни ее очень близкий друг Джонатан Свифт, в своих воспоминаниях о Ньютоне про судьбоносное яблоко никогда не упоминали. Кстати и сам Исаак Ньютон, подробно записывая в своих тетрадях результаты экспериментов по поведению разных тел, отмечал только сосуды, наполненные золотом, серебром, свинцом, песком, стеклом водой или пшеницей, ни как ни о яблоке. Впрочем, это не помешало потомкам Ньютона водить экскурсантов по саду в имении Вулсток и показывать им ту самую яблоню, пока ее не сломала буря.

    Да, яблоня была, и яблоками наверняка с нее падали, но насколько велика заслуга яблока в деле открытия закона всемирного тяготения?

    Споры о яблоке не затихают вот уже 300 лет, так же как и споры о самом законе всемирного тяготения верее о том, кому принадлежит приоритет открытия.ук

    Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

    Все мы ходим по Земле потому, что она нас притягивает. Если бы Земля не притягивала все находящиеся на ее поверхности тела, то мы, оттолкнувшись от нее, улетели бы в космос. Но этого не происходит, и всем известно о существовании земного притяжения.

    Притягиваем ли мы Землю? Притягивает Луна!

    А притягиваем ли мы сами к себе Землю? Смешной вопрос, правда? Но давайте разберемся. Вы знаете, что такое приливы и отливы в морях и океанах? Каждый день вода уходит от берегов, неизвестно где шляется несколько часов, а потом, как ни в чем не бывало, возвращается обратно.

    Так вот вода в это время находится не неизвестно где, а примерно посредине океана. Там образуется что-то наподобие горы из воды. Невероятно, правда? Вода, которая имеет свойство растекаться, сама не просто стекается, а еще и образует горы. И в этих горах сосредоточена огромная масса воды.

    Просто прикиньте весь объем воды, который отходит от берегов во время отливов, и вы поймете, что речь идет о гигантских количествах. Но раз такое происходит, должна же быть какая-то причина. И причина есть. Причина кроется в том, что эту воду притягивает к себе Луна.

    Вращаясь вокруг Земли, Луна проходит над океанами и притягивает к себе океанические воды. Луна вращается вокруг Земли, потому что она притягивается Землей. Но, выходит, что она и сама при этом притягивает к себе Землю. Земля, правда, для нее великовата, но ее влияние оказывается достаточным для перемещения воды в океанах.

    Сила и закон всемирного тяготения: понятие и формула

    А теперь пойдем дальше и подумаем: если два громадных тела, находясь неподалеку, оба притягивают друг друга, не логично ли предположить, что и тела поменьше тоже будут притягивать друг друга? Просто они намного меньше и сила их притяжения будет маленькой?

    Оказывается, что такое предположение абсолютно верно. Абсолютно между всеми телами во Вселенной существуют силы притяжения или, другими словами, силы всемирного тяготения.

    Первым такое явление обнаружил и сформулировал в виде закона Исаак Ньютон. Закон всемирного тяготения гласит: все тела притягиваются друг к другу, при этом сила их притяжения прямо пропорциональна массе каждого из тел и обратно пропорциональна квадрату расстояния между ними:

    F = G * (m_1 * m_2) / r^2 ,

    где F величина вектора силы притяжения между телами, m_1 и m_2 массы этих тел, r расстояние между телами, G гравитационная постоянная.

    Гравитационная постоянная численно равна силе, которая существует между телами массами 1 кг, находящимися на расстоянии 1 метр. Эта величина найдена экспериментально: G=6,67*〖10〗^(-11) Н* м^2⁄〖кг〗^2 .

    Возвращаясь к нашему исходному вопросу: «притягиваем ли мы Землю?», мы можем с уверенностью ответить: «да». Согласно третьему закону Ньютона мы притягиваем Землю ровно с такой же силой, с какой Земля притягивает нас. Силу эту можно рассчитать из закона всемирного тяготения.

    А согласно второму закону Ньютона воздействие тел друг на друга какой-либо силой выражается в виде придаваемого ими друг другу ускорения. Но придаваемое ускорение зависит от массы тела.

    Масса Земли велика, и она придает нам ускорение свободного падения. А наша масса ничтожно мала по сравнению с Землей, и поэтому ускорение, которое мы придаем Земле, практически равно нулю. Именно поэтому мы притягиваемся к Земле и ходим по ней, а не наоборот.

    Исходя из трактовки второго закона Ньютона, можно сделать вывод, что изменение движения происходит посредствам силы. Механика рассматривает силы различной физической природы. Многие из них определяются с помощью действия сил тяготения.

    В 1862 году был открыт закон всемирного тяготения И. Ньютоном. Он предположил, что силы, удерживающие Луну, той же природы, что и силы, заставляющие яблоко падать на Землю. Смысл гипотезы состоит в наличии действия сил притяжения, направленных по линии и соединяющих центры масс, как изображено на рисунке 1 . 10 . 1 . Шаровидное тело имеет центр массы, совпадающий с центром шара.

    Рисунок 1 . 10 . 1 . Гравитационные силы притяжения между телами. F 1 → = - F 2 → .

    Определение 1

    При известных направлениях движений планет Ньютон пытался выяснить, какие силы действуют на них. Этот процесс получил название обратной задачи механики .

    Основная задача механики – определение координат тела известной массы с его скоростью в любой момент времени при помощи известных сил, действующих на тело, и заданным условием (прямая задача). Обратная же выполняется с определением действующих сил на тело с известным его направлением. Такие задачи привели ученого к открытию определения закона всемирного тяготения.

    Определение 2

    Все тела притягиваются друг к другу с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.

    F = G m 1 m 2 r 2 .

    Значение G определяет коэффициент пропорциональности всех тел в природе, называемое гравитационной постоянной и обозначаемое по формуле G = 6 , 67 · 10 - 11 Н · м 2 / к г 2 (С И) .

    Большинство явлений в природе объясняются наличием действия силы всемирного тяготения. Движение планет, искусственных спутников Земли, траектории полета баллистических ракет, движение тел вблизи поверхности Земли – все объясняется законом тяготения и динамики.

    Определение 3

    Проявлении силы тяготения характеризуется наличием силы тяжести . Так называется сила притяжения тел к Земле и вблизи ее поверхности.

    Когда М обозначается как масса Земли, R З – радиус, m – масса тела, то формула силы тяжести принимает вид:

    F = G M R З 2 m = m g .

    Где g – ускорение свободного падения, равняющееся g = G M R З 2 .

    Сила тяжести направлена к центру Земли, как показано в примере Луна-Земля. При отсутствии действия других сил тело движется с ускорением свободного падения. Его среднее значение равняется 9 , 81 м / с 2 . При известном G и радиусе R 3 = 6 , 38 · 10 6 м производятся вычисления массы Земли М по формуле:

    M = g R 3 2 G = 5 , 98 · 10 24 к г.

    Если тело удаляется от поверхности Земли, тогда действие силы тяготения и ускорения свободного падения меняются обратно пропорционально квадрату расстояния r к центру. Рисунок 1 . 10 . 2 показывает, как изменяется сила тяготения, действующая на космонавта корабля, при удалении от Земли. Очевидно, что F притягивания его к Земле равняется 700 Н.

    Рисунок 1 . 10 . 2 . Изменение силы тяготения, действующей на космонавта при удалении от Земли.

    Пример 1

    Земля-Луна подходит в качестве примера взаимодействия системы двух тел.

    Расстояние до Луны – r Л = 3 , 84 · 10 6 м. Оно в 60 раз больше радиуса Земли R З. Значит, при наличии земного притяжения, ускорение свободного падения α Л орбиты Луны составит α Л = g R З r Л 2 = 9 , 81 м / с 2 60 2 = 0 , 0027 м / с 2 .

    Оно направлено к центру Земли и получило название центростремительного. Расчет производится по формуле a Л = υ 2 r Л = 4 π 2 r Л T 2 = 0 , 0027 м / с 2 , где Т = 27 , 3 суток – период обращения Луны вокруг Земли. Результаты и расчеты, выполненные разными способами, говорят о том, что Ньютон был прав в своем предположении единой природы силы, удерживающей Луну на орбите, и силы тяжести.

    Луна имеет собственное гравитационное поле, которое определяет ускорение свободного падения g Л на поверхности. Масса Луны в 81 раз меньше массы Земли, а радиус в 3 , 7 раза. Отсюда видно, что ускорение g Л следует определять из выражения:

    g Л = G M Л R Л 2 = G M З 3 , 7 2 T 3 2 = 0 , 17 g = 1 , 66 м / с 2 .

    Такая слабая гравитация характерна для космонавтов, находящихся на Луне. Поэтому можно совершать огромные прыжки и шаги. Прыжок вверх на метр на Земле соответствует семиметровому на Луне.

    Движение искусственных спутников зафиксировано за пределами земной атмосферы, поэтому на них оказывают действие силы тяготения Земли. Траектория космического тела может изменяться в зависимости от начальной скорости. Движение искусственного спутника по околоземной орбите приближенно принимается в качестве расстояния до центра Земли, равняющемуся радиусу R З. Они летают на высотах 200 - 300 к м.

    Определение 4

    Отсюда следует, что центростремительное ускорение спутника, которое сообщается силами тяготения, равняется ускорению свободного падения g . Скорость спутника примет обозначение υ 1 . Ее называют первой космической скоростью .

    Применив кинематическую формулу для центростремительного ускорения, получаем

    a n = υ 1 2 R З = g , υ 1 = g R З = 7 , 91 · 10 3 м / с.

    При такой скорости спутник смог облететь Землю за время, равное T 1 = 2 πR З υ 1 = 84 м и н 12 с.

    Но период обращения спутника по круговой орбите вблизи Земли намного больше, чем указано выше, так как существует различие между радиусом реальной орбиты и радиусом Земли.

    Спутник движется по принципу свободного падения, отдаленно похожее на траекторию снаряда или баллистической ракеты. Разница заключается в большой скорости спутника, причем радиус кривизны его траектории достигает длины радиуса Земли.

    Спутники, которые движутся по круговым траекториям на больших расстояниях, имеют ослабленное земное притяжение, обратно пропорциональное квадрату радиуса r траектории. Тогда нахождение скорости спутника следует по условию:

    υ 2 к = g R 3 2 r 2 , υ = g R 3 R З r = υ 1 R 3 r .

    Поэтому, наличие спутников на высоких орбитах говорит о меньшей скорости их движения, чем с околоземной орбиты. Формула периода обращения равняется:

    T = 2 πr υ = 2 πr υ 1 r R З = 2 πR з υ 1 r R 3 3 / 2 = T 1 2 π R З.

    T 1 принимает значение периода обращения спутника по околоземной орбите. Т возрастает с размерами радиуса орбиты. Если r имеет значение 6 , 6 R 3 то Т спутника равняется 24 часам. При его запуске в плоскости экватора, будет наблюдаться, как висит над некоторой точкой земной поверхности. Применение таких спутников известно в системе космической радиосвязи. Орбиту, имеющую радиус r = 6 , 6 R З, называют геостационарной.

    Рисунок 1 . 10 . 3 . Модель движения спутников.

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter