Цп автоматизированные системы управления и промышленная безопасность. Непрерывные и дискретные Дискретные и непрерывные математические модели

ДИСКРЕТНЫЕ МОДЕЛИ, модели, переменные и параметры которых являются дискретными величинами, т. е. величинами, принимающими конечное или счётное число значений; в задачах, связанных с такими моделями, множество допустимых решений также дискретно. При построении и анализе дискретных моделей используются математические методы дискретной математики, алгебраические и другие известные математические методы, а иногда требуется разработка новых.

Дискретные модели возникают в связи со многими задачами в экономике, управлении, технике и других прикладных областях. Задачи дискретных моделей, как и алгоритмы их решения, носят, как правило, комбинаторный характер, что обусловлено конечностью множества возможных вариантов решений. Среди разработанных дискретных моделей можно выделить следующие основные классы: дискретные модели транспортного типа и планирования перевозок, сетевые и потоковые дискретные модели, дискретные модели управления запасами, дискретные модели размещения, дискретные модели теории расписаний, дискретные модели логического проектирования, дискретные модели распределения ресурсов, дискретные модели формирования производственных систем, дискретные модели ранжирования и кластеризации. В качестве отдельных классов дискретных моделей рассматриваются стохастические и динамические модели. Большое внимание уделяется разработке дискретных экономико-математических моделей.

При исследовании дискретных моделей часто рассматриваются дискретные экстремальные задачи, нерегулярные задачи различных типов, задачи с разрывными целевыми функциями, многоэкстремальные задачи, задачи теории графов, задачи о покрытиях.

Методы и алгоритмы решения дискретных задач обычно носят комбинаторный характер. Основная идея этих методов состоит в выделении и отсеве (отбрасывании) подмножеств допустимых решений, заведомо не содержащих оптимальных. Именно это составляет основу многих используемых в дискретных моделях алгоритмов. Наиболее часто применяются метод последовательного анализа вариантов, метод ветвей и границ, метод динамического программирования, метод последовательных расчётов, аппроксимационно-комбинаторный метод. Многие современные версии алгоритмов являются комбинированными, в рамках которых применяются элементы нескольких алгоритмов.

Лит.: Лихтенштейн В. Е. Модели дискретного программирования. М., 1971; Вагнер Г. Основы исследований операций: В 3 т. М., 1972-1973; Пропой А. И. Элементы теории оптимальных дискретных процессов. М., 1973; Финкельштейн Ю. Ю. Приближенные методы и прикладные задачи дискретного программирования. М., 1976; Моисеев Н. Н. Математические задачи системного анализа. М., 1981; Комбинаторные методы и алгоритмы решения задач дискретной оптимизации большой размерности. М., 2000; Сигал И. Х., Иванова А. П. Введение в прикладное дискретное программирование: Модели и вычислительные алгоритмы. М., 2002.

Отображения в пространстве.

Трехмерное вращение.

Сдвиг.

Основы преобразований.

Трехмерное изменение масштаба.

Данное преобразование производит частное изменение масштаба. Общее изменение масштаба получается за счет использования четвертого диагонального элемента.

Не диагональные элементы левой верхней подматрицы 3*3 в общем матричном преобразование размером 4*4 осуществляется сдвиг в трех измерениях, то есть:

В предыдущем случае было показано, что матрица 3*3 обеспечивает комбинацию операций измерения масштаба и сдвига. Однако, если определенная матрица 3*3 = 1, то имеет место чистое вращение около начала координат.

Рассмотрим несколько частных случаев вращения.

При вращение вокруг оси х размеры вдоль оси х не изменяются, таким образом матрица преобразований будет иметь нули в первой строке и столбце, за исключением единицы на главной диагонали. И будет иметь вид:

Угол Ө - угол вращения вокруг оси х;

Вращение предполагается положительным по часовой стрелке, если смотреть с начала координат вдоль оси вращения.

Для вращения на угол φ около оси Y нули ставят во второй стороне и столбце матрицы преобразования за исключением единицы на главной диагонали.

Матрица имеет вид:

Аналогично матрица преобразований для вращения на угол ψ вокруг оси Z:

Так как вращение описывается умножением матрицы, то трехмерное вращение не коммутативное, то есть порядок умножения будет влиять на конечный результат.

Иногда требуется выполнить зеркальное отображение трехмерного изображения.

Рассмотрим частный случай отображения. Матрица преобразования относительно плоскости XYимеет вид:

И отображение YZ или отображение XZприотображение относительно других плоскостей можно получить путем комбинации вращения и отображения.

Для отображения yz:

Для отображения xz:

Тв.модели

При каркасном моделировании хотя оно и является объемным, мы не учитываем, что является телом, а что внутренностью.

Поэтому появляется термин – твердотельная модель.

Термин твердотельная модель говорит о том, что помимо свойств описания геометрии (очерков, каркасов) существуют признаки или свойства, разделяющие пространства на свободное и на сам геометрический объект.

В связи с тем, что описание свойства твердотельности математической модели может быть многообразными. Приведем только некоторые способы описания твердотельных моделей.



Принцип построения дискретной модели заключается в том, что объект делится на элементарнее подпространства. Данному элементарному подпространству присваивается индекс, определяющий принадлежность или непринадлежность к телу.

Преимущества:

1. Разработан математический аппарат на основе булевой алгебры и математической логики.

2. Простота задания геометрического объекта.

Недостатки:

1. Геометрический объект задается дискретно, возникает вопрос математической модели о точности задания геометрического объекта по гладкости, по возможности построения нормали к геометрическому объекту.

2. Для данной модели существуют проблемы в уравнении и масштабировании геометрического объекта.

Эффект масштабирования - нельзя ни растянуть ни сжать, делаем от и до.

Дискретные модели. Однако деление систем на непрерывные и дискретные во многом произвольно зависит от цели и глубины исследования. Часто непрерывные системы приводятся к дискретным при этом непрерывные параметры представляются как дискретные величины путем введения разного рода шкал балльных оценок и т. Дискретные системы изучаются с помощью аппарата теории алгоритмов и теории автоматов.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Дискретные модели относятся к системам, все элементы которых, а также связи между ними (т. е. обращающаяся в системе информация) имеют дискретный характер. Следовательно, все параметры такой системы дискретны.

Непрерывные модели. Противоположное понятие — непрерывная система. Однако деление систем на непрерывные и дискретные во многом произвольно, зависит от цели и глубины исследования. Часто непрерывные системы приводятся к дискретным (при этом непрерывные параметры представляются как дискретные величины путем введения разного рода шкал, балльных оценок и т. п.). Дискретные системы изучаются с помощью аппарата теории алгоритмов и теории автоматов. Их поведение может описываться с помощью разностных уравнений.

Другие похожие работы, которые могут вас заинтересовать.вшм>

16929. Дискретные математические модели в профессиональной подготовке студентов экономических специальностей ВУЗов 10.92 KB
Дискретные математические модели в профессиональной подготовке студентов экономических специальностей ВУЗов Сложившаяся в настоящее время практика преподавания курса Дискретная математика для студентов экономических специальностей ВУЗов приводит к тому что они фактически не обладают знаниями и умениями позволяющими успешно решать широкий круг практических задач использующих дискретные объекты и модели не имеют развитого логического мышления у них отсутствует культура алгоритмического мышления. Для восполнения указанных пробелов...
15214. ЦИФРОВЫЕ И ДИСКРЕТНЫЕ СИГНАЛЫ 97.04 KB
Обработкой сигнала называют процесс преобразования сигнала исходящего от источника информации с целью освобождения от различного рода помех и от информации вносимой косвенным характером измеряемого физического процесса и нелинейными характеристиками датчиков а также с целью представления полезной информации в наиболее удобной форме. С учетом математической модели сигнала и задач обработки строится математическая модель процесса ЦОС. Классы моделей систем ЦОС отличаются по видам решаемых задач...
15563. СПЕЦИАЛЬНЫЕ ДИСКРЕТНЫЕ СЛУЧАЙНЫЕ ПРОЦЕССЫ 58.05 KB
Модель авторегрессии выражает текущее значение процесса через линейную комбинацию предыдущих значений процесса и отсчета белого шума. Название процесса – термин математической статистики где линейная комбинация x = 1y1 2 y2 p yp z = z Ty связывающая неизвестную переменную x с отсчетами y = T называется моделью регрессии x регрессирует на y. Для стационарности процесса необходимо чтобы корни k характеристического уравнения p 1p-1 p =0 лежали внутри круга единичного круга I 1 . Корреляционная...
16918. Дискретные структурные альтернативы: методы сравнения и следствия для экономической политики 11.74 KB
Дискретные структурные альтернативы: методы сравнения и следствия для экономической политики Современная экономическая теория в своей основе даже если далеко не всегда есть основания идентифицировать специфические черты соответствующей исследовательской программы является теорией индивидуального выбора что обусловливает высокий статус принципа методологического индивидуализма в исследованиях посвященных самым разнообразным проблемам Шаститко 2006. Индивидуальный выбор строится на таких фундаментальных основаниях как ограниченность...
3111. Инвестиции и сбережения в кейнсианской модели. Макроэкономическое равновесие в модели “кейнсианский крест” 27.95 KB
Инвестиция – это функция ставки процента: I=Ir Эта функция убывающая: чем выше уровень процентной ставки тем ниже уровень инвестиций. По взглядам Кейнса сбережения – это функция доходаа не процентной ставки: S=SY Т. инвестиции являются функцией процентной ставки а сбережения – функцией дохода.
5212. Уровни модели OSI и TCP/IP 77.84 KB
Сетевая модель - теоретическое описание принципов работы набора сетевых протоколов, взаимодействующих друг с другом. Модель обычно делится на уровни, так, чтобы протоколы вышестоящего уровня использовали бы протоколы нижестоящего уровня
8082. Модели элементов 21.98 KB
Совокупность элементов модели дискретного устройства называется базисом моделирования. Очень часто базис моделирования не совпадает с элементным базисом. Обычно из более сложной модели базиса моделирования можно получить более простую модель. В данном случае совпадение 2х соседних итераций является критерием окончания моделирования одного входного набора.
2232. Цветовые модели 475.69 KB
О работе с цветом Свойства цвета и соответствие цветов Цветовой круг и дополнительные цвета Цветовой круг демонстрирует соотношение между тремя первичными цветами красным зеленым и синим и тремя первичными цветами голубым пурпурным и желтым. Цвета расположенные друг напротив друга называются дополнительными цветами. Если вы сделали фотографию в которой избыток зеленого цвета то этот эффект можно подавить добавив соответствующий дополнительный цвет пурпурный смесь красного и синего согласно модели RGB. Дополнительный цветовой...
7358. Модели обучения 16.31 KB
Традиционное обучение представляет собой обучение ЗУН по схеме: изучение нового - закрепление - контроль - оценка. Ученики выступают как объекты управления. Со стороны учителя преобладает авторитарно-директивный стиль управления и инициатива обучаемых чаще подавляется, чем поощряется
7155. Цвет и цветовые модели 97.22 KB
Чтобы успешно применять их в компьютерной графике необходимо: понимать особенности каждой цветовой модели уметь определять тот или иной цвет используя различные цветовые модели понимать как различные графические программы решают вопрос кодирования цвета понимать почему цветовые оттенки отображаемые на мониторе достаточно сложно точно воспроизвести при печати. Так как цвет может получиться в процессе излучения и в процессе отражения то существуют два противоположных метода его...

Предварительные замечания. Рассмотрим многомерную систему автоматического управления, где в качестве регулятора используется БЦВМ, связанная с непрерывным объектом с помощью ЦАП и АЦП (рис.1.4). Будем считать, что измеряемый векторный выход объектаквантуется с помощью АЦП в моментытак, что на входе БЦВМ действует векторная решётчатая функция. В БЦВМ реализуется определённый алгоритм управления и на её выходе формируется последовательность дискретных значений управляющих воздействий, которую также можно рассматривать как векторную решётчатую функцию. Здесь для простоты положим, что разрядность ЦАП и АЦП достаточно высока, так что эффектом квантования по уровню можно пренебречь.

Пусть непрерывный объект представляется дифференциальными уравнениями в форме Коши

(2.4.1)

где –числовые матрицы соответствующих размеров.

Будем считать, что ЦАП и АЦП работают синхронно (с одинаковым периодом), но не синфазно, и пусть выдача рассчитанных управлений производится с задержкой на, где–относительное запаздывание, так что на ЦАП поступает смещённая решётчатая функция. Таким образом, эквивалентная схема принимает вид рис.2.5.

Рис. 2.5.

Очевидно, что непрерывный объект управления (2.4.1) совместно с ЦАП, АЦП и звеном задержки можно рассматривать как некоторую эквивалентную дискретную систему, на входе и выходе которой действуют решётчатые функцииисоответственно. Как и в случае импульсных систем, разностные уравнения, описывающие эту систему, должны быть такими, чтобы их решения относительно переменных выхода и состояний совпадали прис соответствующими непрерывными функциями. Эти разностные уравнения как раз и будут являться дискретной моделью непрерывного объекта в системе управления с БЦВМ в контуре. Причём, эта модель, очевидно, будет зависеть от способа восстановления непрерывного процессапо его дискретам.

Применение экстраполяции нулевого порядка. Пусть операция ЦА-преобразования сопровождается формированием управленияметодом фиксации на период (экстраполяция нулевого порядка). Тогда функциябудет кусочно-постоянной (рис.2.6), удовлетворяющей условию

Для определения дискретной модели объекта (2.4.1) при условии (2.4.2) рассмотрим -ый интервал дискретности.

Рис. 2.6.

В соответствии с рис.2.6, этот интервал можно разбить на два под-интервала. На первом подинтервале, когда, на объект действует постоянное управление, а на втором – постоянное управление. Учитывая сказанное и используя формулу Коши (2.3.3), определим состояниев конце интервала по известному состояниюв начале интервала. Будем иметь

Преобразуем это выражение, используя для первого интеграла замену , а для второго –. Тогда после преобразований и перехода к решётчатым функциям получим

Обозначим

и учтём, что квантование выхода производится в моменты. Тогда окончательно, искомая дискретная модель примет вид

. (2.4.4)

Анализируя формулы (2.4.3), заметим, что матрицы изависят от величины запаздывания. Так, если(запаздывание отсутствует), тои мы получим дискретную модель непрерывного объекта без запаздывания. Если же, то, и тогда уравнения (2.4.4) будут представлять дискретную модель с "чистым" запаздыванием на один такт.

Отметим также, что при разностные уравнения (2.4.4) формально не являются уравнениями в форме Коши, так как в правой части первого уравнения присутствует переменная, сдвинутая на один такт по отношению к другим. Для устранения этого "недостатка" введем вектор дополнительных состояний , . Тогда нетрудно показать, что расширенная дискретная модель с вектором состояний , представится в следующем эквивалентном виде

(2.4.5)

где - новый вектор измеряемых переменных объекта, расширенных за счет управлений из предыдущего такта.

Таким образом наличие запаздывания привело к увеличению размерности дискретной модели по сравнению с размерностью непрерывного объекта. Это позволяет учесть запаздывание при синтезе алгоритмов работы БЦВМ (дискретных регуляторов), так как формально уравнения (2.4.5) представляют дискретную модель объекта без запаздывания, но повышенной размерности.

Применение экстраполяторов -го порядка. При рассмотрении этого вопроса для простоты ограничимся случаем . Кроме того, также для простоты, будем считать, что управлениеявляется скалярным (). Тогда, если для реализации этого управления используется метод экстраполяции-го порядка, то на интервалеуправлениебудет определяться выражением (1.4.10), то есть

, (2.4.6)

где производные () могут быть вычислены по дискретам,в соответствии с алгоритмом (1.4.16).

Переходя к определению дискретной модели непрерывного объекта (2.4.1) запишем состояние этого объекта в конце-го интервала дискретности по известному состояниюв начале интервала. Используя формулу Коши, будем иметь

.

Подставляя (2.4.6) и производя замену , после преобразований и перехода к решетчатым функциям, получим

Здесь учтено, что значения производных остаются постоянными в течение каждого интервала дискретности. Обозначим

,,.

Тогда (2.4.7) примет вид

.

Введем матрицу . Тогда, если использовать обозначение (1.4.12) для вектора, получим

где - определяется выражением (1.4.14), а- обозначает-мерный вектор (1.4.12), составленный из дискрет.

Обозначим столбцы матрицы через. Тогда учитывая структуру вектора, окончательно получим искомую дискретную модель

. (2.4.9)

Заметим, что несмотря на то, что по предположению управляющее воздействие формируется без задержки по отношению к моментам съема информации, дискретная модель (2.4.9) содержит запаздывания по управлению натактов одновременно. Как уже отмечалось в разделе 1.4, этот факт обусловлен использованием для формирования управленияэкстраполяции-го порядка.

Запишем полученную модель в эквивалентной форме с помощью расширенного состояния. Для этого введем вспомогательные переменные

Очевидно, что в этом случае

Тогда, если ввести вектор расширенного состояния

а также новый вектор измеряемых переменных

расширенный за счет управлений из предыдущих тактов, то (2.4.9) можно представить в следующем эквивалентном виде

, (2.4.10)

где ,,- матрицы размеров,,соответственно, имеющие следующую блочную структуру

, ,. (2.4.11)

Уравнения (2.4.10) представляют дискретную модель непрерывного объекта в системе управления с БЦВМ и экстраполятором -го порядка. Эта модель составлена для скалярного управления, и учет экстраполятора привел к тому, что ее размерность увеличилась напо сравнению с размерностью непрерывного объекта. Очевидно, что если рассматривать случай векторного управления, то формально дискретная модель (2.4.10) останется без изменения, но вводимые дополнительные переменныестанут векторными и общая размерность модели составит.

Для описания динамики моделируемых процессов в имитационном моделировании реализован механизм задания модельного времени. Эти механизмы встроены в управляющие программы любой системы моделирования.

Если бы на ЭВМ имитировалось поведение одной компоненты системы, то выполнение действий в имитационной модели можно было бы осуществить последовательно, по пересчету временной координаты. Чтобы обеспечить имитацию параллельных событий реальной системы вводят некоторую глобальную переменную (обеспечивающую синхронизацию всех событий в системе) t0, которую называют модельным (или системным) временем.

Существуют два основных способа изменения t 0 :

  • пошаговый (применяются фиксированные интервалы изменения модельного времени);
  • no-событийный (применяются переменные интервалы изменения модельного времени, при этом величина шага измеряется интервалом до следующего события).

В случае пошагового метода продвижение времени происходит с минимально возможной постоянной длиной шага (принцип t). Эти алгоритмы не очень эффективны с точки зрения использования машинного времени на их реализацию.

По-событийный метод (принцип "особых состояний"). В нем координаты времени меняются только когда изменяется состояние системы. В по-событийных методах длина шага временного сдвига максимально возможная. Модельное время с текущего момента изменяется до ближайшего момента наступления следующего события. Применение по-событийного метода предпочтительно в случае, если частота наступления событий невелика, тогда большая длина шага позволит ускорить ход модельного времени. На практике по-событийный метод получил наибольшее распространение.

Способ фиксированного шага применяется:

если закон изменения от времени описывается интегро-дифференциальными уравнениями. Характерный пример: решение интегро-дифференциальных уравнений численным методом. В подобных методах шаг моделирования равен шагу интегрирования. При их использовании динамика модели является дискретным приближением реальных непрерывных процессов; когда события распределены равномерно и можно подобрать шаг изменения временной координаты; когда сложно предсказать появление определенных событий; когда событий очень много и они появляются группами.

В остальных случаях применяется по-событийный метод. Он предпочтителен, когда события распределены неравномерно на временной оси и появляются через значительные временные интервалы.

Таким образом, вследствие последовательного характера обработки информации в ЭВМ, параллельные процессы, происходящие в модели, преобразуются с помощью рассмотренного механизма в последовательные. Такой способ представления носит название квазипараллельного процесса.


Простейшая классификация на основные виды имитационных моделей связана с применением двух этих способов продвижения модельного времени. Различают имитационные модели:

Непрерывные;

Дискретные;

Непрерывно-дискретные.

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений.

В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий). Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события.

Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.