Механизмы протекания реакций в органической химии. Типы химических реакций в органической химии — Гипермаркет знаний

Все химические реакции сопровождаются разрывом одних связей и образованием других. В принципе органические реакции подчиняются тем же законам, что и неорганические, но имеют качественное своеобразие.

Так, если в неорганических реакциях обычно принимают участие ионы, в органических реакциях участвуют молекулы.

Реакции протекают значительно медленнее, во многих случаях требуя катализатора, или подбора внешних условий (температура, давление).

В отличие от неорганических реакций, протекающих вполне однозначно, большинство органических реакции сопровождаются тем или иным количеством побочных реакций. При этом выход основного продукта часто не превышает 50%, однако бывает, что выход составляет и того меньше. Но в ряде случаев реакция может протекать количественно, т.е. со 100%-ным выходом. Ввиду того, что состав продуктов неоднозначен в органической химии редко используются уравнения химических реакций. Чаще всего записывают схему реакции, в которой отражены исходные вещества и основной продукт реакции, а вместо знака «=» между правой и левой частями схемы используют «» или знак обратимости.

К классификации органических реакций существует два подхода: по характеру химических превращений и по механизмам их протекания.

По характеру химических превращений выделяют:

Реакции замещения (S - от англ. Substitution - замещение)

Один атом или группа атомов замещается на другой атом или группу атомов:

Реакции присоединения (Ad - от англ. Addition - присоединение)

Из двух или нескольких молекул образуется одно новое вещество. Присоединение идет, как правило, по кратным связям (двойным, тройным):

Реакции отщепления (E - от англ. Elimination - элиминирование, удаление)

Реакции производных углеводородов, в которых происходит отщепление функциональной группы вместе с атомов водорода с образованием -связи (двойной, тройной):

Перегруппировки (Rg - от англ. Re-grouping - перегруппировка)

Внутримолекулярные реакции перераспределения электронной плотности и атомов:

(перегруппировка Фаворского).

Классификация органических реакций по механизму протекания.

Механизм химической реакции - это путь, который приводит к разрыву старой связи и образованию новой.

Существуют два механизма разрыва ковалентной связи:

1. Гетеролитический (ионный). При этом связывающая электронная пара полностью переходит к одному из связанных атомов:

2. Гомолитический (радикальный). Общая электронная пара разрывается пополам с образованием двух частиц со свободными валентностями - радикалов:

Характер механизма распада определяется типом атакующей частицы (реагента). В органической химии выделяют три типа реагентов.

1. Нуклеофильные реагенты (N - от лат. Nucleophilic - имеющий сродство к ядру).

Частицы (атомы, группы, нейтральные молекулы) содержащие избыточную электронную плотность. Делятся на сильные, средней силы и слабые. Сила нуклеофила понятие относительное, зависящее от условий реакции (полярность растворителя). В полярных растворителях сильные нуклеофилы : , а также нейтральные молекулы с неподеленными электронными парами (на несвязывающих орбиталях) . Нуклеофилы средней силы : . Слабые нуклеофилы : анионы сильных кислот - , а также фенолы и ароматические амины.

2. Электрофильные реагенты (E - от лат. Electrophilic - имеющий сродство к электрону).

Частицы (атомы, группы, нейтральные молекулы) которые несут положительный заряд или вакантную орбиталь, вследствие чего обладают сродством к отрицательно заряженным частицам или к электронной паре. К числу сильных электрофилов относятся протон, катионы металлов (особенно многозарядные), молекулы имеющие на одном из атомов вакантную орбиталь (кислоты Льюиса) - , молекулы кислородсодержащих кислот, имеющие высокие заряды на окисленном атоме ().

Часто бывает, что молекула содержит несколько реакционных центров, причем разной природы, - и нуклеофильные и электрофильные.

3. Радикалы (R).

В зависимости от типа реагента и пути гетеролитического разрыва связи в молекуле субстрата образуются различные продукты. Это можно представить в общем виде:

Реакции, протекающие по таким схемам, называются реакциями электрофильного замещения (S E), т.к. реакция, по сути, замещение, а атакующим агентом является электрофильная частица.

Реакции, протекающие по таким схемам, называют реакциями нуклеофильного замещения (S N), т.к. реакция, по сути, замещение, а атакующим агентом является нуклеофильная частица.

Если атакующим агентом является радикал, то реакция протекает по радикальному механизму.

CH 3 -CH 3 + Cl 2 – (hv) ---- CH 3 -CH 2 Cl + HCl

C 6 H 5 CH 3 + Cl 2 --- 500 C --- C 6 H 5 CH 2 Cl + HCl

    Реакции присоединеия

Такие реакции характерны для органических соединений, содержащих кратные(двойные или тройные) связи. К реакциям этого типа относятся реакции присоединения галогенов, галогеноводородов и воды к алкенам и алкинам

CH 3 -CH=CH 2 + HCl ---- CH 3 -CH(Cl)-CH 3

    Реакции отщепления (элиминирования)

Это реакции, приводящие к образованию кратных связей. При отщеплении галогеноводородов и воды наблюдается определенная селективность реакции, описываемая правилом Зайцева, согласно которому атом водорода отщепляется от того атома углерода, при котором находится меньше атомов водорода. Пример реакции

CH3-CH(Cl)-CH 2 -CH 3 + KOH →CH 3 -CH=CH-CH 3 + HCl

    Полимеризации и поликонденсации

n(CH 2 =CHCl)  (-CH 2 -CHCl)n

    Окислительно-восстановительные

Наиболее интенсивная из окислительных реакций – это горение, реакция, характерная для всех классов органических соединений. При этом в зависимости от условий горения углерод окисляется до С (сажа), СО или СО 2 , а водород превращается в воду. Однако для химиков-органиков большой интерес представляют реакции окисления, проводимые в гораздо более мягких условиях, чем горение. Используемые окислители: растворы Br2 в воде или Cl2 в CCl 4 ; KMnO 4 в воде или разбавленной кислоте; оксид меди; свежеосажденные гидроксиды серебра (I) или меди(II).

3C 2 H 2 + 8KMnO 4 +4H 2 O→3HOOC-COOH + 8MnO 2 + 8KOH

    Этерификации (и обратной ей реакции гидролиза)

R 1 COOH + HOR 2 H+  R 1 COOR 2 + H 2 O

    Циклоприсоединение

Y R Y-R

+ ‖ → ǀ ǀ

R Y R-Y

+ →

11. Классификация органических реакций по механизму. Примеры.

Механизм реакции предполагает детальное постадийное описание химических реакций. При этом устанавливают, какие именно ковалентные связи разрываются, в каком порядке и каким путем. Столь же тщательно описывают образование новых связей в процессе реакции. Рассматривая механизм реакции, прежде всего обращают внимание на способ разрыва ковалентной связи в реагирующей молекуле. Таких способов два – гомолитический и гетеролитический.

Радикальные реакции протекают путем гомолитического (радикального) разрыва ковалентной связи:

Радикальному разрыву подвергаются неполярные или малополярные ковалентные связи (С–С, N–N, С–Н) при высокой температуре или под действием света. Углерод в радикале СН 3 имеет 7 внешних электронов (вместо устойчивой октетной оболочки в СН 4). Радикалы неустойчивы, они стремятся захватить недостающий электрон (до пары или до октета). Один из способов образования устойчивых продуктов – димеризация (соединение двух радикалов):

СН 3 + СН 3 СН 3 : СН 3 ,

Н + Н Н : Н.

Радикальные реакции – это, например, реакции хлорирования, бромирования и нитрования алканов:

Ионные реакции протекают с гетеролитическим разрывом связи. При этом промежуточно образуются короткоживущие органические ионы – карбкатионы и карбанионы – с зарядом на атоме углерода. В ионных реакциях связывающая электронная пара не разъединяется, а целиком переходит к одному из атомов, превращая его в анион:

К гетеролитическому разрыву склонны сильно полярные (Н–O, С–О) и легко поляризуемые (С–Вr, С–I) связи.

Различают нуклеофильные реакции (нуклеофил – ищущий ядро, место с недостатком электронов) и электрофильные реакции (электрофил – ищущий электроны). Утверждение, что та или иная реакция является нуклеофильной или электрофильной, условно всегда относится к реагенту. Реагент – участвующее в реакции вещество с более простой структурой. Субстрат – исходное вещество с более сложной структурой. Уходящая группа – это замещаемый ион, который был связан с углеродом. Продукт реакции – новое углеродсодержащее вещество (записывается в правой части уравнения реакции).

К нуклеофильным реагентам (нуклеофилам) относят отрицательно заряженные ионы, соединения с неподеленными парами электронов, соединения с двойными углерод-углеродными связями. К электрофильным реагентам (электрофилам) относят положительно заряженные ионы, соединения с незаполненными электронными оболочками (АlCl 3 , ВF 3 , FeCl 3), cоединения с карбонильными группами, галогены. Электрофилы – любые атом, молекула или ион, способные присоединить пару электронов в процессе образования новой связи. Движущая сила ионных реакций – взаимодействие противоположно заряженных ионов или фрагментов разных молекул с частичным зарядом (+ и –).

>> Химия: Типы химических реакций в органической химии

Реакции органических веществ можно формально разделить на четыре основных типа: замещения, присоединения, отщепления (элиминирования) и перегруппировки (изомеризации). Очевидно, что все многообразие реакций органических соединений невозможно свести в рамки предложенной классификации (например, реакции горения). Однако такая классификация поможет установить аналогии с уже знакомыми вам из курса неорганической химии классификациями реакций, протекающих между неорганическими веществами.

Как правило, основное органическое соединение, участвующее в реакции, называют субстратом, а другой компонент реакции условно рассматривают как реагент.

Реакции замещения

Реакции, в результате которых осуществляется замена одного атома или группы атомов в исходной молекуле (субстрате) на другие атомы или группы атомов, называются реакциями замещения.

В реакции замещения вступают предельные и ароматические соединения, такие, как, например, алканы, циклоалканы или арены.

Приведем примеры таких реакций.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

При протекании химических реакций происходит разрыв одних и возникновение других связей. Химические реакции условно делят на органические и неорганические. Органическими реакциям принято считать реакции, в которых, по крайней мере, одно из реагирующих веществ является органическим соединением, изменяющим свою молекулярную структуру в процессе реакции. Отличием органических реакций от неорганических является то, что, как правило, в них участвуют молекулы. Скорость таких реакции низка, а выход продукта обычно составляет всего лишь 50-80 %. Для повышения скорости реакции применяют катализаторы, повышают температуру или давление. Далее рассмотрим типы химических реакций в органической химии.

Классификация по характеру химических превращений

  • Реакции замещения
  • Реакции присоединения
  • Реакция изомеризации и перегруппировка
  • Реакции окисления
  • Реакции разложения

Реакции замещения

В ходе реакций замещения один атом или группа атомов в начальной молекуле замещается на иные атомы или группы атомов, образуя новую молекулу. Как правило, такие реакции характерны для насыщенных и ароматических углеводородов, например:

Реакции присоединения

При протекании реакций присоединения из двух или более молекул веществ образуется одна молекула нового соединения. Такие реакции характерны для ненасыщенных соединений. Различают реакции гидрирования (восстановления), галогенирования, гидрогалогенирования, гидратации, полимеризации и т.п:

  1. Гидрирование – присоединение молекулы водорода:

Реакция элиминирования (отщепления)

В результате реакций отщепления органические молекулы теряют атомы или группы атомов, и образуется новое вещество, содержащее одну или несколько кратных связей. К реакциям элиминирования относятся реакции дегидрирования , дегидратации , дегидрогалогенирования и т.п.:

Реакции изомеризации и перегруппировка

В ходе таких реакций происходит внутримолекулярная перестройка, т.е. переход атомов или групп атомов с одного участка молекулы в другое без изменения молекулярной формулы вещества, участвующего в реакции, например:

Реакции окисления

В результате воздействия окисляющего реагента происходит повышение степени окисления углерода в органическом атоме, молекуле или ионе процесс за счет отдачи электронов, вследствие чего образуется новое соединение:

Реакции конденсации и поликонденсации

Заключаются во взаимодействии нескольких (двух и более) органических соединений с образованием новых С-С связей и низкомолекулярного соединения:

Поликонденсация – образование молекулы полимера из мономеров, содержащих функциональные группы с выделением низкомолекулярного соединения. В отличие от реакции полимеризации, в результате которых образуется полимер, имеющий состав, аналогичный мономеру, в результате реакций поликонденсации состав образованного полимера отличается от его мономера:

Реакции разложения

Это процесс расщепления сложного органического соединения на менее сложные или простые вещества:

С 18 H 38 → С 9 H 18 + С 9 H 20

Классификация химических реакций по механизмам

Протекание реакций с разрывом ковалентных связей в органических соединениях возможно по двум механизмам (т.е. пути, приводящему к разрыву старой связи и образованию новой) – гетеролитическому (ионному) и гомолитическому (радикальному).

Гетеролитический (ионный) механизм

В реакциях, протекающих по гетеролитическому механизму образуются промежуточные частицы ионного типа с заряженным атомом углерода. Частицы, несущие положительный заряд называются карбкатионы, отрицательный – карбанионы. При этом происходит не разрыв общей электронной пары, а ее переход к одному из атомов, с образованием иона:

Склонность к гетеролитическому разрыву проявляют сильно полярные, например Н–O, С–О и легко поляризуемые, например С–Вr, С–I связи.

Реакции, протекающие по гетеролитическому механизму делят на нуклеофильные и электрофильные реакции. Реагент, располагающий электронной парой для образования связи называют нуклеофильным или электронодонорным. Например, HO — ,RO — , Cl — , RCOO — , CN — , R — , NH 2 , H 2 O, NH 3 , C 2 H 5 OH, алкены, арены.

Реагент, имеющий незаполненную электронную оболочку и способные присоединить пару электронов в процессе образования новой связи.называют электрофильным реагентам относятся следующие катионы: Н + , R 3 C + , AlCl 3 , ZnCl 2 , SO 3 , BF 3 , R-Cl, R 2 C=O

Реакции нуклеофильного замещения

Характерны для алкил- и арилгалогенидов:

Реакции нуклеофильного присоединения

Реакции электрофильного замещения


Реакции электрофильного присоединения

Гомолитический (радикальный механизм)

В реакциях, протекающих по гомолитическому (радикальному) механизму на первой стадии происходит разрыв ковалентной связи с образованием радикалов. Далее образовавшийся свободный радикал выступает в качестве атакующего реагента. Разрыв связи по радикальному механизму свойственен для неполярных или малополярных ковалентных связей (С–С, N–N, С–Н).

Различают реакции радикального замещения и радикального присоединения

Реакции радикального замещения

Характерны для алканов

Реакции радикального присоединения

Характерны для алкенов и алкинов

Таким образом, мы рассмотрели основные типы химических реакций в органической химии

Категории ,

Многие реакции замещения открывают путь к получению разнообразных соединений, имеющих хозяйственное применение. Огромная роль в химической науке и промышленности отводится электрофильному и нуклеофильному замещению. В органическом синтезе эти процессы имеют ряд особенностей, на которые следует обратить внимание.

Разнообразие химических явлений. Реакции замещения

Химические изменения, связанные с превращениями веществ, отличаются целым рядом особенностей. Разными могут быть конечные результаты, тепловые эффекты; одни процессы идут до конца, в других наступает Изменение веществ часто сопровождается повышением или понижением степени окисления. При классификации химических явлений по их конечному результату обращают внимание на качественные и количественные отличия реагентов от продуктов. По этим признакам можно выделить 7 типов химических превращений, в том числе замещение, идущее по схеме: А—В + С А—С + В. Упрощенная запись целого класса химических явлений дает представление о том, что среди исходных веществ есть так называемая «атакующая» частица, замещающая в реагенте атом, ион, функциональную группу. Реакция замещения характерна для предельных и

Реакции замещения могут происходить в виде двойного обмена: А—В + С—Е А—С + В—Е. Один из подвидов — вытеснение, например, меди железом из раствора медного купороса: CuSO 4 + Fe = FeSO 4 + Cu. В качестве «атакующей» частицы могут выступать атомы, ионы или функциональные группы

Замещение гомолитическое (радикальное, SR)

При радикальном механизме разрыва ковалентных связей электронная пара, общая для разных элементов, пропорционально распределяется между «осколками» молекулы. Образуются свободные радикалы. Это неустойчивые частицы, стабилизация которых происходит в результате последующих превращений. Например, при получении этана из метана возникают свободные радикалы, участвующие в реакции замещения: СН 4 СН 3 . + .Н; СН 3 . + .СН 3 → С2Н5; Н. + .Н → Н2. Гомолитический разрыв связи по приведенному механизму замещения носит цепной характер. В метане атомы Н можно последовательно заменять на хлор. Аналогично идет реакция с бромом, но йод неспособен напрямую замещать водород в алканах, фтор слишком энергично с ними реагирует.

Гетеролитический способ разрыва связи

При ионном механизме протекания реакций замещения электроны неравномерно распределяются между вновь возникшими частицами. Связывающая пара электронов отходит полностью к одному из «осколков», чаще всего, к тому партнеру по связи, в сторону которого была смещена отрицательная плотность в полярной молекуле. К реакциям замещения относится реакция образования метилового спирта CH 3 OH. В бромметане CH3Br разрыв молекулы носит гетеролитический характер, заряженные частицы являются стабильными. Метил приобретает положительный заряд, а бром — отрицательный: CH 3 Br → CH 3 + + Br - ; NaOH → Na + + OH - ; CH 3 + + OH - → CH 3 OH; Na + + Br - ↔ NaBr.

Электрофилы и нуклеофилы

Частицы, которые испытывают нехватку электронов и могут их принять, получили название «электрофилы». К ним относятся атомы углерода, соединенные с галогенами в галогеналканах. Нуклеофилы обладают повышенной электронной плотностью, они «жертвуют» пару электронов при создании ковалентной связи. В реакциях замещения богатые отрицательными зарядами нуклеофилы подвергаются атаке электрофилов, испытывающих нехватку электронов. Это явление связано с перемещением атома или другой частицы — уходящей группы. Другая разновидность реакций замещения — атака электрофила нуклеофилом. Подчас трудно разграничить два процесса, отнести замещение к тому или другому типу, поскольку сложно точно указать, какая из молекул — субстрат, а какая — реагент. Обычно в таких случаях учитываются следующие факторы:

  • природа уходящей группы;
  • реакционная способность нуклеофила;
  • природа растворителя;
  • структура алкильной части.

Замещение нуклеофильное (SN)

В процессе взаимодействия в органической молекуле наблюдается усиление поляризации. В уравнениях частичный положительный или отрицательный заряд отмечают буквой греческого алфавита. Поляризация связи позволяет судить о характере ее разрыва и дальнейшем поведении «осколков» молекулы. Например, атом углерода в йодметане обладает частичным положительным зарядом, является электрофильным центром. Он притягивает ту часть диполя воды, где расположен кислород, обладающий избытком электронов. При взаимодействии электрофила с нуклеофильным реагентом образуется метанол: CH 3 I + H 2 O → CH 3 OH + HI. Реакции нуклеофильного замещения проходят при участии отрицательно заряженного иона либо молекулы, обладающей свободной электронной парой, не участвующей в создании химической связи. Активное участие йодметана в SN 2 -реакциях объясняется его открытостью для нуклеофильной атаки и подвижностью йода.

Замещение электрофильное (SE)

В органической молекуле может присутствовать нуклеофильный центр, для которого характерен избыток электронной плотности. Он вступает в реакцию с испытывающим недостаток отрицательных зарядов электрофильным реагентом. К таким частицам относятся атомы, имеющие свободные орбитали, молекулы с участками пониженной электронной плотности. В углерод, обладающий зарядом «-», взаимодействует с положительной частью диполя воды — с водородом: CH 3 Na + H 2 O → CH 4 + NaOH. Продукт этой реакции электрофильного замещения — метан. При гетеролитических реакциях взаимодействуют противоположно заряженные центры органических молекул, что придает им сходство с ионами в химии неорганических веществ. Не следует упускать из виду, что превращение органических соединений редко сопровождается образованием настоящих катионов и анионов.

Мономолекулярные и бимолекулярные реакции

Нуклеофильное замещение бывает мономолекулярным (SN1). По такому механизму протекает гидролиз важного продукта органического синтеза — третичного бутилхлорида. Первая стадия проходит медленно, она связана с постепенной диссоциацией на катион карбония и хлорид-анион. Второй этап идет быстрее, протекает реакция иона карбония с водой. замещения галогена в алкане на оксигруппу и получение первичного спирта: (CH 3) 3 C—Cl → (CH 3) 3 C + + Cl - ; (CH 3) 3 C + + H 2 O → (CH 3) 3 C—OH + H + . Для одностадийного гидролиза первичных и вторичных алкилгалогенидов характерно одновременное разрушение связи углерода с галогеном и образование пары С—ОН. Это механизм нуклеофильного бимолекулярного замещения (SN2).

Механизм гетеролитического замещения

Механизм замещения связан с переносом электрона, созданием промежуточных комплексов. Реакция идет тем быстрее, чем легче возникают характерные для нее промежуточные продукты. Нередко процесс идет одновременно в нескольких направлениях. Преимущество обычно получает тот путь, в котором используются частицы, требующие наименьших энергетических затрат для своего образования. К примеру, наличие двойной связи увеличивает вероятность появления аллильного катиона СН2=СН—СН 2 + , по сравнению с ионом СН 3 + . Причина кроется в электронной плотности кратной связи, которая влияет на делокализацию положительного заряда, рассредоточенного по всей молекуле.

Реакции замещения бензола

Группа для которых характерно электрофильное замещение, — арены. Бензольное кольцо — удобный объект для электрофильной атаки. Процесс начинается с поляризации связи во втором реагенте, в результате чего образуется электрофил, примыкающий к электронному облаку бензольного кольца. В результате появляется переходный комплекс. Полноценной связи электрофильной частицы с одним из атомов углерода пока еще нет, она притягивается ко всему отрицательному заряду «ароматической шестерки» электронов. На третьей стадии процесса электрофил и один углеродный атом кольца связывает общая пара электронов (ковалентная связь). Но в таком случае происходит разрушение «ароматической шестерки», что невыгодно с точки зрения достижения стабильного устойчивого энергетического состояния. Наблюдается явление, которое можно назвать «выбросом протона». Происходит отщепление Н + , восстанавливается устойчивая система связи, характерная для аренов. Побочное вещество содержит катион водорода из бензольного кольца и анион из состава второго реагента.

Примеры реакций замещения из органической химии

Для алканов особенно характерна реакция замещения. Примеры электрофильных и нуклеофильных превращений можно привести для циклоалканов и аренов. Подобные реакции в молекулах органических веществ идут при обычных условиях, но чаще — при нагревании и в присутствии катализаторов. К распространенным и хорошо изученным процессам относится электрофильное замещение в ароматическом ядре. Важнейшие реакции этого типа:

  1. Нитрование бензола в присутствии H 2 SO 4 — идет по схеме: C 6 H 6 → C 6 H 5 —NO 2 .
  2. Каталитическое галогенирование бензола, в частности хлорирование, по уравнению: C 6 H 6 + Cl 2 → C 6 H 5 Cl + HCl.
  3. Ароматическое протекает с «дымящей» серной кислотой, образуются бензолсульфокислоты.
  4. Алкилирование — замена атома водорода из состава бензольного кольца на алкил.
  5. Ацилирование — образование кетонов.
  6. Формилирование — замена водорода на группу СНО и образование альдегидов.

К реакциям замещения относится реакция в алканах и циклоалканах, в которой галогены атакуют доступную связь С—Н. Получение производных может быть связано с замещением одного, двух или всех атомов водорода в предельных углеводородах и циклопарафинах. Многие из галогеноалканов с небольшой молекулярной массой находят применение в производстве более сложных веществ, относящихся к разным классам. Успехи, достигнутые в изучении механизмов реакций замещения, дали мощный толчок для развития синтезов на основе алканов, циклопарафинов, аренов и галогенопроизводных углеводородов.