Максимальное значение степени окисления азота. Степень окисления азота - учимся разбираться

Азот - едва ли не самый распространенный химический элемент во всей Солнечной Системе. Если быть конкретнее, то азот занимает 4 место по распространенности. Азот в природе - инертный газ.

Этот газ не имеет ни цвета, ни запаха, его очень трудно растворить в воде. Однако соли-нитраты имеют свойство очень хорошо реагировать с водой. Азот имеет малую плотность.

Азот - удивительный элемент. Есть предположение, что свое название он получил из древнегреческого языка, что в переводе с него значит «безжизненный, испорченный». Отчего же такое негативное отношение к азоту? Ведь нам известно, что он входит в состав белков, а дыхание без него практически невозможно. Азот играет важную роль в природе. Но в атмосфере этот газ инертен. Если его взять таким, какой он есть в первозданном виде, то возможно множество побочных эффектов. Пострадавший может даже умереть от удушья. Ведь азот оттого и называется безжизненным, что не поддерживает ни горения, ни дыхания.

При обычных условиях такой газ реагирует только с литием, образовывая такое соединение, как нитрид лития Li3N. Как мы видим, степень окисления азота в таком соединении равна -3. С остальными металлами и конечно же, реагирует тоже, однако лишь при нагревании или при использовании различных катализаторов. К слову говоря, -3 - низшая степень окисления азота, так как только 3 электрона нужны для полного заполнения внешнего энергетического уровня.

Этот показатель имеет разнообразные значения. Каждая степень окисления азота имеет свое соединение. Такие соединения лучше просто запомнить.

5 - высшая степень окисления у азота. Встречается в и во всех солях-нитратах.

АЗОТ , N (nitrogenium) , химический элемент (ат. номер 7) VA подгруппы периодической системы элементов. Атмосфера Земли содержит 78% (об.) азота. Чтобы показать, как велики эти запасы азота, отметим, что в атмосфере над каждым квадратным километром земной поверхности находится столько азота, что из него можно получить до 50 млн. т нитрата натрия или 10 млн. т аммиака (соединение азота с водородом), и все же это составляет малую долю азота, содержащегося в земной коре. Существование свободного азота свидетельствует о его инертности и трудности взаимодействия с другими элементами при обычной температуре. Связанный азот входит в состав как органической, так и неорганической материи. Растительный и животный мир содержит азот, связанный с углеродом и кислородом в белках. Помимо этого, известны и могут быть получены в больших количествах азотсодержащие неорганические соединения, такие, как нитраты (NO 3 – ), нитриты (NO 2 – ), цианиды (CN – ), нитриды (N 3– ) и азиды (N 3 –). Историческая справка. Опыты А.Лавуазье, посвященные исследованию роли атмосферы в поддержании жизни и процессов горения, подтвердили существование относительно инертного вещества в атмосфере. Не установив элементную природу остающегося после сгорания газа, Лавуазье назвал его azote, что на древнегреческом означает «безжизненный». В 1772 Д.Резерфорд из Эдинбурга установил, что этот газ является элементом, и назвал его «вредный воздух». Латинское название азота происходит от греческих слов nitron и gen, что означает «образующий селитру». Фиксация азота и азотный цикл. Термин «фиксация азота» означает процесс связывания атмосферного азота N 2 . В природе это может происходить двумя путями: либо бобовые растения, например горох, клевер и соя, накапливают на своих корнях клубеньки, в которых бактерии, фиксирующие азот, превращают его в нитраты, либо происходит окисление атмосферного азота кислородом в условиях разряда молнии. С.Аррениус установил, что таким способом фиксируется до 400 млн. т азота ежегодно. В атмосфере оксиды азота соединяются с дождевой водой, образуя азотную и азотистую кислоты. Кроме того, установлено, что с дождем и снегом на каждый гектар земли попадает ок. 6700 г азота; достигая почвы, они превращаются в нитриты и нитраты. Растения используют нитраты для образования растительных белковых веществ. Животные, питаясь этими растениями, усваивают белковые вещества растений и превращают их в животные белки. После смерти животных и растений происходит их разложение, азотные соединения превращаются в аммиак. Аммиак используется двумя путями: бактерии, не образующие нитратов, разрушают его до элементов, выделяя азот и водород, а другие бактерии образуют из него нитриты, которые другими бактериями окисляются до нитратов. Таким образом происходит круговорот азота в природе, или азотный цикл. Строение ядра и электронных оболочек. В природе существуют два стабильных изотопа азота: с массовым числом 14 (содержит 7 протонов и 7 нейтронов) и с массовым числом 15 (содержит 7 протонов и 8 нейтронов). Их соотношение составляет 99,635:0,365, поэтому атомная масса азота равна 14,008. Нестабильные изотопы азота 12 N, 13 N, 16 N, 17 N получены искусственно. Схематически электронное строение атома азота таково: 1s 2 2s 2 2p x 1 2p y 1 2p z 1 . Следовательно, на внешней (второй) электронной оболочке находится 5 электронов, которые могут участвовать в образовании химических связей; орбитали азота могут также принимать электроны, т.е. возможно образование соединений со степенью окисления от (– II I) до (V), и они известны. См. также АТОМА СТРОЕНИЕ. Молекулярный азот. Из определений плотности газа установлено, что молекула азота двухатомна, т.е. молекулярная формула азота имеет вид N є N (или N 2 ). У двух атомов азота три внешних 2p - электрона каждого атома образуют тройную связь:N:::N:, формируя электронные пары. Измеренное межатомное расстояние N – N равно 1,095 Å . Как и в случае с водородом (см . ВОДОРОД) , существуют молекулы азота с различным спином ядра – симметричные и антисимметричные. При обычной температуре соотношение симметричной и антисимметричной форм равно 2:1. В твердом состоянии известны две модификации азота: a – кубическая и b – гексагональная с температурой перехода a ® b –237,39 ° С. Модификация b плавится при –209,96 ° С и кипит при –195,78 ° C при 1 атм (см . табл. 1) . Энергия диссоциации моля (28,016 г или 6,023 Ч 10 23 молекул) молекулярного азота на атомы (N 2 2N) равна примерно –225 ккал. Поэтому атомарный азот может образовываться при тихом электрическом разряде и химически более активен, чем молекулярный азот. Получение и применение. Способ получения элементного азота зависит от требуемой его чистоты. В огромных количествах азот получают для синтеза аммиака, при этом допустимы небольшие примеси благородных газов. Азот из атмосферы. Экономически выделение азота из атмосферы обусловлено дешевизной метода сжижения очищенного воздуха (пары воды, CO 2 , пыль, другие примеси удалены). Последовательные циклы сжатия, охлаждения и расширения такого воздуха приводят к его сжижению. Жидкий воздух подвергают фракционной перегонке при медленном подъеме температуры. Первыми выделяются благородные газы, затем азот, и остается жидкий кислород. Очистка достигается многократностью процессов фракционирования. Таким методом производят многие миллионы тонн азота ежегодно, преимущественно для синтеза аммиака, который является исходным сырьем в технологии производства различных азотсодержащих соединений для промышленности и сельского хозяйства. Кроме того, очищенную азотную атмосферу часто используют, когда недопустимо присутствие кислорода. Лабораторные способы. Азот в небольших количествах можно получать в лаборатории разными способами, окисляя аммиак или ион аммония, например: Очень удобен процесс окисления иона аммония нитрит-ионом: Известны и другие способы – разложение азидов при нагревании, разложение аммиака оксидом меди(II), взаимодействие нитритов с сульфаминовой кислотой или мочевиной: При каталитическом разложении аммиака при высокой температуре тоже можно получить азот: Физические свойства. Некоторые физические свойства азота приведены в табл. 1.

Таблица 1. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АЗОТА

Плотность, г/см 3 0,808 (жидк.)
Температура плавления, °С –209,96
Температура кипения, °С –195,8
Критическая температура, °С –147,1
Критическое давление, атм а 33,5
Критическая плотность, г/см 3 а 0,311
Удельная теплоемкость, Дж/(мольЧ К) 14,56 (15° С)
Электроотрицательность по Полингу 3
Ковалентный радиус, 0,74
Кристаллический радиус, 1,4 (M 3–)
Потенциал ионизации, В б
первый 14,54
второй 29,60
а Температура и давление, при которых плотности азота жидкого и газообразного состояния одинаковы.
б Количество энергии, необходимое для удаления первого внешнего и следующего за ним электронов, в расчете на 1 моль атомарного азота.
Химические свойства. Как уже было отмечено, преобладающим свойством азота при обычных условиях температуры и давления является его инертность, или малая химическая активность. Электронная структура азота содержит электронную пару на 2s -уровне и три наполовину заполненные 2р -орбитали, поэтому один атом азота может связывать не более четырех других атомов, т.е. его координационное число равно четырем. Небольшой размер атома также ограничивает количество атомов или групп атомов, которые могут быть связаны с ним. Поэтому многие соединения других членов подгруппы VA либо вовсе не имеют аналогов среди соединений азота, либо аналогичные соединения азота оказываются нестабильными. Так, PCl 5 – стабильное соединение, а NCl 5 не существует. Атом азота способен связываться с другим атомом азота, образуя несколько достаточно стабильных соединений, такие, как гидразин N 2 H 4 и азиды металлов MN 3 . Такой тип связи необычен для химических элементов (за исключением углерода и кремния). При повышенных температурах азот реагирует со многими металлами, образуя частично ионные нитриды M x N y . В этих соединениях азот заряжен отрицательно. В табл. 2 приведены степени окисления и примеры соответствующих соединений.

Таблица 2. СТЕПЕНИ ОКИСЛЕНИЯ АЗОТА И СООТВЕТСТВУЮЩИЕ СОЕДИНЕНИЯ

Степень окисления

Примеры соединений

Аммиак NH 3 , ион аммония NH 4 + , нитриды M 3 N 2
Гидразин N 2 H 4
Гидроксиламин NH 2 OH
Гипонитрит натрия Na 2 N 2 O 2 , оксид азота(I) N 2 O
Оксид азота(II) NO
Оксид азота(III) N 2 O 3 , нитрит натрия NaNO 2
Оксид азота(IV) NO 2 , димер N 2 O 4
Оксид азота(V) N 2 O 5 , азотная кислота HNO 3 и ее соли (нитраты)
Нитриды. Соединения азота с более электроположительными элементами, металлами и неметаллами – нитриды – похожи на карбиды и гидриды. Их можно разделить в зависимости от характера связи M–N на ионные, ковалентные и с промежуточным типом связи. Как правило, это кристаллические вещества. Ионные нитриды. Связь в этих соединениях предполагает переход электронов от металла к азоту с образованием иона N . К таким нитридам относятся Li 3 N, Mg 3 N 2 , Zn 3 N 2 и Cu 3 N 2 . Кроме лития, другие щелочные металлы IA подгруппы нитридов не образуют. Ионные нитриды имеют высокие температуры плавления, реагируют с водой, образуя NH 3 и гидроксиды металлов. Ковалентные нитриды. Когда электроны азота участвуют в образовании связи совместно с электронами другого элемента без перехода их от азота к другому атому, образуются нитриды с ковалентной связью. Нитриды водорода (например, аммиак и гидразин) полностью ковалентны, как и галогениды азота (NF 3 и NCl 3 ). К ковалентным нитридам относятся, например, Si 3 N 4 , P 3 N 5 и BN – высокостабильные белые вещества, причем BN имеет две аллотропные модификации: гексагональную и алмазоподобную. Последняя образуется при высоких давлениях и температурах и имеет твердость, близкую к твердости алмаза. Нитриды с промежуточным типом связи. Переходные элементы в реакции с NH 3 при высокой температуре образуют необычный класс соединений, в которых атомы азота распределены между регулярно расположенными атомами металла. В этих соединениях нет четкого смещения электронов. Примеры таких нитридов – Fe 4 N, W 2 N, Mo 2 N, Mn 3 N 2 . Эти соединения, как правило, совершенно инертны и обладают хорошей электрической проводимостью. Водородные соединения азота. Азот и водород взаимодействуют, образуя соединения, отдаленно напоминающие углеводороды (см. также ОРГАНИЧЕСКАЯ ХИМИЯ) . Стабильность азотоводородов уменьшается с увеличением числа атомов азота в цепи в отличие от углеводородов, которые устойчивы и в длинных цепях. Наиболее важные нитриды водорода – аммиак NH 3 и гидразин N 2 H 4 . К ним относится также азотистоводородная кислота HNNN (HN 3). Аммиак NH 3 . Аммиак – один из наиболее важных промышленных продуктов современной экономики. В конце 20 в. США производили ок. 13 млн. т аммиака ежегодно (в пересчете на безводный аммиак). Строение молекулы. Молекула NH 3 имеет почти пирамидальное строение. Угол связи H–N–H составляет 107 ° , что близко к величине тетраэдрического угла 109 ° . Неподеленная электронная пара эквивалентна присоединенной группе, в результате координационное число азота равно 4 и азот располагается в центре тетраэдра. Cвойства аммиака. Некоторые физические свойств аммиака в сравнении с водой приведены в табл. 3.

Таблица 3. НЕКОТОРЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА АММИАКА И ВОДЫ

Свойство

Плотность, г/см 3 0,65 (–10° С) 1,00 (4,0° С)
Температура плавления, °С –77,7 0
Температура кипения, °С –33,35 100
Критическая температура, °С 132 374
Критическое давление, атм 112 218
Энтальпия испарения, Дж/г 1368 (–33° С) 2264 (100° С)
Энтальпия плавления, Дж/г 351 (–77° С) 334 (0° С)
Удельная электропроводность 5Ч 10 –11 (–33° С) 4Ч 10 –8 (18° С)
Температуры кипения и плавления у аммиака намного ниже, чем у воды, несмотря на близость молекулярных масс и сходство строения молекул. Это объясняется относительно большей прочностью межмолекулярных связей у воды, чем у аммиака (такая межмолекулярная связь называется водородной). Аммиак как растворитель. Высокая диэлектрическая проницаемость и дипольный момент жидкого аммиака позволяют использовать его как растворитель для полярных или ионных неорганических веществ. Аммиак-растворитель занимает промежуточное положение между водой и органическими растворителями типа этилового спирта. Щелочные и щелочноземельные металлы растворяются в аммиаке, образуя темносиние растворы. Можно полагать, что в растворе происходит сольватация и ионизация валентных электронов по схеме Синий цвет связывают с сольватацией и движением электронов или с подвижностью «дырок» в жидкости. При высокой концентрации натрия в жидком аммиаке раствор принимает бронзовую окраску и отличается высокой электропроводностью. Несвязанный щелочной металл можно выделить из такого раствора испарением аммиака или добавлением хлорида натрия. Растворы металлов в аммиаке являются хорошими восстановителями. В жидком аммиаке происходит автоионизация аналогично процессу, протекающему в воде: Некоторые химические свойства обеих систем сопоставлены в табл. 4.

Жидкий аммиак как растворитель имеет преимущество в некоторых случаях, когда невозможно проводить реакции в воде из-за быстрого взаимодействия компонентов с водой (например, окисление и восстановление). Например, в жидком аммиаке кальций реагирует с KCl с образованием CaCl 2 и K, поскольку CaCl 2 нерастворим в жидком аммиаке, а К растворим, и реакция протекает полностью. В воде такая реакция невозможна из-за быстрого взаимодействия Ca с водой.

Получение аммиака. Газообразный NH 3 выделяется из солей аммония при действии сильного основания, например, NaOH: Метод применим в лабораторных условиях. Небольшие производства аммиака основаны также на гидролизе нитридов, например Mg 3 N 2 , водой. Цианамид кальция CaCN 2 при взаимодействии с водой также образует аммиак. Основным промышленным методом получения аммиака является каталитический синтез его из атмосферного азота и водорода при высоких температуре и давлении: Водород для этого синтеза получают термическим крекингом углеводородов, действием паров воды на уголь или железо, разложением спиртов парами воды или электролизом воды. На синтез аммиака получено множество патентов, отличающихся условиями проведения процесса (температура, давление, катализатор). Существует способ промышленного получения при термической перегонке угля. С технологической разработкой синтеза аммиака связаны имена Ф.Габера и К.Боша.

Таблица 4. СРАВНЕНИЕ РЕАКЦИЙ В ВОДНОЙ И АММИАЧНОЙ СРЕДЕ

Водная среда

Аммиачная среда

Нейтрализация

OH – + H 3 O + ® 2H 2 O

NH 2 – + NH 4 + ® 2NH 3

Гидролиз (протолиз )

PCl 5 + 3H 2 O POCl 3 + 2H 3 O + + 2Cl –

PCl 5 + 4NH 3 PNCl 2 + 3NH 4 + + 3Cl –

Замещение

Zn + 2H 3 O + ® Zn 2+ + 2H 2 O + H 2

Zn + 2NH 4 + ® Zn 2+ + 2NH 3 + H 2

Сольватация (комплексообразование )

Al 2 Cl 6 + 12H 2 O 2 3+ + 6Cl –

Al 2 Cl 6 + 12NH 3 2 3+ + 6Cl –

Амфотерность

Zn 2+ + 2OH – Zn(OH) 2

Zn 2+ + 2NH 2 – Zn(NH 2) 2

Zn(OH) 2 + 2H 3 O + Zn 2+ + 4H 2 O

Zn(NH 2) 2 + 2NH 4 + Zn 2+ + 4NH 3

Zn(OH) 2 + 2OH – Zn(OH) 4 2–

Zn(NH 2) 2 + 2NH 2 – Zn(NH 2) 4 2–

Химические свойства аммиака. Кроме реакций, упомянутых в табл. 4, аммиак реагирует с водой, образуя соединение NH 3 Ч H 2 O, которое часто ошибочно считают гидроксидом аммония NH 4 OH; в действительности существование NH 4 OH в растворе не доказано. Водный раствор аммиака («нашатырный спирт») состоит преимущественно из NH 3 , H 2 O и и малых концентраций ионов NH 4 + и OH – , образующихся при диссоциации Основной характер аммиака объясняется наличием неподеленной электронной пары азота:NH 3 . Поэтому NH 3 – это основание Льюиса, которое имеет высшую нуклеофильную активность, проявляемую в форме ассоциации с протоном, или ядром атома водорода: Любые ион или молекула, способные принимать электронную пару (электрофильное соединение), будут взаимодействовать с NH 3 с образованием координационного соединения. Например: Символ M n+ представляет ион переходного металла (B-подгруппы периодической таблицы, например, Cu 2+ , Mn 2+ и др.). Любая протонная (т.е. Н-содержащая) кислота реагирует с аммиаком в водном растворе с образованием солей аммония, таких, как нитрат аммония NH 4 NO 3 , хлорид аммония NH 4 Cl, сульфат аммония (NH 4) 2 SO 4 , фосфат аммония (NH 4) 3 PO 4 . Эти соли широко применяются в сельском хозяйстве как удобрения для введения азота в почву. Нитрат аммония кроме того применяют как недорогое взрывчатое вещество; впервые оно было применено с нефтяным топливом (дизельным маслом). Водный раствор аммиака применяют непосредственно для введения в почву или с орошающей водой. Мочевина NH 2 CONH 2 , получаемая синтезом из аммиака и углекислого газа, также является удобрением. Газообразный аммиак реагирует с металлами типа Na и K с образованием амидов: Аммиак реагирует с гидридами и нитридами также с образованием амидов: Амиды щелочных металлов (например, NaNH 2 ) реагируют с N 2 O при нагревании, образуя азиды: Газообразный NH 3 восстанавливает оксиды тяжелых металлов до металлов при высокой температуре, по-видимому, благодаря водороду, образующемуся в результате разложения аммиака на N 2 и H 2: Атомы водорода в молекуле NH 3 могут замещаться на галоген. Иод реагирует с концентрированным раствором NH 3 , образуя смесь веществ, содержащую N I 3 . Это вещество очень неустойчиво и взрывается при малейшем механическом воздействии. При реакции NH 3 c Cl 2 образуются хлорамины NCl 3 , NHCl 2 и NH 2 Cl. При воздействии на аммиак гипохлорита натрия NaOCl (образуется из NaOH и Cl 2 ) конечным продуктом является гидразин: Гидразин. Приведенные выше реакции представляют собой способ получения моногидрата гидразина состава N 2 H 4 Ч H 2 O. Безводный гидразин образуется при специальной перегонке моногидрата с BaO или другими водоотнимающими веществами. По свойствам гидразин слегка напоминает пероксид водорода H 2 O 2 . Чистый безводный гидразин – бесцветная гигроскопичная жидкость, кипящая при 113,5 ° C ; хорошо растворяется в воде, образуя слабое основание В кислой среде (H + ) гидразин образует растворимые соли гидразония типа + X – . Легкость, с которой гидразин и некоторые его производные (например, метилгидразин) реагируют с кислородом, позволяет использовать его в качестве компонента жидкого ракетного топлива. Гидразин и все его производные сильно ядовиты. Оксиды азота. В соединениях с кислородом азот проявляет все степени окисления, образуя оксиды: N 2 O, NO, N 2 O 3 , NO 2 (N 2 O 4), N 2 O 5 . Имеется скудная информация об образовании пероксидов азота (NO 3 , NO 4). Оксид азота (I) N 2 O (монооксид диазота) получается при термической диссоциации нитрата аммония: Молекула имеет линейное строение O довольно инертен при комнатной температуре, но при высоких температурах может поддерживать горение легко окисляющихся материалов. N 2 O, известный как «веселящий газ», используют для умеренной анестезии в медицине. Оксид азота(II) NO – бесцветный газ, является одним из продуктов каталитической термической диссоциации аммиака в присутствии кислорода: NO образуется также при термическом разложении азотной кислоты или при реакции меди с разбавленной азотной кислотой: NO можно получать синтезом из простых веществ (N 2 и O 2 ) при очень высоких температурах, например в электрическом разряде. В структуре молекулы NO имеется один неспаренный электрон. Соединения с такой структурой взаимодействуют с электрическим и магнитным полями. В жидком или твердом состоянии оксид имеет голубую окраску, поскольку неспаренный электрон вызывает частичную ассоциацию в жидком состоянии и слабую димеризацию в твердом состоянии: 2NO N 2 O 2 . Оксид азота (III) N 2 O 3 (триоксид азота) – ангидрид азотистой кислоты: N 2 O 3 + H 2 O 2HNO 2 . Чистый N 2 O 3 может быть получен в виде голубой жидкости при низких температурах (–20 ° С) из эквимолекулярной смеси NO и NO 2 . N 2 O 3 устойчив только в твердом состоянии при низких температурах (т.пл. –102,3 ° С), в жидком и газообразном состояния он снова разлагается на NO и NO 2 . Оксид азота (IV) NO 2 (диоксид азота) также имеет в молекуле неспаренный электрон (см. выше оксид азота(II)). В строении молекулы предполагается трехэлектронная связь, и молекула проявляет свойства свободного радикала (одна линия соответствует двум спаренным электронам): получается каталитическим окислением аммиака в избытке кислорода или окислением NO на воздухе: а также по реакциям: При комнатной температуре NO 2 – газ темнокоричневого цвета, обладает магнитными свойствами благодаря наличию неспаренного электрона. При температурах ниже 0 ° C молекула NO 2 димеризуется в тетраоксид диазота, причем при –9,3 ° C димеризация протекает полностью: 2NO 2 N 2 O 4 . В жидком состоянии недимеризовано только 1% NO 2 , а при 100 ° C остается в виде димера 10% N 2 O 4 . (или N 2 O 4 ) реагирует в теплой воде с образованием азотной кислоты: 3NO 2 + H 2 O = 2HNO 3 + NO. Технология NO 2 поэтому очень существенна как промежуточная стадия получения промышленно важного продукта – азотной кислоты. Оксид азота (V) N 2 O 5 (устар . ангидрид азотной кислоты) – белое кристаллическое вещество, получается обезвоживанием азотной кислоты в присутствии оксида фосфора P 4 O 10: N 2 O 5 легко растворяется во влаге воздуха, вновь образуя HNO 3 . Свойства N 2 O 5 определяются равновесием N 2 O 5 – хороший окислитель, легко реагирует, иногда бурно, с металлами и органическими соединениями и в чистом состоянии при нагреве взрывается. Вероятную структуру . При выпаривании раствора образуется белое взрывчатое вещество с предполагаемой структурой H–O–N=N–O–H. Азотистая кислота HNO 2 не существует в чистом виде, однако водные растворы ее невысокой концентрации образуются при добавлении серной кислоты к нитриту бария: Азотистая кислота образуется также при растворении эквимолярной смеси NO и NO 2 (или N 2 O 3 ) в воде. Азотистая кислота немного сильнее уксусной кислоты. Степень окисления азота в ней +3 (ее структура H–O–N=O), т.е. она может являться и окислителем, и восстановителем. Под действием восстановителей она восстанавливается обычно до NO , а при взаимодействии с окислителями окисляется до азотной кислоты.

Скорость растворения некоторых веществ, например металлов или иодид-иона, в азотной кислоте зависит от концентрации азотистой кислоты, присутствующей в виде примеси. Соли азотистой кислоты – нитриты – хорошо растворяются в воде, кроме нитрита серебра.

NaNO 2 применяется в производстве красителей. Азотная кислота HNO 3 – один из наиболее важных неорганических продуктов основной химической промышленности. Она используется в технологиях множества других неорганических и органических веществ, например, взрывчатых веществ, удобрений, полимеров и волокон, красителей, фармацевтических препаратов и др. См. также ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ. ЛИТЕРАТУРА Справочник азотчика . М., 1969
Некрасов Б.В. Основы общей химии . М., 1973
Проблемы фиксации азота. Неорганическая и физическая химия . М., 1982

Химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип.

Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе - заряду иона .

1. Степени окисления металлов в соединениях всегда положительные.

2. Высшая степень окисления соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au +3 (I группа), Cu +2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru .

3. Степени окисления неметаллов зависят от того, с каким атомом он соединён:

  • если с атомом металла, то степень окисления отрицательная;
  • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов.

4. Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.

5. Степени окисления простых веществ равны 0, независимо от того металл это или неметалл.

Элементы с неизменными степенями окисления.

Элемент

Характерная степень окисления

Исключения

Гидриды металлов: LIH -1

Степенью окисления называют условный заряд частицы в предположении, что связь полностью разорвана (имеет ионных характер).

H - Cl = H + + Cl - ,

Связь в соляной кислоте ковалентная полярная. Электронная пара в большей степени смещена в сторону атома Cl - , т.к. он более электроотрицацельный элемент.

Как определить степень окисления?

Электроотрицательность - это способность атомов притягивать к себе электроны других элементов.

Степень окисления указывается над элементом: Br 2 0 , Na 0 , O +2 F 2 -1 , K + Cl - и т.д.

Она может быть отрицательной и положительной.

Степень окисления простого вещества (несвязанное, свободное состояние) равна нулю.

Степень окисления кислорода у большинстве соединений равна -2 (исключение составляют пероксиды Н 2 О 2 , где она равна -1 и соединения с фтором - O +2 F 2 -1 , O 2 +1 F 2 -1 ).

- Степень окисления простого одноатомного иона равна его заряду: Na + , Ca +2 .

Водород в своих соединениях имеет степень окисления равную +1 (исключения составляют гидриды - Na + H - и соединения типа C +4 H 4 -1 ).

В связях «металл-неметалл» отрицательную степень окисления имеет тот атом, который обладает большей электрооприцательностью (данные об элеткроотрицательности приведены в шкале Полинга): H + F - , Cu + Br - , Ca +2 (NO 3 ) - и т.д.

Правила определения степени окисления в химических соединениях.

Возьмем соединение KMnO 4 , необходимо определить степень окисления у атома марганца.

Рассуждения:

  1. Калий - щелочной металл, стоящий в I группе периодической таблицы , в связи с чем, имеет только положительную степень окисления +1.
  2. Кислород , как известно, в большинстве своих соединений имеет степень окисления -2. Данное вещество не является пероксидом, а значит, - не исключение.
  3. Составляет уравнение:

К + Mn X O 4 -2

Пусть Х - неизвестная нам степень окисления марганца.

Количество атомов калия - 1, марганца - 1, кислорода - 4.

Доказано, что молекула в целом электронейтральна, поэтому ее общий заряд должен быть равен нулю.

1*(+1) + 1*(X ) + 4(-2) = 0,

Х = +7,

Значит, степень окисления марганца в перманганате калия = +7.

Возьмем другой пример оксида Fe 2 O 3 .

Необходимо определить степень окисления атома железа.

Рассуждение:

  1. Железо - металл, кислород - неметалл, значит, именно кислород будет окислителем и иметь отрицательный заряд. Мы знаем, что кислород имеет степень окисления -2.
  2. Считаем количества атомов: железа - 2 атома, кислорода - 3.
  3. Составляем уравнение, где Х - степень окисления атома железа:

2*(Х) + 3*(-2) = 0,

Вывод: степень окисления железа в данном оксиде равна +3.

Примеры. Определить степени окисления всех атомов в молекуле.

1. K 2 Cr 2 O 7 .

Степень окисления К +1 , кислорода О -2 .

Учитывая индексы: О=(-2)×7=(-14), К=(+1)×2=(+2).

Т.к. алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, то число положительных степеней окисления равно числу отрицательных. Степени окисления К+О=(-14)+(+2)=(-12).

Из этого следует, что у атома хрома число положительных степеней равно 12, но атомов в молекуле 2, значит на один атом приходится (+12):2=(+6). Ответ: К 2 + Cr 2 +6 O 7 -2 .

2. (AsO 4) 3- .

В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е. - 3. Составим уравнение: х+4×(- 2)= - 3 .

Ответ: (As +5 O 4 -2) 3- .

Чтобы правильно расставлять степени окисления , необходимо держать в голове четыре правила.

1) В простом веществе степень окисления любого элемента равна 0. Примеры: Na 0 , H 0 2 , P 0 4 .

2) Следует запомнить элементы, для которых характерны постоянные степени окисления . Все они перечислены в таблице.


3) Высшая степень окисления элемента, как правило, совпадает с номером группы, в которой находится данный элемент (например, фосфор находится в V группе, высшая с. о. фосфора равна +5). Важные исключения: F, O.

4) Поиск степеней окисления остальных элементов основан на простом правиле:

В нейтральной молекуле сумма степеней окисления всех элементов равна нулю, а в ионе - заряду иона.

Несколько простых примеров на определение степеней окисления

Пример 1 . Необходимо найти степени окисления элементов в аммиаке (NH 3).

Решение . Мы уже знаем (см. 2), что ст. ок. водорода равна +1. Осталось найти эту характеристику для азота. Пусть х - искомая степень окисления. Составляем простейшее уравнение: х + 3 (+1) = 0. Решение очевидно: х = -3. Ответ: N -3 H 3 +1 .


Пример 2 . Укажите степени окисления всех атомов в молекуле H 2 SO 4 .

Решение . Степени окисления водорода и кислорода уже известны: H(+1) и O(-2). Составляем уравнение для определения степени окисления серы: 2 (+1) + х + 4 (-2) = 0. Решая данное уравнение, находим: х = +6. Ответ: H +1 2 S +6 O -2 4 .


Пример 3 . Рассчитайте степени окисления всех элементов в молекуле Al(NO 3) 3 .

Решение . Алгоритм остается неизменным. В состав "молекулы" нитрата алюминия входит один атом Al(+3), 9 атомов кислорода (-2) и 3 атома азота, степень окисления которого нам и предстоит вычислить. Соответствующее уравнение: 1 (+3) + 3х + 9 (-2) = 0. Ответ: Al +3 (N +5 O -2 3) 3 .


Пример 4 . Определите степени окисления всех атомов в ионе (AsO 4) 3- .

Решение . В данном случае сумма степеней окисления будет равна уже не нулю, а заряду иона, т. е., -3. Уравнение: х + 4 (-2) = -3. Ответ: As(+5), O(-2).

Что делать, если неизвестны степени окисления двух элементов

А можно ли определить степени окисления сразу нескольких элементов, пользуясь похожим уравнением? Если рассматривать данную задачу с точки зрения математики, ответ будет отрицательным. Линейное уравнение с двумя переменными не может иметь однозначного решения. Но ведь мы решаем не просто уравнение!

Пример 5 . Определите степени окисления всех элементов в (NH 4) 2 SO 4 .

Решение . Степени окисления водорода и кислорода известны, серы и азота - нет. Классический пример задачи с двумя неизвестными! Будем рассматривать сульфат аммония не как единую "молекулу", а как объединение двух ионов: NH 4 + и SO 4 2- . Заряды ионов нам известны, в каждом из них содержится лишь один атом с неизвестной степенью окисления. Пользуясь опытом, приобретенным при решении предыдущих задач, легко находим степени окисления азота и серы. Ответ: (N -3 H 4 +1) 2 S +6 O 4 -2 .

Вывод: если в молекуле содержится несколько атомов с неизвестными степенями окисления, попробуйте "разделить" молекулу на несколько частей.

Как расставлять степени окисления в органических соединениях

Пример 6 . Укажите степени окисления всех элементов в CH 3 CH 2 OH.

Решение . Нахождение степеней окисления в органических соединениях имеет свою специфику. В частности, необходимо отдельно находить степени окисления для каждого атома углерода. Рассуждать можно следующим образом. Рассмотрим, например, атом углерода в составе метильной группы. Данный атом С соединен с 3 атомами водорода и соседним атомом углерода. По связи С-Н происходит смещение электронной плотности в сторону атома углерода (т. к. электроотрицательность С превосходит ЭО водорода). Если бы это смещение было полным, атом углерода приобрел бы заряд -3.

Атом С в составе группы -СН 2 ОН связан с двумя атомами водорода (смещение электронной плотности в сторону С), одним атомом кислорода (смещение электронной плотности в сторону О) и одним атомом углерода (можно считать, что смещения эл. плотности в этом случае не происходит). Степень окисления углерода равна -2 +1 +0 = -1.

Ответ: С -3 H +1 3 C -1 H +1 2 O -2 H +1 .

Не смешивайте понятия "валентность" и "степень окисления"!

Степень окисления часто путают с валентностью . Не совершайте подобной ошибки. Перечислю основные отличия:

  • степень окисления имеет знак (+ или -), валентность - нет;
  • степень окисления может быть равна нулю даже в сложном веществе, равенство валентности нулю означает, как правило, что атом данного элемента не соединен с другими атомами (всякого рода соединения включения и прочую "экзотику" здесь обсуждать не будем);
  • степень окисления - формальное понятие, которое приобретает реальный смысл лишь в соединениях с ионными связями, понятие "валентность", наоборот, наиболее удобно применять по отношению к ковалентным соединениям.

Степень окисления (точнее, ее модуль) часто численно равен валентности, но еще чаще эти величины НЕ совпадают. Например, степень окисления углерода в CO 2 равна +4; валентность С также равна IV. А вот в метаноле (CH 3 OH) валентность углерода остается той же, а степень окисления С равна -1.

Небольшой тест на тему "Степень окисления"

Потратьте несколько минут, проверьте, как вы усвоили эту тему. Вам необходимо ответить на пять несложных вопросов. Успехов!

Соединения со степенью окисления –3. Соединения азота в степени окисления -3 представлены аммиаком и нитридами металлов.

Аммиак - NH 3 - бесцветный газ с характерным резким запахом. Молекула аммиака имеет геометрию тригональной пирамиды с атомом азота в вершине. Атомные орбитали азота находятся в sp 3 -гибридном состоянии. Три орбитали задействованы в образовании связей азот-водород, а четвертая орбиталь содержит неподеленную электронную пару, молекула имеет пирамидальную форму. Отталкивающее действие неподеленной пары электронов приводит к уменьшению валентного угла от ожидаемого 109,5 до 107,3 °.

При температуре -33,4 °С аммиак конденсируется, образуя жидкость с очень высокой теплотой испарения, что позволяет использовать его в качестве хладагента в промышленных холодильных установках.

Наличие у атома азота неподеленной электронной пары позволяет ему образовать еще одну ковалентную связь по донорно-акцепторному механизму. Таким образом в кислой среде происходит образование молекулярного катиона аммония - NH 4 + . Образование четвертой ковалентной связи приводит к выравниванию валентных углов (109,5 °) за счет равномерного отталкивания атомов водорода.

Жидкий аммиак хороший самоионизирующийся растворитель:

2NH 3 NH 4 + + NH 2 -

амид-анион

В нем растворяются щелочные и щелочноземельные металлы, образуя окрашенные токопроводящие растворы. В присутствии катализатора (FeCl 3) растворенный металл реагирует с аммиаком c выделением водорода и образованием амида, например:

2Na + 2NH 3 = 2NaNH 2 + H 2 ­

амид натрия

Аммиак очень хорошо растворим в воде (при 20 °С в одном объеме воды растворяется около 700 объемов аммиака). В водных растворах проявляет свойства слабого основания.

NH 3 + H 2 O ® NH 3 ×H 2 O NH 4 + + OH -

= 1,85·10 -5

В атмосфере кислорода аммиак горит с образованием азота, на платиновом катализаторе аммиак окисляется до оксида азота(II):

4NH 3 + 3O 2 = 2N 2 + 6H 2 O; 4NH 3 + 5O 2 = 4NO + 6H 2 O

Как основание аммиак реагирует с кислотами, образуя соли катиона аммония, например:

NH 3 + HCl = NH 4 Cl

Соли аммония хорошо растворимы в воде и слабо гидролизованы. В кристаллическом состоянии термически нестойки. Состав продуктов термолиза зависит от свойств кислоты, образующей соль:

NH 4 Cl ® NH 3 ­ + HCl­; (NH 4) 2 SO 4 ® NH 3 ­ + (NH 4)HSO 4

(NH 4) 2 Cr 2 O 7 ® N 2 + Cr 2 O 3 + 4H 2 O

При действии на водные растворы солей аммония щелочей при нагревании выделяется аммиак, что позволяет использовать данную реакцию как качественную на соли аммония и как лабораторный метод получения аммиака.

NH 4 Cl + NaOH = NaCl + NH 3 ­ + H 2 О

В промышленности аммиак получают прямым синтезом.

N 2 + 3H 2 2NH 3

Поскольку реакция сильно обратима, синтез ведут при повышенном давлении (до 100 мПа). Для ускорения процесс проводят в присутствии катализатора (губчатое железо, промотированное добавками) и при температуре около 500 °С.

Нитриды образуются в результате реакций многих металлов и неметаллов с азотом. Свойства нитридов закономерно изменяются в периоде. Например, для элементов третьего периода:

Нитриды s-элементов I и II групп представляют собой кристаллические солеподобные вещества, легко разлагающиеся водой с образованием аммиака.

Li 3 N + 3H 2 O = 3LiOH + NH 3

Из нитридов галогенов в свободном состоянии выделен только Cl 3 N, кислотный характер проявляется в реакции с водой:

Cl 3 N + 3H 2 O = 3HClO + NH 3

Взаимодействие нитридов разной природы приводит к образованию смешанных нитридов:

Li 3 N + AlN = Li 3 AlN 2 ; 5Li 3 N + Ge 3 N 4 = 3Li 5 GeN 3

нитридоалюминат нитридогерманат(IV) лития

Нитриды ВN, AlN, Si 3 N 4 , Ge 3 N 4 – твердые полимерные вещества с высокими температурами плавления (2000-3000 °С), они полупроводники или диэлектрики. Нитриды d-металлов - кристаллические соединения переменного состава (бертолиды), очень твердые, тугоплавкие и химически устойчивые, проявляют металлические свойства: металлический блеск, электропроводность.

Соединения со степенью окисления –2. Гидразин - N 2 H 4 - наиболее важное неорганическое соединение азота в степени окисления -2.

Гидразин представляет собой бесцветную жидкость, с температурой кипения 113,5 °С, дымящуюся на воздухе. Пары гидразина чрезвычайно ядовиты и образуют с воздухом взрывообразные смеси. Получают гидразин, окисляя аммиак гипохлоритом натрия:

2N -3 H 3 + NaCl +1 O = N 2 -2 H 4 + NaCl -1 + H 2 O

Гидразин смешивается с водой в любых соотношениях и в растворе ведет себя как слабое двухкислотное основание, образуя два ряда солей.

N 2 H 4 + H 2 O N 2 H 5 + + OH - , K b = 9,3×10 -7 ;

катион гидрозония

N 2 H 5 + + H 2 O N 2 H 6 2+ + OH - , K b = 8,5×10 -15 ;

катион дигидрозония

N 2 H 4 + HCl N 2 H 5 Cl; N 2 H 5 Cl + HCl N 2 H 6 Cl 2

хлорид гидрозония дихлорид дигидрозония

Гидразин сильнейший восстановитель:

4KMn +7 O 4 + 5N 2 -2 H 4 + 6H 2 SO 4 = 5N 2 0 + 4Mn +2 SO 4 + 2K 2 SO 4 + 16H 2 O

Несимметричный диметилгидразин (гептил) широко применяется в качестве ракетного топлива.

Соединения со степенью окисления –1. Гидроксиламин - NH 2 OH - основное неорганическое соединение азота в степени окисления -1.

Получают гидроксиламин восстановлением азотной кислоты водородом в момент выделения при электролизе:

HNO 3 + 6H = NH 2 OH + 2H 2 O

Это бесцветное кристаллическое вещество (т.пл. 33 °С), хорошо растворимое в воде, в которой проявляет свойства слабого основания. С кислотами дает соли гидроксиламмония – устойчивые бесцветные вещества, растворимые в воде.

NH 2 OH + H 2 O + + OH - , K b = 2×10 -8

ион гидроксиламмония

Атом азота в молекуле NH 2 OН проявляет промежуточную степень окисления (между -3 и +5) поэтому гидроксиламин может выступать как в роли восстановителя, так и в роли окислителя:

2N -1 H 2 OH + I 2 + 2KOH = N 0 2 + 2KI + 4H 2 O;

восстановитель

2N -1 H 2 OH + 4FeSO 4 + 3H 2 SO 4 = 2Fe 2 (SO 4) 3 + (N -3 H 4) 2 SO 4 + 2H 2 O

окислитель

NH 2 OН легко разлагается при нагревании, подвергаясь диспропорционированию:

3N -1 H 2 OH = N 0 2 + N -3 H 3 + 3H 2 O;

Соединения со степенью окисления +1. Оксид азота(I) - N 2 O (закись азота, веселящий газ). Строение его молекулы можно передать резонансом двух валентных схем, которые показывают, что рассматривать это соединение как оксид азота(I) можно только формально, реально это оксонитрид азота(V) - ON +5 N -3 .

N 2 O - бесцветный газ со слабым приятным запахом. В малых концентрациях вызывает приступы безудержного веселья, в больших дозах оказывает общее анестезирующее действие. Смесь закиси азота (80%) и кислорода (20%) использовалась в медицине для наркоза.

В лабораторных условиях оксид азота(I) можно получить разложением нитрата аммония. N 2 O, полученный данным методом, содержит примеси высших оксидов азота, которые чрезвычайно токсичны!

NH 4 NO 3 ¾® N 2 O + 2H 2 O

По химическим свойствам оксид азота(I) типичный несолеобразующий оксид, с водой, кислотами и щелочами не реагирует. При нагревании разлагается с образованием кислорода и азота. По этой причине N 2 O может выступать в роли окислителя, например:

N 2 O + H 2 = N 2 + H 2 O

Соединения со степенью окисления +2. Оксид азота(II) - NO - бесцветный газ, чрезвычайно токсичен. На воздухе быстро окисляется кислородом с образованием не менее токсичного оксида азота(IV). В промышленности NO получают окислением аммиака на платиновом катализаторе или, пропуская воздух через электрическую дугу (3000-4000 °С).

4NH 3 + 5О 2 = 4NО + 6H 2 О; N 2 + O 2 = 2NO

Лабораторным методом получения оксида азота(II) является взаимодействие меди с разбавленной азотной кислотой.

3Cu + 8HNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO­ + 4H 2 O

Оксид азота(II) - несолеобразующий оксид, сильный восстановитель, легко реагирует с кислородом и галогенами.

2NO + O 2 = 2NO 2 ; 2NO + Cl 2 = 2NOCl

хлористый нитрозил

В то же время, при взаимодействии с сильными восстановителями NO выполняет функцию окислителя:

2NO + 2H 2 = N 2 + 2H 2 O; 10NO + 4Р = 5N 2 + 2Р 2 O 5

Соединения со степенью окисления +3. Оксид азота(III) - N 2 O 3 - жидкость интенсивно синего цвета (т.кр. -100 °С). Устойчив только в жидком и твердом состоянии при низких температурах. По-видимому, существует в двух формах:

Получают оксид азота(III) совместной конденсацией паров NO и NO 2 . В жидкости и в парах диссоциирует.

NO 2 + NO N 2 O 3

По свойствам типичный кислотный оксид. Реагирует с водой, образуя азотистую кислоту, с щелочами образует соли - нитриты.

N 2 O 3 + H 2 O = 2HNO 2 ; N 2 O 3 + 2NaOH = 2NaNO 2 + H 2 O

Азотистая кислота - кислота средней силы (K a = 1×10 -4). В чистом виде не выделена, в растворах существует в двух таутомерных формах (таутомеры - изомеры, находящиеся в динамическом равновесии).

нитрито-форма нитро-форма

Соли азотистой кислоты устойчивы. Нитрит-анион проявляет ярко выраженную окислительно-восстановительную двойственность. В зависимости от условий он может выполнять как функцию окислителя, так и функцию восстановителя, например:

2NaNO 2 + 2KI + 2H 2 SO 4 = I 2 + 2NO + K 2 SO 4 + Na 2 SO 4 + 2H 2 O

окислитель

KMnO 4 + 5NaNO 2 + 3H 2 SO 4 = 2MnSO 4 + 5NaNO 3 + K 2 SO 4 + 3H 2 O

восстановитель

Азотистая кислота и нитриты склонны к диспропорционированию:

3HN +3 O 2 = HN +5 O 3 + 2N +2 O + H 2 O

Соединения со степенью окисления +4. Оксид азота(IV) - NO 2 - бурый газ, с резким неприятным запахом. Чрезвычайно токсичен! В промышленности NO 2 получают окислением NO. Лабораторным методом получения NO 2 является взаимодействие меди с концентрированной азотной кислотой, а также термическое разложение нитрата свинца.

Cu + 4HNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O;

2Pb(NO 3) 2 = 2PbO + 4NO 2 + O 2

Молекула NO 2 имеет один неспаренный электрон и является стабильным свободным радикалом, поэтому оксид азота легко димеризуется.

Процесс димеризации обратим и очень чувствителен к температуре:

парамагнитен, диамагнитен,

бурый бесцветен

Диоксид азота - кислотный оксид, взаимодействует с водой, образуя смесь азотной и азотистой кислоты (смешанный ангидрид).

2NO 2 + H 2 O = HNO 2 + HNO 3 ; 2NO 2 + 2NaOH = NaNO 3 + NaNO 2 + H 2 O

Соединения со степенью окисления +5. Оксид азота(V) - N 2 O 5 - белое кристаллическое вещество. Получается дегидратацией азотной кислоты или окислением оксида азота(IV) озоном:

2HNO 3 + P 2 O 5 = N 2 O 5 + 2HPO 3 ; 2NO 2 + O 3 = N 2 O 5 + O 2

В кристаллическом состоянии N 2 O 5 имеет солеподобное строение - + - , в парах (т.возг. 33 °С) - молекулярное.

N 2 O 5 - кислотный оксид - ангидрид азотной кислоты:

N 2 O 5 + H 2 O = 2HNO 3

Азотная кислота - HNO 3 - бесцветная жидкость с температурой кипения 84,1 °С, при нагревании и на свету разлагается.

4HNO 3 = 4NO 2 + O 2 + 2H 2 O

Примеси диоксида азота придают концентрированной азотной кислоте желто-бурую окраску. С водой азотная кислота смешивается в любых соотношениях и является одной из сильнейших минеральных кислот, в растворе нацело диссоциирует.

Строение молекулы азотной кислоты описывается следующими структурными формулами:

Сложности с написанием структурной формулы HNO 3 вызваны тем обстоятельством, что, проявляя в данном соединении степень окисления +5, азот, как элемент второго периода, может образовать только четыре ковалентные связи.

Азотная кислота - один из сильнейших окислителей. Глубина ее восстановления зависит от многих факторов: концентрация, температура, восстановитель. Обычно при окислении азотной кислотой образуется смесь продуктов восстановления:

HN +5 O 3 ® N +4 O 2 ® N +2 O ® N +1 2 O ® N 0 2 ® +

Превалирующим продуктом окисления концентрированной азотной кислотой неметаллов и неактивных металлов является оксид азота(IV):

I 2 + 10HNO 3 (конц) = 2HIO 3 + 10NO 2 + 4H 2 O;

Pb + 4HNO 3 (конц) = Pb(NO 3) 2 + 2NO 2 + 2H 2 O

Концентрированная азотная кислота пассивирует железо и алюминий. Алюминий пассивируется даже разбавленной азотной кислотой. Азотная кислота любой концентрации не действует на золото, платину, тантал, родий и иридий. Золото и платина растворяется в царской водке - смеси концентрированной азотной и соляной кислот в соотношении 1: 3.

Au + HNO 3 + 4HCl = H + NO + 2H 2 O

Сильное окисляющее действие царской водки обусловлено образование атомарного хлора при распаде хлористого нитрозила - продукта взаимодействия азотной кислоты с хлороводородом.

HNO 3 + 3HCl = Cl 2 + NOCl + 2H 2 O;

NOCl = NO + Cl×

Эффективным растворителем малоактивных металлов является смесь концентрированной азотной и плавиковой кислот.

3Ta + 5HNO 3 + 21HF = 3H 2 + 5NO + 10H 2 O

Разбавленная азотная кислота при взаимодействии с неметаллами и малоактивными металлами восстанавливается преимущественно до оксида азота(II), например:

3P + 5HNO 3 (разб) + 2H 2 O = 3H 3 PO 4 + 5NO­;

3Pb + 8HNO 3 (разб) = 3Pb(NO 3) 2 + 2NO­ + 4H 2 O

Активные металлы восстанавливают разбавленную азотную кислоту до N 2 O, N 2 или NH 4 NO 3 , например,

4Zn + 10HNO 3 (разб) = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O

Основная масса азотной кислоты идет на производство удобрений и взрывчатых веществ.

Получают азотную кислоту в промышленности контактным или дуговым способом, которые отличаются первой стадией - получением оксида азота(II). Дуговой способ основан на получении NO при пропускании воздуха через электрическую дугу. В контактном способе NO получают окислением аммиака кислородом на платиновом катализаторе. Далее оксид азота(II) окисляется до оксида азота(IV) кислородом воздуха. Растворяя NO 2 в воде в присутствии кислорода получают азотную кислоту с концентрацией 60-65%.

4NO 2 + O 2 + 2H 2 O = 4HNO 3

При необходимости азотную кислоту концентрируют перегонкой с концентрированной серной кислотой. В лаборатории 100 %-ную азотную кислоту можно получить действием концентрированной серной кислоты на кристаллический нитрат натрия при нагревании.

NaNO 3 (кр) + H 2 SO 4 (конц) = HNO 3 ­ + NaHSO 4

Соли азотной кислоты - нитраты - хорошо растворимы в воде, термически неустойчивы. Разложение нитратов активных металлов (исключая литий), стоящих в ряду стандартных электродных потенциалов левее магния, приводит к образованию нитритов. Например:

2KNO 3 = 2KNO 2 + O 2

При разложении нитратов лития, магния, а также нитратов металлов, расположенных в ряду стандартных электродных потенциалов правее магния, вплоть до меди, выделяется смесь оксида азота(IV) и кислорода. Например:

2Cu(NO 3) 2 = 2CuO + 4NO 2 + O 2

Нитраты металлов, расположенных в конце ряда активности, разлагаются до свободного металла:

2AgNO 3 = 2Ag + 2NO 2 + O 2

Нитраты натрия, калия и аммония широко используются для производства пороха и взрывчатых веществ, а также в качестве азотных удобрений (селитры). В качестве удобрений используют также сульфат аммония, аммиачную воду и карбамид (мочевину) - полный амид угольной кислоты:

Азид водорода (динитридонитрат) - HN 3 (HNN 2) – бесцветная летучая жидкость (т.пл. –80 °С, т.кип. 37 °С) с резким запахом. Центральный атом азота находится в sp-гибридизации, степень окисления +5, соседние с ним атомы имеют степень окисления –3. Структура молекулы:

Водный раствор HN 3 – азотистоводородная кислота по силе близка к уксусной, K a = 2,6×10 -5 . В разбавленных растворах устойчива. Её получают взаимодействием гидразина и азотистой кислоты:

N 2 Н 4 + HNO 2 = HN 3 + 2Н 2 О

По окислительным свойствам HN 3 (HN +5 N 2) напоминает азотную кислоту. Так, если при взаимодействии металла с азотной кислотой образуются оксид азота(II) и вода, то с азотистоводородной кислотой – азот и аммиак. Например,

Cu + 3HN +5 N 2 = Cu(N 3) 2 + N 2 0 ­ + NH 3

Смесь HN 3 и HCl ведет себя подобно царской водке. Соли азотистоводородной кислоты - азиды. Относительно устойчивы только азиды щелочных металлов, при температуре > 300 °С они разрушаются без взрыва. Остальные распадаются со взрывом при ударе или нагревании. Азид свинца используют в производстве детонаторов:

Pb(N 3) 2 = Pb + 3N 2 0 ­

Исходным продуктом для получения азидов является NaN 3 , который образуется в результате реакции амида натрия и оксида азота(I):

NaNH 2 + N 2 O = NaN 3 + H 2 O

4.2.Фосфор

Фосфор представлен в природе одним изотопом - 31 Р, кларк фосфора равен 0,05 мол.%. Встречается в виде фосфатных минералов: Ca 3 (PO 4) 2 - фосфорит, Ca 5 (PO 4) 3 X (X = F,Cl,OH) - апатиты. Входит в состав костей и зубов животных и человека, а также в состав нуклеиновых кислот (ДНК и РНК) и аденозинфосфорных кислот (АТФ, АДФ и АМФ).

Получают фосфор восстановлением фосфорита коксом в присутствии диоксида кремния.

Ca 3 (PO 4) 2 + 3SiO 2 + 5C = 3CaSiO 3 + 2P­ + 5CO

Простое вещество - фосфор - образует несколько аллотропных модификаций, из которых основными являются белый, красный и черный фосфор. Белый фосфор образуется при конденсации паров фосфора и представляет собой белое воскоподобное вещество (т.пл. 44 °С), нерастворимое в воде, растворимое в некоторых органических растворителях. Белый фосфор имеет молекулярное строение и состоит из тетраэдрических молекул P 4 .

Напряженность связей (валентный угол P-P-P составляет всего 60 °) обусловливает высокую реакционную способность и токсичность белого фосфора (смертельная доза около 0,1 г). Поскольку белый фосфор хорошо растворим в жирах, в качестве антидота при отравлении нельзя применять молоко. На воздухе белый фосфор самопроизвольно воспламеняется, поэтому хранят его в герметически упакованной химической посуде под слоем воды.

Красный фосфор имеет полимерное строение. Получается при нагревании белого фосфора или облучении его светом. В отличие от белого фосфора малореакционноспособен и нетоксичен. Однако остаточные количества белого фосфора могут придавать красному фосфору токсичность!

Черный фосфор получается при нагревании белого фосфора под давлением 120 тыс.атм. Имеет полимерное строение, обладает полупроводниковыми свойствами, химически устойчив и нетоксичен.

Химические свойства. Белый фосфор самопроизвольно окисляется кислородом воздуха при комнатной температуре (окисление красного и черного фосфора идет при нагревании). Реакция протекает в два этапа и сопровождается свечением (хемилюминесценция).

2P + 3O 2 = 2P 2 O 3 ; P 2 O 3 + O 2 = P 2 O 5

Ступенчато происходит также взаимодействие фосфора с серой и галогенами.

2P + 3Cl 2 = 2PCl 3 ; PCl 3 + Cl 2 = PCl 5

При взаимодействии с активными металлами фосфор выступает в роли окислителя, образуя фосфиды - соединения фосфора в степени окисления -3.

3Ca + 2P = Ca 3 P 2

Кислотами-окислителями (азотная и концентрированная серная кислоты) фосфор окисляется до фосфорной кислоты.

P + 5HNO 3 (конц) = H 3 PO 4 + 5NO 2 ­ + H 2 O

При кипячении с растворами щелочей белый фосфор диспропорционирует:

4P 0 + 3KOH + 3H 2 O = P -3 H 3 ­ + 3KH 2 P +1 O 2

фосфин гипофосфит калия