Высшая теплота сгорания природного газа. Теплотворная способность различных видов топлива: дров, угля, пеллетов, брикетов

Газовое топливо делится на природное и искусственное и представляет собой смесь горючих и негорючих газов, содержащую некоторое количество водяных паров, а иногда пыли и смолы. Количество газового топлива выражают в кубических метрах при нормальных условиях (760 мм рт. ст. и 0°С), а состав - в процентах по объему. Под составом топлива понимают состав его сухой газообразной части.

Природное газовое топливо

Наиболее распространенное газовое топливо - это природный газ, обладающий высокой теплотой сгорания. Основой природного газа является метан, содержание которого 76,7-98%. Другие газообразные соединения углеводородов входят в состав природного газа от 0,1 до 4,5%.

Сжиженный газ продукт переработки нефти - состоит в основном из смеси пропана и бутана.

Природный газ (CNG, NG): метан CH4 более 90%, этан C2 H5 менее 4%, пропан C3 H8 менее 1%

Сжиженный газ (LPG): пропан C3 H8 более 65%, бутан C4 H10 менее 35%

В состав горючих газов входят: водород Н 2 , метан СН 4 , Другие углеводородные соединения С m Н n , сероводород Н 2 S и негорючие газы, двуокись углерода СО2, кислород О 2 , азот N 2 и незначительное количество водяных паров Н 2 О. Индексы m и п при С и Н характеризуют соединения различных углеводородов, например для метана СН 4 т = 1 и n = 4, для этана С 2 Н б т = 2 и n = б и т. д.

Состав сухого газообразного топлива (в процентах по объему):


СО + Н 2 + 2 С m Н n + Н 2 S + СO 2 + O 2 + N 2 = 100%.

Негорючую часть сухого газового топлива - балласт - составляют азот N и двуокись углерода СО 2 .

Состав влажного газообразного топлива выражают следующим образом:

СО + Н 2 + Σ С m Н n + Н 2 S + СО 2 + O 2 + N 2 + Н 2 О = 100%.

Теплоту сгорания, кДж/м (ккал/м 3), 1 м 3 чистого сухого газа при нормальных условиях определяют следующим образом:

Q н с = 0,01 ,

где Qсо, Q н 2 , Q с m н n Q н 2 s. - теплота сгорания отдельных газов, входящих в состав смеси, кДж/м 3 (ккал/м 3); СО, Н 2 , Cm Н n , Н 2 S - компоненты, составляющие газовую смесь, % по объему.

Теплота сгорания 1 м3 сухого природного газа при нормальных условиях для большинства отечественных месторождений составляет 33,29 - 35,87 МДж/м3 (7946 - 8560 ккал/м3). Характеристика газообразного топлива приведена в таблице 1.

Пример. Определить низшую теплоту сгорания природного газа (при нормальных условиях) следующего состава:

Н 2 S = 1%; СН 4 = 76,7%; С 2 Н 6 = 4,5%; С 3 Н 8 = 1,7%; С 4 Н 10 = 0,8%; С 5 Н 12 = 0,6%.

Подставляя в формулу (26) характеристики газов из таблицы 1, получим:

Q нс = 0,01 = 33981 кДж/м 3 или

Q нс = 0,01 (5585,1 + 8555 76,7 + 15 226 4,5 + 21 795 1,7 + 28 338 0,8 + 34 890 0,6) = 8109 ккал/м 3 .

Таблица 1. Характеристика газообразного топлива

Газ

Обозначение

Теплота сгорания Q н с

КДж/м3

Ккал/м3

Водород Н, 10820 2579
Окисьуглерода СО 12640 3018
Сероводород Н 2 S 23450 5585
Метан СН 4 35850 8555
Этан С 2 Н 6 63 850 15226
Пропан С 3 Н 8 91300 21795
Бутан С 4 Н 10 118700 22338
Пентан С 5 Н 12 146200 34890
Этилен С 2 Н 4 59200 14107
Пропилен С 3 Н 6 85980 20541
Бутилен С 4 Н 8 113 400 27111
Бензол С 6 Н 6 140400 33528

Котлы типа ДЕ потребляют от 71 до 75 м3 природного газа на получение одной тонны пара. Стоимость газа в России на сентябрь 2008г. составляет 2,44 рубля за кубометр. Следовательно, тонна пара будет стоить 71 × 2,44 = 173 руб 24 коп. Реальная стоимость тонны пара на заводах составляет для котлов ДЕ составляет не менее 189 рублей за тонну пара.

Котлы типа ДКВР потребляют от 103 до 118 м3 природного газа на получение одной тонны пара. Минимальная расчетная стоимость тонны пара для этих котлов составляет 103 × 2,44 = 251 руб 32 коп. Реальная же стоимость пара по заводам составляет не менее 290 рублей за тонну.

Как рассчитать максимальный расход природного газа на паровой котел ДЕ-25? Это техническая характеристика котла. 1840 кубиков в час. Но можно и расчитать. 25 тонн (25 тыс кг) надо умножить на разность энтальпий пара и воды (666,9-105) и всё это разделить на к.п.д котла 92,8% и теплоту сгорания газа. 8300. и все

Искусственное газовое топливо

Искуственные горючие газы являются топливом местного значения, поскольку имеют значительно меньшую теплоту сгорания. Основными горючими элементами их являются окись углерода СО и водород Н2. Эти газы используют в пределах того производства, где они получаются в качестве топлива технологических и энергетических установок.

Все природные и искусственные горючие газы являются взрывоопасными, способны воспламеняться на открытом огне или искре. Различают нижний и верхний предел взрываемости газа, т.е. наибольшую и наименьшую процентную его концентрацию в воздухе. Нижний предел взрываемости природных газов колеблется от 3% до 6%, а верхний - от 12% до 16%. Все горючие газы способны вызывать отравление организма человека. Основными отравляющими веществами горючих газов являются: окись углерода СО, сероводород H2S, аммиак NH3.

Природные горючие газы, так и искусственные бесцветны (невидимы), не имеют запаха, что делает их опасными при проникновении во внутреннее помещение котельной через неплотности газопроводной арматуры. Во избежание отравления горючие газы следует обрабатывать одорантом - веществом с неприятным запахом.

Получение окиси углерода СО в промышленности газификацией твердого топлива

Для промышленных целей окись углерода получают путём газификации твёрдого топлива, т. е. превращения его в газообразное топливо. Так можно получить окись углерода из любого твёрдого топлива - ископаемых углей, торфа, дров и т. д.

Процесс газификации твердого топлива показан на лабораторном опыте (рис.1). Заполнив тугоплавкую трубку кусочками древесного угля, сильно нагреем её и будем пропускать кислород из газометра. Выходящие из трубки газы пропустим через промывалку с известковой водой и затем подожжём. Известковая вода мутится, газ горит синеватым пламенем. Это указывает на наличие двуокиси СО2 и окиси углерода СО в продуктах реакции.

Образование этих веществ можно объяснить тем, что при соприкосновении кислорода с раскалённым углем последний сначала окисляется в двуокись углерода: С + О 2 = СО 2

Затем, проходя через раскалённый уголь, углекислый газ частично восстанавливается им до окиси углерода: СО 2 + С = 2СО

Рис. 1. Получение окиси углерода (лабораторный опыт).

В промышленных условиях газификацию твёрдого топлива осуществляют в печах, называемых газогенераторами.

Образующаяся смесь газов называется генераторным газом.

Устройство генератора газа показано на рисунке. Он представляет собой стальной цилиндр высотой около 5 м и диаметром примерно 3,5 м, футерованный внутри огнеупорным кирпичом. Сверху газогенератор загружается топливом; снизу через колосниковую решётку вентилятором подаётся воздух или водяной пар.

Кислород воздуха реагирует с углеродом топлива, образуя углекислый газ, который, поднимаясь вверх через слой раскалённого топлива, восстанавливается углеродом до окиси углерода.

Если в генератор вдувать только воздух, то получается газ, который в своём составе содержит окись углерода и азот воздуха (а также некоторое количество СО 2 и других примесей) . Такой генераторный газ называется воздушным газом.

Если же в генератор с раскалённым углем вдувать водяной пар, то в результате реакции образуются окись углерода и водород: С + Н 2 О = СO + Н 2

Эта смесь газов называется водяным газом. Водяной газ обладает более высокой теплотворной способностью, чем воздушный, так как в его состав наряду с окисью углерода входит и второй горючий газ - водород. Водяной газ (синтез газ), один из продуктов газификациии топлив. Водяной газ состоит главным образом из СО (40%) и Н2 (50%). Водяной газ - это топливо (теплота сгорания 10 500 кДж/м3, или 2730 ккал/мг) и одновременно сырье для синтеза метилового спирта. Водяной газ, однако, нельзя получать продолжительное время, так как реакция образования его эндотермическая (с поглощением теплоты), и поэтому топливо в генераторе остывает. Чтобы поддерживать уголь в раскалённом состоянии, вдувание водяного пара в генератор чередуют с вдуванием воздуха, кислород которого, как известно, реагирует с топливом с выделением тепла.

В последнее время для газификации топлива стали широко применять парокислородное дутьё. Одновременное продувание через слой топлива водяного пара и кислорода позволяет вести процесс непрерывно, значительно повышать производительность генератора и получать газ с высоким содержанием водорода и окиси углерода.

Современные газогенераторы - это мощные аппараты непрерывного действия.

Чтобы при подаче топлива в газогенератор горючие и ядовитые газы не проникали в атмосферу, загрузочный барабан делают двойным. В то время как топливо поступает в одно отделение барабана, из другого отделения топливо высыпается в генератор; при вращении барабана эти процессы повторяются, генератор же всё время остаётся изолированным от атмосферы. Равномерное распределение топлива в генераторе осуществляется при помощи конуса, который может устанавливаться на различной высоте. Когда его опускают, уголь ложится ближе к центру генератора, когда конус поднимают, уголь отбрасывается ближе к стенкам генератора.

Удаление золы из газогенератора механизировано. Колосниковая решётка, имеющая конусовидную форму, медленно вращается электродвигателем. При этом зола смещается к стенкам генератора и особыми приспособлениями сбрасывается в зольный ящик, откуда периодически удаляется.

Первые газовые фонари зажглись в Санкт-Петербурге на Аптекарском острове в 1819 году. Газ, который применялся, получали путем газификации каменного угля. Он назывался светильным газом.


Великий русский учёный Д. И. Менделеев (1834-1907) впервые высказал идею о том, что газификацию каменного угля можно производить непосредственно под землёй, не поднимая его наружу. Царское правительство не оценило этого предложения Менделеева.

Идею подземной газификации горячо поддержал В. И. Ленин. Он назвал её «одной из великих побед техники». Подземную газификацию осуществило впервые Советское государство. Уже до Великой Отечественной войны в Советском Союзе работали подземные генераторы в Донецком и Подмосковном угольных бассейнах.

Представление об одном из способов подземной газификации даёт рисунок 3. В угольный пласт прокладывают две скважины, которые внизу соединяют каналом. Уголь поджигают в таком канале у одной из скважин и подают туда дутьё. Продукты горения, двигаясь по каналу, взаимодействуют с раскалённым углем, в результате чего образуется горючий газ как и в обычном генераторе. Газ выходит на поверхность через вторую скважину.

Генераторный газ широко применяется для обогрева промышленных печей - металлургических, коксовых и в качестве топлива в автомобилях (рис. 4).


Рис. 3. Схема подземной газификации каменного угля.

Из водорода и окиси углерода водяного газа синтезируют ряд органических продуктов, например жидкое топливо. Синтетическое жидкое топливо - горючее (в основном бензин), получаемое синтезом из окиси углерода и водорода при 150-170 гр Цельсия и давлении 0,7 - 20 МН/м2 (200 кгс/см2), в присутствии катализатора (никель, железо, кобальт). Первое производство синтетического жидкого топлива организовано в Германии во время 2й Мировой войны в связи с нехваткой нефти. Широкого распространения синтетическое жидкое топливо не получило из-за его высокой стоимости. Водяной газ используют для производства водорода. Для этого водяной газ в смеси с водяным паром нагревают в присутствии катализатора и в результате получают водород дополнительно к уже имеющемуся в водяном газе: СО+Н 2 О=СО 2 +Н 2

Что такое топливо?

Это один компонент либо смесь веществ, которые способны к химическим превращениям, связанным с выделением тепла. Разные виды топлива отличаются количественным содержанием в них окислителя, который применяется для выделения тепловой энергии.

В широком смысле топливо является энергоносителем, то есть, потенциальным видов потенциальной энергии.

Классификация

В настоящее время виды топлива подразделяют по агрегатному состоянию на жидкое, твердое, газообразное.

К твердому природному виду причисляют каменный и дрова, антрацит. Брикеты, кокс, термоантрацит это разновидности искусственного твердого топлива.

К жидкостям причисляются вещества, имеющие в составе вещества органического происхождения. Основными их компонентами являются: кислород, углерод, азот, водород, сера. Искусственным жидким топливом будут разнообразные смолы, мазут.

Является смесью разнообразных газов: этилена, метана, пропана, бутана. Помимо них в составе газообразного топлива есть углекислый и угарный газы, сероводород, азот, водяной пар, кислород.

Показатели топлива

Основной показатель сгорания. Формула для определения теплотворной способности рассматривается в термохимии. выделяют «условного топлива», которое подразумевает теплоту сгорания 1 килограмма антрацита.

Бытовое печное топливо предназначается для сжигания в отопительных устройствах незначительной мощности, которые находятся в жилых помещениях, теплогенераторах, применяемых в сельском хозяйстве для сушки кормов, консервирования.

Удельная теплота сгорания топлива - это такая величина, что демонстрирует количество теплоты, которое образуется при полном сгорании топлива объемом 1 м 3 либо массой один килограмм.

Для измерения этой величины используют Дж/кг, Дж/м 3 , калория/м 3 . Чтобы определить теплоту сгорания, используют метода калориметрии.

При увеличении удельной теплоты сгорания топлива, снижается удельный расход топлива, а коэффициент полезного действия остается неизменной величиной.

Теплота сгорания веществ является количеством энергии, выделяющейся при окислении твердого, жидкого, газообразного вещества.

Она определяется химическим составом, а также агрегатным состоянием сгораемого вещества.

Особенности продуктов сгорания

Высшая и низшая теплота сгорания связана с агрегатным состоянием воды в получаемых после сгорания топлива веществах.

Высшая теплота сгорания это количество теплоты, выделяемое при полном сгорании вещества. В эту величину включают и теплоту конденсации водяного пара.

Низшая рабочая теплота сгорания является той величиной, что соответствует выделению тепла при сгорании без учета теплоты конденсации водяных паров.

Скрытой теплотой конденсации считают величину энергии конденсации водяного пара.

Математическая взаимосвязь

Высшая и низшая теплота сгорания связаны следующим соотношением:

Q B = Q H + k(W + 9H)

где W - количество по массе (в %) воды в горючем веществе;

H-количество водорода (% по массе) в горючем веществе;

k - коэффициент, составляющий величину 6 ккал/кг

Способы проведения вычислений

Высшая и низшая теплота сгорания определяется двумя основными методами: расчетным и экспериментальным.

Для проведения экспериментальных вычислений применяют калориметры. Сначала сжигают в нем навеску топлива. Теплота, которая будет при этом выделяться, полностью поглощается водой. Имея представление о массе воды, можно определить по изменению ее температуры, величину ее теплоты сгорания.

Данная методика считается простой и эффективной, она предполагает только владение информацией о данных технического анализа.

В расчетной методике высшая и низшая теплота сгорания вычисляется по формуле Менделеева.

Q p H = 339C p +1030H p -109(O p -S p) - 25 W p (кДж/ кг)

Оно учитывает содержание углерода, кислорода, водорода, водяного пара, серы в рабочем составе (в процентах). Количество теплоты при сгорании определяется с учетом условного топлива.

Теплота сгорания газа позволяет проводить предварительные расчеты, выявлять эффективность применения определенного вида топлива.

Особенности происхождения

Для того чтобы понять, сколько теплоты выделяется при сгорании определенного топлива, необходимо иметь представление об его происхождении.

В природе есть разные варианты твердого топлива, которые отличаются между собой составом и свойствами.

Его образование осуществляется через несколько стадий. Сначала образуется торф, затем получается бурый и каменный уголь, потом формируется антрацит. В качестве основных источников образования твердого топлива выступают листья, древесина, хвоя. Отмирая, части растений при воздействии воздуха, разрушаются грибками, образуют торф. Его скопление превращается в бурую массу, потом получается бурый газ.

При высоком давлении и температуре, бурый газ переходит в каменный уголь, потом топливо накапливается в виде антрацита.

Помимо органической массы, в топливе есть дополнительный балласт. Органической считают ту часть, что образовалась из органических веществ: водорода, углерода, азота, кислорода. Помимо этих химических элементов, в его составе есть балласта: влага, зола.

Топочная техника предполагает выделение рабочей, сухой, а также горючей массы сжигаемого топлива. Рабочей массой называют топливо в исходном виде, поступающем к потребителю. Сухая масса - это состав, в котором отсутствует вода.

Состав

Самыми ценными компонентами считаются углерод и водород.

Эти элементы содержатся в любом виде топлива. В торфе и древесине процентное содержание углерода достигает 58 процентов, в каменном и буром угле - 80%, а в антраците оно достигает 95 процентов по массе. В зависимости от этого показателя меняется количество теплоты, выделяемой при сгорании топлива. Водород это второй по важности элемент любого топлива. Связываясь с кислородом, он образует влагу, которая существенно снижает тепловую ценность любого топлива.

Его процентное содержание колеблется от 3,8 в горючих сланцах до 11 в мазуте. В качестве балласта выступает кислород, входящий в состав топлива.

Он не является теплообразующим химическим элементом, поэтому негативно отражается на величине теплоты его сгорания. Сгорание азота, содержащегося в свободном либо связанном виде в продуктах сгорания, считается вредными примесями, поэтому его количество четко лимитируется.

Сера входит в состав топлива в виде сульфатов, сульфидов, а также в качестве сернистых газов. При гидратации оксиды серы образуют серную кислоту, которая разрушает котельное оборудование, негативно воздействует на растительность и живые организмы.

Именно поэтому сера является тем химическим элементом, присутствие которого в природном топливе является крайне нежелательным. При попадании внутрь рабочего помещения, сернистые соединения вызывают существенные отравления обслуживающего персонала.

Выделяют три вида золы в зависимости от ее происхождения:

  • первичную;
  • вторичную;
  • третичную.

Первичный вид формируется из минеральных веществ, которые содержатся в растениях. Вторичная зола образуется как результат попадания во время пластообразования растительных остатков песком и землей.

Третичная зола оказывается в составе топлива в процессе добычи, хранения, а также его транспортировки. При существенном отложении золы происходит уменьшение теплопередачи на поверхности нагрева котельного агрегата, снижает величину теплопередачи к воде от газов. Огромное количество золы негативно отражается на процессе эксплуатации котла.

В заключение

Существенное влияние на процесс горения любого вида топлива оказывают летучие вещества. Чем больше их выход, тем объемнее будет объем фронта пламени. Например, каменный уголь, торф, легко загораются, процесс сопровождается незначительными потерями тепла. Кокс, который остается после удаления летучих примесей, в своем составе имеет только минеральные и углеродные соединения. В зависимости от особенностей топлива, величина количества теплоты существенно изменяется.

В зависимости от химического состава выделяют три стадии формирования твердого топлива: торфяную, буроугольную, каменноугольную.

Натуральную древесину применяют в небольших котельных установках. В основном используют щепу, опилки, горбыли, кору, сами дрова применяют в незначительных количествах. В зависимости от породы древесины величина выделяемой теплоты существенно изменяется.

По мере снижения теплоты сгорания, дрова приобретают определенные преимущества: быструю воспламеняемость, минимальную зольность, отсутствие следов серы.

Достоверная информация о составе природного либо синтетического топлива, его теплотворной способности, является отличным способом проведения термохимических вычислений.

В настоящее время появляется реальная возможность выявления тех основных вариантов твердого, газообразного, жидкого топлива, которые станут самыми эффективными и недорогими в использовании в определенной ситуации.

Теплота сгорания определяется химическим составом горючего вещества. Содержащиеся в горючем веществе химические элементы обозначаются принятыми символами С , Н , О , N , S , а зола и вода - символами А и W соответственно.

Энциклопедичный YouTube

  • 1 / 5

    Теплота сгорания может быть отнесена к рабочей массе горючего вещества Q P {\displaystyle Q^{P}} , то есть к горючему веществу в том виде, в каком оно поступает к потребителю; к сухой массе вещества Q C {\displaystyle Q^{C}} ; к горючей массе вещества Q Γ {\displaystyle Q^{\Gamma }} , то есть к горючему веществу, не содержащему влаги и золы.

    Различают высшую ( Q B {\displaystyle Q_{B}} ) и низшую ( Q H {\displaystyle Q_{H}} ) теплоту сгорания.

    Под высшей теплотой сгорания понимают то количество теплоты, которое выделяется при полном сгорании вещества, включая теплоту конденсации водяных паров при охлаждении продуктов сгорания.

    Низшая теплота сгорания соответствует тому количеству теплоты, которое выделяется при полном сгорании, без учёта теплоты конденсации водяного пара. Теплоту конденсации водяных паров также называют скрытой теплотой парообразования (конденсации) .

    Низшая и высшая теплота сгорания связаны соотношением: Q B = Q H + k (W + 9 H) {\displaystyle Q_{B}=Q_{H}+k(W+9H)} ,

    где k - коэффициент, равный 25 кДж/кг (6 ккал/кг); W - количество воды в горючем веществе, % (по массе); Н - количество водорода в горючем веществе, % (по массе).

    Расчёт теплоты сгорания

    Таким образом, высшая теплота сгорания - это количество теплоты, выделившейся при полном сгорании единицы массы или объема (для газа) горючего вещества и охлаждении продуктов сгорания до температуры точки росы. В теплотехнических расчетах высшая теплота сгорания принимается как 100 %. Скрытая теплота сгорания газа - это теплота, которая выделяется при конденсации водяных паров, содержащихся в продуктах сгорания. Теоретически она может достигать 11 %.

    На практике не удается охладить продукты сгорания до полной конденсации, и потому введено понятие низшей теплоты сгорания (QHp), которую получают, вычитая из высшей теплоты сгорания теплоту парообразования водяных паров как содержащихся в веществе, так и образовавшихся при его сжигании. На парообразование 1 кг водяных паров расходуется 2514 кДж/кг (600 ккал/кг). Низшая теплота сгорания определяется по формулам (кДж/кг или ккал/кг):

    Q H P = Q B P − 2514 ⋅ ((9 H P + W P) / 100) {\displaystyle Q_{H}^{P}=Q_{B}^{P}-2514\cdot ((9H^{P}+W^{P})/100)} (для твердого вещества)

    Q H P = Q B P − 600 ⋅ ((9 H P + W P) / 100) {\displaystyle Q_{H}^{P}=Q_{B}^{P}-600\cdot ((9H^{P}+W^{P})/100)} (для жидкого вещества), где:

    2514 - теплота парообразования при температуре 0 °C и атмосферном давлении, кДж/кг;

    H P {\displaystyle H^{P}} и W P {\displaystyle W^{P}} - содержание водорода и водяных паров в рабочем топливе, %;

    9 - коэффициент, показывающий, что при сгорании 1 кг водорода в соединении с кислородом образуется 9 кг воды.

    Теплота сгорания является наиболее важной характеристикой топлива, так как определяет количество тепла, получаемого при сжигании 1 кг твердого или жидкого топлива или 1 м³ газообразного топлива в кДж/кг (ккал/кг). 1 ккал = 4,1868 или 4,19 кДж.

    Низшая теплота сгорания определяется экспериментально для каждого вещества и является справочной величиной. Также её можно определить для твердых и жидких материалов, при известном элементарном составе, расчётным способом в соответствии с формулой Д. И. Менделеева, кДж/кг или ккал/кг:

    Q H P = 339 ⋅ C P + 1256 ⋅ H P − 109 ⋅ (O P − S L P) − 25.14 ⋅ (9 ⋅ H P + W P) {\displaystyle Q_{H}^{P}=339\cdot C^{P}+1256\cdot H^{P}-109\cdot (O^{P}-S_{L}^{P})-25.14\cdot (9\cdot H^{P}+W^{P})}

    Q H P = 81 ⋅ C P + 246 ⋅ H P − 26 ⋅ (O P + S L P) − 6 ⋅ W P {\displaystyle Q_{H}^{P}=81\cdot C^{P}+246\cdot H^{P}-26\cdot (O^{P}+S_{L}^{P})-6\cdot W^{P}} , где:

    C P {\displaystyle C_{P}} , H P {\displaystyle H_{P}} , O P {\displaystyle O_{P}} , S L P {\displaystyle S_{L}^{P}} , W P {\displaystyle W_{P}} - содержание в рабочей массе топлива углерода, водорода, кислорода, летучей серы и влаги в % (по массе).

    Для сравнительных расчётов используется так называемое Топливо условное , имеющее удельную теплоту сгорания, равную 29308 кДж/кг (7000 ккал/кг).

    В России тепловые расчёты (например, расчёт тепловой нагрузки для определения категории помещения по взрывопожарной и пожарной опасности ) обычно ведут по низшей теплоте сгорания, в США, Великобритании, Франции - по высшей. В Великобритании и США до внедрения метрической системы мер удельная теплота сгорания измерялась в британских тепловых единицах (BTU) на фунт (lb) (1Btu/lb = 2,326 кДж/кг).

    Вещества и материалы Низшая теплота сгорания Q H P {\displaystyle Q_{H}^{P}} , МДж/кг
    Бензин 41,87
    Керосин 43,54
    Бумага: книги, журналы 13,4
    Древесина (бруски W = 14%) 13,8
    Каучук натуральный 44,73
    Линолеум поливинилхлоридный 14,31
    Резина 33,52
    Волокно штапельное 13,8
    Полиэтилен 47,14
    Пенополистирол 41,6
    Хлопок разрыхленный 15,7
    Пластмасса 41,87

    В таблицах представлена массовая удельная теплота сгорания топлива (жидкого, твердого и газообразного) и некоторых других горючих материалов. Рассмотрено такое топливо, как: уголь, дрова, кокс, торф, керосин, нефть, спирт, бензин, природный газ и т. д.

    Перечень таблиц:

    При экзотермической реакции окисления топлива его химическая энергия переходит в тепловую с выделением определенного количества теплоты. Образующуюся тепловую энергию принято называть теплотой сгорания топлива. Она зависит от его химического состава, влажности и является основным . Теплота сгорания топлива, отнесенная на 1 кг массы или 1 м 3 объема образует массовую или объемную удельную теплоты сгорания.

    Удельной теплотой сгорания топлива называется количество теплоты, выделяемое при полном сгорании единицы массы или объема твердого, жидкого или газообразного топлива. В Международной системе единиц эта величина измеряется в Дж/кг или Дж/м 3 .

    Удельную теплоту сгорания топлива можно определить экспериментально или вычислить аналитически. Экспериментальные методы определения теплотворной способности основаны на практическом измерении количества теплоты, выделившейся при горении топлива, например в калориметре с термостатом и бомбой для сжигания. Для топлива с известным химическим составом удельную теплоту сгорания можно определить по формуле Менделеева .

    Различают высшую и низшую удельные теплоты сгорания. Высшая теплота сгорания равна максимальному количеству теплоты, выделяемому при полном сгорании топлива, с учетом тепла затраченного на испарение влаги, содержащейся в топливе. Низшая теплота сгорания меньше значения высшей на величину теплоты конденсации , который образуется из влаги топлива и водорода органической массы, превращающегося при горении в воду.

    Для определения показателей качества топлива, а также в теплотехнических расчетах обычно используют низшую удельную теплоту сгорания , которая является важнейшей тепловой и эксплуатационной характеристикой топлива и приведена в таблицах ниже.

    Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

    В таблице представлены значения удельной теплоты сгорания сухого твердого топлива в размерности МДж/кг. Топливо в таблице расположено по названию в алфавитном порядке.

    Наибольшей теплотворной способностью из рассмотренных твердых видов топлива обладает коксующийся уголь — его удельная теплота сгорания равна 36,3 МДж/кг (или в единицах СИ 36,3·10 6 Дж/кг). Кроме того высокая теплота сгорания свойственна каменному углю, антрациту, древесному углю и углю бурому.

    К топливам с низкой энергоэффективностью можно отнести древесину, дрова, порох, фрезторф, горючие сланцы. Например, удельная теплота сгорания дров составляет 8,4…12,5, а пороха — всего 3,8 МДж/кг.

    Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)
    Топливо
    Антрацит 26,8…34,8
    Древесные гранулы (пиллеты) 18,5
    Дрова сухие 8,4…11
    Дрова березовые сухие 12,5
    Кокс газовый 26,9
    Кокс доменный 30,4
    Полукокс 27,3
    Порох 3,8
    Сланец 4,6…9
    Сланцы горючие 5,9…15
    Твердое ракетное топливо 4,2…10,5
    Торф 16,3
    Торф волокнистый 21,8
    Торф фрезерный 8,1…10,5
    Торфяная крошка 10,8
    Уголь бурый 13…25
    Уголь бурый (брикеты) 20,2
    Уголь бурый (пыль) 25
    Уголь донецкий 19,7…24
    Уголь древесный 31,5…34,4
    Уголь каменный 27
    Уголь коксующийся 36,3
    Уголь кузнецкий 22,8…25,1
    Уголь челябинский 12,8
    Уголь экибастузский 16,7
    Фрезторф 8,1
    Шлак 27,5

    Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)

    Приведена таблица удельной теплоты сгорания жидкого топлива и некоторых других органических жидкостей. Следует отметить, что высоким тепловыделением при сгорании отличаются такие топлива, как: бензин, дизельное топливо и нефть.

    Удельная теплота сгорания спирта и ацетона существенно ниже традиционных моторных топлив. Кроме того, относительно низким значением теплоты сгорания обладает жидкое ракетное топливо и — при полном сгорании 1 кг этих углеводородов выделится количество теплоты, равное 9,2 и 13,3 МДж, соответственно.

    Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)
    Топливо Удельная теплота сгорания, МДж/кг
    Ацетон 31,4
    Бензин А-72 (ГОСТ 2084-67) 44,2
    Бензин авиационный Б-70 (ГОСТ 1012-72) 44,1
    Бензин АИ-93 (ГОСТ 2084-67) 43,6
    Бензол 40,6
    Дизельное топливо зимнее (ГОСТ 305-73) 43,6
    Дизельное топливо летнее (ГОСТ 305-73) 43,4
    Жидкое ракетное топливо (керосин + жидкий кислород) 9,2
    Керосин авиационный 42,9
    Керосин осветительный (ГОСТ 4753-68) 43,7
    Ксилол 43,2
    Мазут высокосернистый 39
    Мазут малосернистый 40,5
    Мазут низкосернистый 41,7
    Мазут сернистый 39,6
    Метиловый спирт (метанол) 21,1
    н-Бутиловый спирт 36,8
    Нефть 43,5…46
    Нефть метановая 21,5
    Толуол 40,9
    Уайт-спирит (ГОСТ 313452) 44
    Этиленгликоль 13,3
    Этиловый спирт (этанол) 30,6

    Удельная теплота сгорания газообразного топлива и горючих газов

    Представлена таблица удельной теплоты сгорания газообразного топлива и некоторых других горючих газов в размерности МДж/кг. Из рассмотренных газов наибольшей массовой удельной теплотой сгорания отличается . При полном сгорании одного килограмма этого газа выделится 119,83 МДж тепла. Также высокой теплотворной способностью обладает такое топливо, как природный газ — удельная теплота сгорания природного газа равна 41…49 МДж/кг (у чистого 50 МДж/кг).

    Удельная теплота сгорания газообразного топлива и горючих газов (водород, природный газ, метан)
    Топливо Удельная теплота сгорания, МДж/кг
    1-Бутен 45,3
    Аммиак 18,6
    Ацетилен 48,3
    Водород 119,83
    Водород, смесь с метаном (50% H 2 и 50% CH 4 по массе) 85
    Водород, смесь с метаном и оксидом углерода (33-33-33% по массе) 60
    Водород, смесь с оксидом углерода (50% H 2 50% CO 2 по массе) 65
    Газ доменных печей 3
    Газ коксовых печей 38,5
    Газ сжиженный углеводородный СУГ (пропан-бутан) 43,8
    Изобутан 45,6
    Метан 50
    н-Бутан 45,7
    н-Гексан 45,1
    н-Пентан 45,4
    Попутный газ 40,6…43
    Природный газ 41…49
    Пропадиен 46,3
    Пропан 46,3
    Пропилен 45,8
    Пропилен, смесь с водородом и окисью углерода (90%-9%-1% по массе) 52
    Этан 47,5
    Этилен 47,2

    Удельная теплота сгорания некоторых горючих материалов

    Приведена таблица удельной теплоты сгорания некоторых горючих материалов ( , древесина, бумага, пластик, солома, резина и т. д.). Следует отметить материалы с высоким тепловыделением при сгорании. К таким материалам можно отнести: каучук различных типов, пенополистирол (пенопласт), полипропилен и полиэтилен.

    Удельная теплота сгорания некоторых горючих материалов
    Топливо Удельная теплота сгорания, МДж/кг
    Бумага 17,6
    Дерматин 21,5
    Древесина (бруски влажностью 14 %) 13,8
    Древесина в штабелях 16,6
    Древесина дубовая 19,9
    Древесина еловая 20,3
    Древесина зеленая 6,3
    Древесина сосновая 20,9
    Капрон 31,1
    Карболитовые изделия 26,9
    Картон 16,5
    Каучук бутадиенстирольный СКС-30АР 43,9
    Каучук натуральный 44,8
    Каучук синтетический 40,2
    Каучук СКС 43,9
    Каучук хлоропреновый 28
    Линолеум поливинилхлоридный 14,3
    Линолеум поливинилхлоридный двухслойный 17,9
    Линолеум поливинилхлоридный на войлочной основе 16,6
    Линолеум поливинилхлоридный на теплой основе 17,6
    Линолеум поливинилхлоридный на тканевой основе 20,3
    Линолеум резиновый (релин) 27,2
    Парафин твердый 11,2
    Пенопласт ПХВ-1 19,5
    Пенопласт ФС-7 24,4
    Пенопласт ФФ 31,4
    Пенополистирол ПСБ-С 41,6
    Пенополиуретан 24,3
    Плита древесноволокнистая 20,9
    Поливинилхлорид (ПВХ) 20,7
    Поликарбонат 31
    Полипропилен 45,7
    Полистирол 39
    Полиэтилен высокого давления 47
    Полиэтилен низкого давления 46,7
    Резина 33,5
    Рубероид 29,5
    Сажа канальная 28,3
    Сено 16,7
    Солома 17
    Стекло органическое (оргстекло) 27,7
    Текстолит 20,9
    Толь 16
    Тротил 15
    Хлопок 17,5
    Целлюлоза 16,4
    Шерсть и шерстяные волокна 23,1

    Источники:

    1. ГОСТ 147-2013 Топливо твердое минеральное. Определение высшей теплоты сгорания и расчет низшей теплоты сгорания.
    2. ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания.
    3. ГОСТ 22667-82 Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе.
    4. ГОСТ 31369-2008 Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.
    5. Земский Г. Т. Огнеопасные свойства неорганических и органических материалов: справочник М.: ВНИИПО, 2016 — 970 с.

    Ежедневно включая горелку на кухонной плите, мало кто задумывается о том, насколько давно начали добывать газ. В нашей стране его разработка была начата в двадцатом веке. Перед этим же его просто находили при добывании нефтепродуктов. Теплотворная способность природного газа настолько велика, что сегодня это сырьё просто незаменимо, а его качественные аналоги ещё не разработаны.

    Таблица теплотворности поможет подобрать топливо для отопления дома

    Особенность горючего ископаемого

    Природный газ - это важное горючее ископаемое, которое занимает ведущие позиции в топливно-энергетических балансах многих государств. В целях снабжения топливом города и всевозможных технических предприятий потребляют различный горючий газ, поскольку природный считается опасным.

    Экологи считают, что газ - это чистейшее топливо, при сгорании он выпускает намного меньше ядовитых веществ, чем дрова, уголь, нефть. Это топливо ежедневно используется людьми и содержит в себе такую добавку, как одорант, её добавление происходит на оборудованных установках в соотношении 16 миллиграмм на 1 тысячу кубометров газа.

    Важной составляющей вещества является метан (примерно 88-96%), остальное - это прочие химические вещества:

    • бутан;
    • сероводород;
    • пропан;
    • азот;
    • кислород.

    В данном видео рассмотрим роль угля:

    Количество метана в природном топливе напрямую зависит от его месторождения.

    Описываемый вид топлива состоит из углеводородных и неуглеводородных компонентов. Природное горючее ископаемое - это прежде всего метан, включающий в себя бутан и пропан. Не считая углеводородные составляющие, в описываемом горючем ископаемом присутствуют азот, сера, гелий и аргон. А также встречаются жидкие пары, но лишь в газонефтяных месторождениях.

    Виды залежей

    Отмечается наличие несколько разновидностей залежей газа. Они подразделяются на такие виды:

    • газовые;
    • нефтяные.

    Их отличительной чертой является содержание углеводорода. В газовых залежах содержится примерно 85-90% представленного вещества, в нефтяных месторождениях содержится не больше 50%. Остальные проценты занимают такие вещества, как бутан, пропан и нефть.

    Огромным недостатком нефтяного зарождения считается его промывка от разного рода добавок. Сера в качестве примеси эксплуатируется на технических предприятиях.

    Потребление природного газа

    Бутан потребляется в качестве топлива на заправках для машин, а органическое вещество, именуемое «пропан», применяют для заправки зажигалок. Ацетилен является высокогорючим веществом и используется при сварке и при резке металла.

    Горючее ископаемое применяется в быту:

    • колонки;
    • газовая плита;

    Такого рода топливо считается самым бюджетным и невредным, единственным минусом является выброс углекислого газа при сжигании в атмосферу. Ученые всей планеты ищут замену тепловой энергии.

    Теплотворная способность

    Теплотворной способностью природного газа именуется величина тепла, образующаяся при достаточном выгорании единицы величины топлива. Количество теплоты, выделяемое при сгорании, относят к одному кубическому метру, взятому в естественных условиях.

    Тепловая способность природного газа измеряется в следующих показателях:

    • ккал/нм 3 ;
    • ккал/м 3 .

    Существует высокая и низкая теплотворная способность:

    1. Высокая. Рассматривает теплоту водяных паров, возникающих при сжигании топлива.
    2. Низкая. Не учитывает тепло, содержащееся в водных парах, так как такие пары не поддаются конденсации, а уходят с продуктами горения. Ввиду скопления водяных паров образует количество тепла, равное 540 ккал/кг. К тому же при остывании конденсата выходит тепло от 80 до ста ккал/кг. В общем, за счет скопления водяных паров образуется больше 600 ккал/кг, это и является отличительной чертой между высокой и низкой теплопроизводительностью.

    Для подавляющего большинства газов, потребляемых в городской системе распределения топлива, разность приравнивается к 10%. Для того чтобы обеспечить города газом, его теплотворность должна быть больше 3500 ккал/нм 3 . Объясняется это тем, что подача осуществляется по трубопроводу на большие расстояния. Если теплотворность мала, то его подача увеличивается.

    Если теплотворность природного газа меньше 3500 ккал/нм 3, его чаще применяют в промышленности. Его не нужно переправлять на длинные отрезки пути, и осуществить горение становится намного легче. Серьезные изменения теплотворной способности газа нуждаются в частой регулировке, а порой и замене большого количества стандартизированных горелок бытовых датчиков, что приводит к трудностям.

    Такая ситуация приводит к увеличению диаметров газопровода, а также увеличиваются затраты на металл, прокладывание сетей и эксплуатацию. Большим недостатком низкокалорийных горючих ископаемых является огромное содержание угарного газа, в связи с этим увеличивается уровень угрозы при эксплуатации топлива и при техобслуживании трубопровода, в свою очередь, как и оборудования.

    Выделяющееся тепло при горении, не превышающее 3500 ккал/нм 3 , чаще всего применяют в промышленном производстве, где не приходится перебрасывать его на большую протяженность и без труда образовывать сгорание.