Рассказ как я искал день. Стихотворения

Стандартная модель в физике элементарных частиц – теоретическая конструкция, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Гравитацию Стандартная модель не включает.
Стандартная модель состоит из следующих положений.
Частицами-переносчиками взаимодействий являются:

В отличие от электромагнитного и сильного, слабое взаимодействие может смешивать фермионы из разных поколений, что приводит к нестабильности всех частиц, за исключением легчайших, и к таким эффектам, как нарушение CP-осцилляции нейтрино.

До сих пор все предсказания Стандартной модели подтверждались экспериментом, иногда с фантастической точностью в миллионные доли процента. Только в последние годы стали появляться результаты, в которых предсказания Стандартной модели слегка расходятся с экспериментом. С другой стороны, очевидно, что Стандартная модель не может быть последним словом в физике элементарных частиц, ибо она содержит слишком много внешних параметров, а также не включает гравитацию. Поэтому поиск отклонений от Стандартной модели – одно из самых активных направлений исследования в последние годы. Ожидается, что эксперименты на коллайдере LHC смогут зарегистрировать множество отклонений от Стандартной модели.
Описывает маленькие объекты с высокой энергией [Источник?] Квантовая механика основана на положениях: вероятность – модуль амплитуды, принцип суперпозиции, интерференция. Специальная теория относительности: энергия = масса, образование и аннигиляция материи. Как результат получаем квантовую теорию поля.
Составляющие адронов – кварки: барионы содержат 3 кварки, мезоны – кварк и антикварк. 6 ароматов кварков объединены в 3 семейства (поколения), каждое из которых все массивнее. Кварки up-типа (Q = 2 / 3): u, c, t, и кварки down-типа (Q =- 1 / 3): d, s, b. По кварковой модели протон состоит из uud, нейтрон – из udd. В 50-х годах было открыто? + +, который имеет спин 3 / 2 и состоял из трех u-кварков. Это противоречит принципу Паули: поскольку кварки фермионы, то они не могут находиться в одном квантовом состоянии (с одинаковыми всеми квантовыми числами). Поэтому было добавлено еще одно квантовое число (еще одна степень свободы) – цвет, которое может принимать значения: зеленый (или желтый), синий и красный. Названия цветов выбрано для удобства с аналогией к оптике. Нельзя наблюдать это квантовое число в экспериментах, поскольку все наблюдаемые частицы являются бескрасочным: барионы состоят из трех кварков разных цветов – получаем белый цвет (как смешивание света), мезоны состоят из двух кварков, которые имеют противоположные цвета (например, красный и античервоний). Раздел физики, изучающий цветную взаимодействие, называется квантовая хромодинамика.
Базируется на теории групп.

В масштабах микромира фактически теряется разница между частицами вещества и частицами (квантами) поля, поэтому в соответствии с общепринятой в настоящее время стандартной моделью все известные на сегодняшний день элементарные частицы делятся на два больших класса: частицы - источники взаимодействий и частицы - переносчики взаимодействий (рис.8.1). Частицы первого класса, в свою очередь, подразделяются на две группы, отличающиеся тем, что частицы первой группы - адроны 1 - участвуют во всех четырех фундаментальных взаимодействиях, включая сильные, а частицы второй группы - лептоны - не участвуют в сильных взаимодействиях. К адронам относится очень много различных элементарных частиц, большинство из которых имеет своего «двойника» - античастицу . Как правило, это довольно массивные частицы, с малым временем жизни. Исключение составляют нуклоны, причем считается, что время жизни протона превышает возраст Вселенной. Лептонами являются шесть элементарных частиц: электрон е, мюон  и таон , а также связанные с ними три нейтрино  е,   и   . Кроме того, каждая из этих частиц также имеет своего «двойника» - соответствующую античастицу. Все лептоны настолько похожи друг на друга по некоторым, специфическим в масштабах микромира свойствам, что мюон и таон можно было бы назвать тяжелыми электронами, а нейтрино - электронами, «потерявшими» заряд и массу. В то же время, в отличие от электронов, мюоны и таоны являются радиоактивными, а все нейтрино чрезвычайно слабо взаимодействуют с веществом и поэтому настолько неуловимы, что, например, их поток проходит через Солнце, практически не ослабляясь. Отметим, что нейтрино в последнее время привлекают к себе огромный интерес, особенно в связи с проблемами космологии, так как считается, что в потоках нейтрино сосредоточена значительная часть массы Вселенной.

Что касается адронов, то сравнительно недавно, около 30 лет назад, физики нащупали еще один «этаж» в их строении. Рассматриваемая стандартная модель предполагает, что все адроны являются суперпозицией нескольких кварков и антикварков . Кварки различаются по свойствам, многие из которых не имеют аналогов в макромире. Различные кварки обозначаются буквами латинского алфавита: u («up»), d («down»), c («charm»), b («beauty»), s («strange»), t («truth»). Кроме того,

Рис.8.1. Стандартная модель элементарных частиц

каждый из перечисленных кварков может существовать в трех состояниях, которые называются «цветом» : «синем», «зеленом» и «красном». В последнее время стало общепринятым говорить еще и об «аромате» кварка - так называют все его параметры, не зависящие от «цвета». Конечно, все эти термины не имеют ничего общего с обычными значениями соответствующих слов. Этими вполне научными терминами обозначаются физические характеристики, которым как правило невозможно дать макроскопическую интерпретацию. Предполагается, что кварки имеют дробный электрический заряд (-е/3 и +2е/3, где е = 1,6  10 -19 Кл - заряд электрона) и взаимодействуют друг с другом с «силой», увеличивающейся с расстоянием. Поэтому кварки нельзя «разорвать», они не могут существовать отдельно друг от друга 1 . В определенном смысле кварки являются «настоящими», «истинными» элементарными частицами для адронной формы материи. Теория, описывающая поведение и свойства кварков, называется квантовой хромодинамикой .

Частицы - переносчики взаимодействий включают в себя восемь глюонов (от английского слова glue - клей), ответственных за сильные взаимодействия кварков и антикварков, фотон , осуществляющий электромагнитное взаимодействие, промежуточные бозоны , которыми обмениваются слабо-взаимодействующие частицы, и гравитон , принимающий участие в универсальном гравитационном взаимодействии между всеми частицами.

Стандартная модель физики элементарных частиц, или просто Стандартная модель, - теоретические рамки в физике, которые наиболее точно и удачно описывают текущее положение элементарных частиц, их значения и поведение. Стандартная модель не является и не претендует на звание «теории всего», поскольку не объясняет темную материю, темную энергию и не включает гравитацию. Постоянные подтверждения Стандартной модели, на зло альтернативной модели суперсимметрии, появляются на Большом адронном коллайдере. Впрочем, не все физики любят Стандартную модель и желают ей скорейшей кончины, ведь это может потенциально привести к развитию более общей теории всего, объяснению черных дыр и темной материи, объединению гравитации, квантовой механики и общей теории относительности.

Если физики элементарных частиц добьются своего, новые ускорители смогут в один прекрасный день тщательно исследовать самую любопытную субатомную частицу в физике - бозон Хиггса. Спустя шесть лет после открытия этой частицы на Большом адронном коллайдере, физики планируют новые огромные машины, которые будут растягиваться на десятки километров в Европе, Японии или Китае.

Не так давно ученые заговорили о новой космологической модели, известной как «хиггсогенез» (Higgsogenesis). Документ с описанием новой модели был опубликован в журнале Physical Review Lettres. Термин «хиггсогенез» относится к первому появлению частиц Хиггса в ранней Вселенной, так же как бариогенез относится к появлению барионов (протонов и нейтронов) в первые моменты после Большого Взрыва. И хотя бариогенез - достаточно хорошо изученный процесс, хиггсогенез остается сугубо гипотетическим.