Что такое электроны в химии. В

У этого термина существуют и другие значения, см. Электрон (значения). «Электрон 2» «Электрон» серия из четырёх советских искусственных спутников Земли, запущенных в 1964 году. Цель … Википедия

Электрон - (Новосибирск,Россия) Категория отеля: 3 звездочный отель Адрес: 2 ой Краснодонский Переулок … Каталог отелей

- (символ е, е), первая элем. ч ца, открытая в физике; матер. носитель наименьшей массы и наименьшего электрич. заряда в природе. Э. составная часть атомов; их число в нейтр. атоме равно ат. номеру, т. е. числу протонов в ядре. Заряд (е) и масса… … Физическая энциклопедия

Электрон - (Москва,Россия) Категория отеля: 2 звездочный отель Адрес: Проспект Андропова 38 строение 2 … Каталог отелей

Электрон - (e , e) (от греческого elektron янтарь; вещество, легко электризующееся при трении), стабильная элементарная частица с отрицательным электрическим зарядом e=1,6´10 19 Кл и массой 9´10 28 г. Относится к классу лептонов. Открыт английским физиком… … Иллюстрированный энциклопедический словарь

- (е е), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9.10 28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях.… …

- (обозначение е), устойчивая ЭЛЕМЕНТАРНАЯ ЧАСТИЦА с отрицательным зарядом и массой покоя 9,1310 31 кг (что составляет 1/1836 от массы ПРОТОНА). Электроны были обнаружены в 1879 г. английским физиком Джозефом Томсоном. Они движутся вокруг ЯДРА,… … Научно-технический энциклопедический словарь

Сущ., кол во синонимов: 12 дельта электрон (1) лептон (7) минерал (5627) … Словарь синонимов

Искусственный спутник Земли, созданный в СССР для изучения радиационных поясов и магнитного поля Земли. Запускались парами один по траектории, лежащей ниже, а другой выше радиационных поясов. В 1964 запущено 2 пары Электронов … Большой Энциклопедический словарь

ЭЛЕКТРОН, элктрона, муж. (греч. elektron янтарь). 1. Частица с наименьшим отрицательным электрическим зарядом, образующая в соединении с протоном атом (физ.). Движение электронов создает электрический ток. 2. только ед. Легкий магниевый сплав,… … Толковый словарь Ушакова

ЭЛЕКТРОН, а, м. (спец.). Элементарная частица с наименьшим отрицательным электрическим зарядом. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

Книги

  • Электрон. Энергия Космоса , Ландау Лев Давидович, Китайгородский Александр Исаакович. Книги лауреата Нобелевской премии Льва Ландау и Александра Китайгородского - тексты, переворачивающие обывательское представление об окружающем мире. Большинство из нас, постоянно сталкиваясь…
  • Электрон. Энергия космоса , Ландау Л., Китайгородский А.. Книги лауреата Нобелевской премии Льва Ландау и Александра Китайгородского тексты, переворачивающие обывательское представление об окружающем мире. Большинствоиз нас, постоянно сталкиваясь с…

Удельный заряд электрона (т. е. отношение ) был впервые измерен Томсоном в 1897 г. с помощью разрядной трубки, изображенной на рис. 74.1. Выходящий из отверстия в аноде А электронный пучок (катодные лучи; см. § 85) проходил между пластинами плоского конденсатора и попадал на флуоресцирующий экран, создавая на нем светящееся пятно.

Подавая напряжение на пластины конденсатора, можно было воздействовать на пучок практически однородным электрическим полем. Трубка помещалась между полюсами электромагнита, с помощью которого можно было создавать на том же участке пути электронов перпендикулярное к электрическому однородное магнитное поле (область этого поля обведена на рис. 74.1 пунктирной окружностью). При выключенных полях пучок попадал на экран в точке О. Каждое из полей в отдельности вызывало смещение пучка в вертикальном направлении. Величины смещений определяются полученными в предыдущем параграфе формулами (73.3) и (73.4).

Включив магнитное поле и измерив вызванное им смещение следа пучка

Томсон включал также электрическое поле и подбирал его значение так, чтобы пучок снова попадал в точку О. В этом случае электрическое и магнитное поля действовали на электроны пучка одновременно с одинаковыми по величине, но противоположно направленными силами. При этом выполнялось условие

Решая совместно уравнения (74.1) и (74.2), Томсон вычислял .

Буш применил для определения удельного заряда электронов метод магнитной фокусировки. Суть этого метода заключается в следующем. Допустим, что в однородном магнитном поле вылетает из некоторой точки слегка расходящийся симметричный относительно направления поля пучок электронов, имеющих одинаковую по величине скорость v. Направления, по которым вылетают электроны, образуют с направлением В небольшие углы а. В § 72 было выяснено, что электроны движутся в этом случае по спиральным траекториям, совершая за одинаковое время

полный оборот и смещаясь вдоль направления поля на расстояние , равное

Вследствие малости угла а расстояния (74.3) для разных электронов оказываются практически одинаковыми и равными (для малых углов ). Следовательно, слегка расходящийся пучок сфокусируется в точке, отстоящей от точки вылета электронов на расстояние

В опыте Буша электроны, испущенные раскаленным катодом К (рис. 74.2), ускоряются, проходя разность потенциалов U, приложенную между катодом К и анодом А. В результате они приобретают скорость и, значение которой может быть найдено из соотношения

Вылетев затем из отверстия в аноде, электроны образуют узкий пучок, направленный вдоль оси эвакуированной трубки, вставленной внутрь соленоида. На входе в соленоид помещается конденсатор, на который подается переменное напряжение. Поле, создаваемое конденсатором, отклоняет электроны пучка от оси прибора на небольшие изменяющиеся со временем углы а. Это приводит к «завихрению» пучка - электроны начинают двигаться по различным спиральным траекториям. На выходе из соленоида ставится флуоресцирующий экран. Если подобрать магнитную индукцию В так, чтобы расстояние Г от конденсатора до экрана удовлетворяло условию

(l - шаг спирали, - целое число), то точка пересечения траекторий электронов попадет на экран - электронный пучок окажется сфокусированным в этой точке и возбудит на экране резкое светящееся пятно. Если условие (74.6) не соблюдается, светящееся пятно на экране будет размытым. Решив совместно уравнения (74.4), (74.5) и (74.6), можно найти

Наиболее точное значение удельного заряда электрона, установленное с учетом результатов, полученных разными методами, равно

Величина (74.7) дает отношение заряда электрона к его массе покоя . В опытах Томсона, Буша и других аналогичных опытах определялось отношение заряда к релятивистской массе, равной

В опытах Томсона скорость электронов составляла примерно 0,1 с. При такой скорости релятивистская масса превышает массу покоя на 0,5%. В последующих опытах скорость электронов достигала очень больших значений. Во всех случаях было обнаружено уменьшение измеряемых значений с ростом v, происходившее в точном соответствии с формулой (74.8).

Заряд электрона был определен с большой точностью Милликеном в 1909 г. В закрытое пространство между горизонтально расположенными пластинами конденсатора (рис. 74.3) Милликен вводил мельчайшие капельки масла. При разбрызгивании капельки электризовались, и их можно было устанавливать неподвижно, подбирая величину и знак напряжения на конденсаторе.

Равновесие наступало при условии

здесь - заряд капельки, Р - результирующая силы тяжести и архимедовой силы, равная

(74.10)

( - плотность капельки, - ее радиус, - плотность воздуха).

Из формул (74.9) и (74.10), зная , можно было найти . Для определения радиуса измерялась скорость равномерного падения капельки в отсутствие поля. Равномерное движение капельки устанавливается при условии, что сила Р уравновешивается силой сопротивления (см. формулу (78.1) 1-го тома; - вязкость воздуха):

(74.11)

Движение капельки наблюдалось с помощью микроскопа. Для измерения определялось время, за которое капелька проходила расстояние между двумя нитями, видимыми в поле зрения микроскопа.

Точно зафиксировать равновесие капельки очень трудно. Поэтому вместо поля, отвечающего условию (74.9), включалось такое поле, под действием которого капелька начинала двигаться с небольшой скоростью вверх. Установившаяся скорость подъема определяется из условия, что сила Р и сила в сумме уравновешивают силу

Исключив из уравнения (74.10), (74.11) и (74.12) Р и , получим выражение для

(в эту формулу Милликен вносил поправку, учитывающую, что размеры капелек были сравнимы с длиной свободного пробега молекул воздуха).

Итак, измерив скорость свободного падения капельки и скорость ее подъема известном электрическом поле , можно было найти заряд капельки е. Произведя измерение скорости при некотором значении заряда , Милликен вызывал ионизацию воздуха облучая пространство между пластинами рентгеновскими лучами. Отдельные ионы, прилипая к капельке, изменяли ее заряд, в результате чего скорость также менялась. После измерения нового значения скорости снова облучалось пространство между пластинами и т. д.

Измеренные Милликеном изменения заряда капельки и сам заряд каждый раз получались целыми кратными одной и той же величины . Тем самым была экспериментально доказана дискретность электрического заряда, т. е. тот факт, что всякий заряд слагается из элементарных зарядов одинаковой величины.

Значение элементарного заряда, установленное с учетом измерений Милликена и данных, полученных другими методами, равно

Можно сравнить с облачком. Это связано с тем, что электроны обладают свойствами не только частиц, «кусочков» материи, но и свойствами . Электронные облачка слоями окружают ядро и расположены на строго определённых от него расстояниях. Учёные долго не могли объяснить, почему промежутки между ядром и электронами так строго определены и почему вообще каждый атом со всеми его электронными оболочками имеет всегда одни и те же размеры. Ответ на эту загадку тоже связан, как выяснилось, с волновыми свойствами электронов, с тем, что все части атома имеют свои постоянные места.

Но не думай, что электроны навечно закреплены на этих местах. Нет, они могут перескакивать с одной оболочки на другую. При этом происходят удивительные вещи.

Если электрон удаляется от ядра, его возрастает, если приближается- убывает. Это изменение энергии происходит не постепенно, а внезапно, скачком. Энергия прибавляется или убавляется совершенно определёнными порциями, которые называются квантами. Значит, перескакивая ближе к ядру, электрон выделяет один квант энергии, а чтобы уйти дальше от ядра, он должен, наоборот, получить откуда-то, «поглотить» один квант.

Что же это за кванты? Если ты уже читал рассказ « », то, вероятно, обратил внимание, что свет - это одновременно и волны, и частицы, которые носят название фотонов. Вот фотоны - это и есть кванты света, то есть наименьшие порции излучения.

Теперь тебе, должно быть, стало понятнее то, о чём коротко упомянуто в рассказе о свете, понятнее, как происходит излучение и поглощение света. Перескакивая ближе к ядру, электроны излучают свет. А когда вещество поглощает свет, они перескакивают на орбиты дальше от ядра. При этом электроны обогащаются энергией, и вещество нагревается. Чем энергичнее электроны движутся, тем чаще совершают скачки, тем выше температура тела. Вот почему, поглощая много света, вещество нагревается сильнее.

У каждого вещества своё расстояние между электронными оболочками и, значит, своя величина квантов, своя длина излучаемых световых волн, то есть свой цвет световых волн. И поэтому же каждое вещество лучше всего поглощает какие-то определённые лучи: одно - красные, другое - зелёные, а третье - невидимые ультрафиолетовые.

Электроны не только перескакивают с орбиты на орбиту, иногда они совсем отрываются от атома. Например, в металле все атомы отдают часть своих электронов «в общий котёл». Эти свободные электроны движутся между атомами, переносят и электрический ток.

Наконец, электроны порой вообще покидают своё вещество, тогда они могут лететь в пространстве с огромной скоростью. И тут опять проявляется сложная, противоречивая природа электрона.

Экран телевизора светится потому, что изнутри на него направлен электронный луч. Этот луч можно опускать и поднимать, сдвигать вправо или влево. Электроны при этом ведут себя как частицы, которые послушно летят точно туда, куда их посылают.

Такой же поток электронов будет двигаться совсем иначе, если его направить внутрь вещества. Пролетая между атомами или приближаясь к ним, этот поток может огибать препятствия, как волны на воде. Электрон, как всегда, непостоянен: то он похож на частицу, то на волну. Это зависит от размеров предметов, среди которых он движется. Телевизионная трубка относительно велика- там электрон - частица. Расстояние между атомами вещества несравнимо меньше - там электрон скорее волна.

Чтобы получить поток электронов, надо, например, нагреть вещество, как нагревают катод электронной лампы (об этом говорится в рассказах «Радио» и « »). Это значит, что надо затратить энергию. И от атома оторвать электрон часто совсем непросто, для этого нужна энергия - ведь электроны довольно прочно удерживаются в атоме.

Ты можешь спросить: а что держит их в атоме? Почему они не улетают прочь? Напомним: и электроны, и ядро имеют электрические заряды, и притом не одинаковые, а разные: ядро заряжено положительно, а электроны - отрицательно. Такие разноимённые, как их называют, заряды притягивают друг друга.

Электрон - это как бы единица отрицательного электричества, он имеет самый маленький из всех возможных отрицательных зарядов. Если ты прочтёшь рассказ « », увидишь, какую пользу приносит людям это свойство электрона, и узнаешь, как родилось его имя.

<-- -->
  • Ассоциативные примеры процесса эзоосмоса, передачи и распределения энергии и информации
  • Электрон
  • Формулы реакций, лежащие в основе управляемого термоядерного синтеза
  • Электрон


    Несмотря на то, что электрон является первой открытой элементарной частицей в физике (английским физиком Джозефом Томсоном в 1897 году), до сих пор природа электрона остаётся загадочной для учёных. Теория электрона считается не законченной, поскольку ей присущи внутренние логические противоречия и множество вопросов, на которые у официальной науки пока нет ответов.

    Название данной элементарной частицы было предложено в 1891 году ирландским физиком Джорджем Стоуни (George Stoney; 1826 – 1911) в качестве «фундаментальной единицы измерения электроэнергии». Слово «электрон» происходит от греческого слова «electron», что означает «янтарь». (Как известно, янтарь ‒ это затвердевшая ископаемая смола. При трении янтарь приобретает электрический заряд и притягивает лёгкие тела. Это свойство было известно с давних времён разным народам. Например, судя по сохранившимся сведениям, в Древней Греции о свойствах янтаря знали ещё в 600 году до н.э.). Учёные условились между собой считать электрический заряд электрона отрицательным в соответствии с более ранним соглашением называть отрицательным заряд наэлектризованного янтаря.

    Электрон является составной частью атома, одним из основных структурных элементов вещества. Электроны образуют электронные оболочки атомов всех известных на сегодняшний день химических элементов. Они участвуют почти во всех электрических явлениях, о которых ведают ныне учёные. Но что такое электричество на самом деле, официальная наука до сих пор не может объяснить, ограничиваясь общими фразами, что это, например, «совокупность явлений, обусловленных существованием, движением и взаимодействием заряженных тел или частиц носителей электрических зарядов». Известно, что электричество не является непрерывным потоком, а переносится порциями ‒ дискретно.

    Практически все основные сведения об электроне, которыми наука пользуется до сих пор, были получены на рубеже конца XIX ‒ начала XX веков. В том числе это касается и представления о волновой природе электрона (достаточно вспомнить работы Николы Тесла и его исследование вопроса о генерировании и беспроводной передаче энергии на расстояние). Однако согласно официальной истории физики, оно было выдвинуто в 1924 году французским физиком-теоретиком, одним из основоположников квантовой механики Луи де Бройлем (Louis de Broglie; 1892 – 1987; выходец из известной во Франции аристократической семьи). А экспериментально подтверждено в 1927 году американскими учёными Клинтоном Дэвиссоном (Clinton Davisson; 1881–1958) и Лестером Джермером (Lester Germer; 1896 –1971) в эксперименте по дифракции электронов. Слово «дифракция» образовано от латинского слова «diffractus», что буквально означает «переломанный, разломанный, огибание препятствия волнами». Дифракция ‒ это явление распространения волны, например, луча света, при прохождении сквозь узкое отверстие или при попадании на край препятствия. Представление о волновой природе электрона послужило основой для разработки волновой механики австрийским физиком-теоретиком, одним из создателей квантовой механики Эрвином Шрёдингером (Erwin Schrödinger; 1887–1961) в 1926 году. С тех пор официальная наука ненамного продвинулась в изучении природы электрона.

    В ДЕЙСТВИТЕЛЬНОСТИ ЭЛЕКТРОН состоит из 13 фантомных частичек По и имеет уникальное строение. Подробные знания об электроне здесь специально опущены, поскольку информация излагается публично и данные знания могут представлять опасность в случае, если они попадут в руки людей, желающих создать новый вид вооружения. Отметим лишь, что электрон имеет необычные свойства. То, что сегодня называют электричеством ‒ это на самом деле особое состояние септонного поля, в процессах которого электрон в большинстве случаев принимает участие наравне с другими его дополнительными «компонентами».

    Интересные сведения, свидетельствующие об уникальности электрона, были изложены в книге «АллатРа»:

    «Анастасия : А как Наблюдатель может внести изменения своим наблюдением?
    Ригден : Чтобы был понятен ответ на этот вопрос, давай совершим небольшой экскурс в квантовую физику. Чем больше учёные изучают вопросы, которые ставит эта наука, тем больше приходят к выводу, что всё в мире очень тесно взаимосвязано и существует не локально. Те же элементарные частицы существуют связанно между собой. Согласно теории квантовой физики, если одновременно спровоцировать образование двух частиц, то они не только будут находиться в состоянии «суперпозиции», то есть одновременно во множестве мест. Но ещё и изменение состояния одной частицы приведёт к мгновенному изменению состояния другой частицы, на каком бы расстоянии от неё она не находилась, даже если это расстояние превышает пределы действия всех известных современному человечеству сил в природе.
    Анастасия : А в чём секрет такой мгновенной взаимосвязи?
    Ригден : Сейчас объясню. Рассмотрим, например, электрон. Он состоит из информационных кирпичиков (или как их именовали древние - «зёрнышек По»), которые задают ему основные характеристики, в том числе и определяют его внутренний потенциал. По современным представлениям электрон двигается вокруг ядра атома как бы по «стационарной орбите» (орбитали). Точнее, его движение уже сейчас представляют не в виде материальной точки с заданной траекторией, а в виде электронного облака (условного изображения электрона, «размазанного» по всему объёму атома), имеющего области сгущения и разряжения электрического заряда. Электронное облако, как таковое, не имеет резких границ. Под орбитой (орбиталью) имеют в виду не движение электрона по какой-то конкретной линии, а некую часть пространства, область вокруг ядра атома, где сохраняется наибольшая вероятность местонахождения электрона в атоме (атомная орбиталь) или в молекуле (молекулярная орбиталь).


    Так вот, электрон, как известно, в материальном мире может существовать в двух состояниях одновременно: частицы и волны . Он может проявляться сразу в разных местах, согласно той же квантовой физике. Уходя или точнее исчезая со своей атомной орбиты, электрон мгновенно перемещается, то есть здесь исчезает, а на другой орбите проявляется.

    Но, что самое интересное в этом вопросе, так это то, о чём учёные пока ещё не знают. Рассмотрим, например, электрон атома водорода - элемента, который входит в состав воды, живых организмов, природных ископаемых и является одним из распространённых элементов в космосе. Электронное облако, расположенное вокруг ядра атома водорода, представляет собой форму шара. Это то, что может зафиксировать на современном этапе наука. Но учёные пока не знают, что электрон сам по себе закручен в спираль . Причём эта спираль (одна и та же) может быть закручена как в левую, так и правую сторону в зависимости от расположения на ней заряда. Вот именно благодаря такой спиралевидной форме и изменению места концентрации заряда этот электрон легко переходит из состояния частицы в волну и наоборот.

    Приведу образный пример. Представь, что в твоих руках апельсин. С помощью ножа ты аккуратно снимаешь с него кожуру цельно, по кругу, как бы по спирали, двигаясь от одной его вершины, скажем условно, от точки А к другой - точке Б. Если такую кожуру отделить от апельсина, то в привычном сложенном виде она будет представлять собой форму шара, повторяя контуры апельсина. А если её растянуть, то она будет похожа на волнообразную верёвку. Так вот, оранжевая сторона кожуры апельсина будет представлять собой в нашем образном примере спираль электрона, где на поверхности в районе точки А находится внешний заряд, а в районе точки Б изнутри (на белой стороне кожуры) - внутренний заряд. Любое внешнее изменение в точке А (на оранжевой стороне кожуры) приведёт к такому же мгновенному внутреннему, но противоположному по силе и воздействию, изменению в точке, расположенной на белой стороне кожуры под вершиной Б. Как только спадает внешний заряд электрона, то под воздействием внутреннего потенциала спираль растягивается и электрон переходит в состояние волны. Когда же снова появляется внешний заряд, который образуется вследствие взаимодействия волны с материей, спираль сжимается, и электрон опять переходит в состояние частички. В состоянии частички электрон имеет внешний отрицательный заряд и левостороннюю спираль, а в состоянии волны правостороннюю спираль и внешний положительный заряд. И всё это преобразование происходит благодаря эзоосмосу.

    Наблюдатель с позиции трёхмерного измерения может при создании определённых технических условий видеть электрон как частицу. Но Наблюдатель с позиции высших измерений, который будет видеть наш материальный мир в виде энергий, сможет наблюдать другую картину строения того же электрона. В частности, что информационные кирпичики, образующие этот электрон, будут проявлять исключительно свойства энергетической волны (растянутой спирали). Причём эта волна будет бесконечна в пространстве. Проще говоря, положение самого электрона в общей системе реальности таково, что он будет находиться везде в материальном мире.

    Анастасия : Можно сказать, что он будет существовать, вне зависимости от того, видим мы его как Наблюдатели трёхмерного мира или нет?

    Ригден : Да. Для того чтобы это понять, давай рассмотрим ещё один пример - с зеркалом. Допустим, несколько фундаментальных информационных кирпичиков образуют структуру, которая представляет собой локальную точку, некий объект. Поместим его посреди комнаты, в которой под определённым углом во множестве расставлены зеркала таким образом, что он отражается в каждом из них. Итак, объект находится посредине комнаты, отражается в каждом зеркале, к тому же мы видим его, следовательно, информация о нём есть и в нашем сознании. Одним словом, информация об этом объекте одновременно присутствует в нескольких местах. И если мы уберём одно из зеркал, то в том месте мы не будем наблюдать данный объект. Но когда вернём зеркало, он вновь появится. Значит в принципе, информация о нём не исчезала. Просто при определённых условиях проявления информации мы видим объект, изменились условия - мы его не видим. Однако объективно данный объект продолжает существовать в том месте в информационном плане. Отражение может иметь непрерывный поток, значит, этот объект есть в каждой точке данной комнаты (и, кстати, не только комнаты, но и пространства, выходящего за переделы комнаты), вне зависимости от того, видим мы его или нет.

    Согласно квантовой физике, пребывание электрона в состоянии частицы зависит от самого акта измерения или наблюдения. Другими словами неизмеряемый и ненаблюдаемый электрон ведёт себя не как частица, а как волна. В этом случае для него существует целое поле вероятностей, так как он находится здесь и сейчас во множестве мест одновременно, то есть в состоянии суперпозиции. При этом, несмотря на то, что электрон занимает множественное положение, это будет один и тот же электрон и одна и та же волна. Суперпозиция - это возможность одновременного нахождения во всех возможных альтернативных состояниях, пока не сделан выбор, пока Наблюдатель не совершил измерение (вычисление данного объекта). Как только Наблюдатель фокусирует внимание на поведении электрона, как он, в смысле электрон, сразу же схлопывается в частицу, то есть превращается из волны в материальный объект, положение которого можно локализовать. Словом, после измерения, так сказать, выбора Наблюдателя, один объект будет находиться только в одном месте.

    Анастасия : О, это интересная информация! Выводы квантовой физики, оказывается, ценны для тех, кто занимается самосовершенствованием. Это в некотором роде объясняет причину, почему у человека не получается медитация. Ведь что способствует, так сказать, «материализации» процесса медитации, то есть перехода из волнового в материальное состояние, в котором энергия вновь приобретает свойства материи? Именно наблюдение и контроль от Животного начала. Другими словами, не получается медитация тогда, когда включаются мыслительные процессы, свойственные привычному, ежедневному состоянию сознания. При этом мозг всё время пытается что-то идентифицировать и локализовать объект наблюдения. Такая ситуация развивается тогда, когда во время медитации Личность недостаточно погружается в изменённое состояние сознания или же утрачивает контроль за этим состоянием. Это позволяет Животному началу вмешаться в процесс наблюдения, вследствие чего рождаются ассоциативные образы и утрачивается Истина. Волна переходит в материю. Но как только ты «отключаешь мозг» с его мыслительными процессами и полноценно включаешься в медитацию, благодаря проявлению своих глубоких чувств, то происходит расширение сознания и наблюдаемая от Духовного начала материя превращается в волну. Ты сливаешься с настоящей реальностью мира, становишься единым целым с ним, одновременно ощущаешь всё его разнообразие, словно тебя много и ты везде. Тогда и происходит настоящая медитация, как процесс познания Истины.

    Ригден : Совершенно верно. Мир Животного начала - это мир главенствования материи и её законов. Мир Бога - это мир совершенных энергий. Когда ты находишься в медитации, в изменённом состоянии сознания, то становишься частью процесса, частью божественного проявления здесь. Как только в тебе включается Наблюдатель от Животного начала, то тебе кажется, что устанавливается факт твоего контроля над материей. На самом деле устанавливается факт контроля над тобой со стороны материи (Животного Разума). В результате ты становишься всего лишь более проявленным материальным объектом, по сути, превращаешься в корпускулярный объект общей материи (корпускула, от латинского corpusculum - «тельце», «мельчайшая частица материи») и подчиняешься её законам. Если ты переключаешься в состояние волны, ты становишься частью божественного проявления в этом мире, то есть Наблюдателем от Духовного начала. Почему и говорится: чего в тебе больше, тем ты и будешь.

    В состоянии медитации исчезает обычное восприятие. У опытного медитирующего, в частности, если рассмотреть его состояние в духовной практике «Цветок лотоса», действительно сознание значительно расширяется, выходит за границы привычного мира. Человек ощущает, что он одновременно находится везде. Можно сказать, что суперпозиция в квантовой физике, приобретение состояния волны, это всё равно, что в медитации приобретение состояния выхода в высшие измерения, где материя уже отсутствует. Суперпозиция в состоянии медитации, это когда ты «видишь», в смысле ощущаешь глубинными чувствами, весь мир и его разнообразные проявления. Но как только Наблюдатель концентрируется на каком-то объекте, его сознание сужается и ограничивается объектом наблюдения. То есть, как только ты делаешь выбор и сосредотачиваешься на конкретных деталях, волна преобразуется в материю. Ведь когда ты концентрируешься на деталях, то объёмное восприятие исчезает, и остаются только детали. Мысли от Животного начала - это своеобразный инструмент, сила для материализации объектов, а чувства от Духовного начала - это сила для расширения сознания, выхода в высшие измерения.

    Анастасия : Да, насколько сложен этот мир и как очевидны в нём могут быть простые вещи.

    Ригден : Так вот, касательно квантовой физики… С одной стороны, это понятие о Наблюдателе расширило границы познания учёных, с другой - завело в тупик. Ведь позиция Супернаблюдателя доказывает, что существует некая огромная сила, которая способна оказывать влияние извне на Вселенную, на все её объекты и все процессы, происходящие в ней.

    Анастасия : Фактически это ещё один путь научного доказательства существования Бога?

    Ригден : Да. Человек имеет Душу, как частицу божественной силы. Чем больше он преобразовывает свой внутренний мир, чем больше его Личность сливается с Душой, раскрываясь перед Богом, тем он становится духовно сильнее и получает возможность влияния на материальный мир из высших измерений. А чем больше таких людей, тем значительнее и масштабнее это влияние. Супернаблюдатель - это Бог, который может влиять на всё. А человек, как Наблюдатель от Духовного начала, - это Наблюдатель, который может вмешиваться в процессы мира и менять их на микроуровне. Людям, конечно, доступны определённые манипуляции с материей и с позиции Наблюдателя от Животного начала. Но человек получает настоящую силу влияния только тогда, когда включается его Наблюдатель от Духовного начала».

    Электрон - фундаментальная частица, одна из тех, что являются структурными единицами вещества. По классификации является фермионом (частица с полуцелым спином, названа в честь физика Э. Ферми) и лептоном (частицы с полуцелым спином, не участвующие в сильном взаимодействии, одном из четырех основных в физике). Барионное равно нулю, как и других лептонов.

    До недавнего времени считалось, что электрон - элементарная, то есть неделимая, не имеющая структуры частица, однако сейчас ученые другого мнения. Из чего состоит электрон по представлению современных физиков?

    История названия

    Еще в Древней Греции естествоиспытатели заметили, что янтарь, предварительно натертый шерстью, притягивает к себе мелкие предметы, то есть проявляет электромагнитные свойства. Свое название электрон получил от греческого ἤλεκτρον, что и означает "янтарь". Термин предложил Дж. Стоуни в 1894 году, хотя сама частица была открыта Дж. Томпсоном в 1897 году. Обнаружить ее было сложно, причиной этому служит малая масса, и заряд электрона стал в опыте по нахождению решающим. Первые снимки частицы получил Чарльз Вильсон с помощью специальной камеры, которая применяется даже в современных экспериментах и названа в его честь.

    Интересен факт, что одной из предпосылок к открытию электрона является высказывание Бенджамина Франклина. В 1749 году он разработал гипотезу, согласно которой, электричество - это материальная субстанция. Именно в его работах были впервые применены такие термины, как положительный и отрицательный заряды, конденсатор, разряд, батарея и частица электричества. Удельный заряд электрона принято считать отрицательным, а протона - положительным.

    Открытие электрона

    В 1846 году понятие «атом электричества» стал использовать в своих работах немецкий физик Вильгельм Вебер. Майкл Фарадей открыл термин «ион», который сейчас, пожалуй, знают все еще со школьной скамьи. Вопросом природы электричества занимались многие именитые ученые, такие как немецкий физик и математик Юлиус Плюккер, Жан Перрен, английский физик Уильям Крукс, Эрнст Резерфорд и другие.

    Таким образом, прежде чем Джозеф Томпсон успешно завершил свой знаменитый опыт и доказал существование частицы меньшей, чем атом, в этой сфере трудилось множество ученых, и открытие было бы невозможно, не проделай они этой колоссальной работы.

    В 1906 году Джозеф Томпсон получил Нобелевскую премию. Опыт заключался в следующем: сквозь параллельные металлические пластины, создававшие электрическое поле, пропускались пучки катодных лучей. Затем они должны были проделать такой же путь, но уже через систему катушек, создававших магнитное поле. Томпсон обнаружил, что при действии электрического поля лучи отклонялись, и то же самое наблюдалось при магнитном воздействии, однако пучки катодных лучей не меняли траектории, если на них действовали оба этих поля в определенных соотношениях, которые зависели от скорости частиц.

    После расчетов Томпсон узнал, что скорость этих частиц существенно ниже скорости света, а это значило, что они обладают массой. С этого момента физики стали считать, что открытые частицы материи входят в состав атома, что впоследствии и подтвердилось Он назвал ее «планетарная модель атома».

    Парадоксы квантового мира

    Вопрос о том, из чего состоит электрон, достаточно сложен, по крайней мере, на данном этапе развития науки. Прежде чем рассматривать его, нужно обратиться к одному из парадоксов квантовой физики, которые даже сами ученые не могут объяснить. Это знаменитый эксперимент с двумя щелями, объясняющий двойственную природу электрона.

    Его суть в том, что перед «пушкой», стреляющей частицами, установлена рамка с вертикальным прямоугольным отверстием. Позади нее находится стена, на которой и будут наблюдаться следы от попаданий. Итак, для начала нужно разобраться, как ведет себя материя. Проще всего представить, как запускаются машиной теннисные мячики. Часть шариков попадает в отверстие, и следы от попаданий на стене складываются в одну вертикальную полосу. Если на некотором расстоянии добавить еще одно такое же отверстие, следы будут образовывать, соответственно, две полосы.

    Волны же в такой ситуации ведут себя по-другому. Если на стене будут отображаться следы от столкновения с волной, то в случае с одним отверстием полоса тоже будет одна. Однако все меняется в случае с двумя щелями. Волна, проходя через отверстия, делится пополам. Если вершина одной из волн встречается с нижней частью другой, они гасят друг друга, и на стене появится интерференционная картина (несколько вертикальных полос). Места на пересечении волн оставят след, а места, где произошло взаимное гашение, нет.

    Удивительное открытие

    С помощью вышеописанного эксперимента ученые могут наглядно продемонстрировать миру различие между квантовой и классической физикой. Когда они стали обстреливать стену электронами, на ней проявлялся обычный вертикальный след: некоторые частицы, точно так же как теннисные мячики, попадали в щель, а некоторые нет. Но все изменилось, когда возникло второе отверстие. На стене проявилась Сначала физики решили, что электроны интерферируют между собой, и решили пускать их по одному. Однако уже спустя пару часов (скорость движущихся электронов все же гораздо ниже скорости света) снова стала проявляться интерференционная картина.

    Неожиданный поворот

    Электрон, вместе с некоторыми другими частицами, такими как фотоны, проявляет корпускулярно-волновой дуализм (также применяется термин "квантово-волновой дуализм"). Подобно одновременно и жив, и мертв, состояние электрона может быть как корпускулярным, так и волновым.

    Однако следующий шаг в этом эксперименте породил еще больше загадок: фундаментальная частица, о которой, казалось, известно все, преподнесла невероятный сюрприз. Физики решили установить у отверстий наблюдательное устройство, чтобы зафиксировать, через какую именно щель проходят частицы, и каким образом они проявляют себя в качестве волны. Но как только было поставлен наблюдательный механизм, на стене появились только две полосы, соответствующие двум отверстиям, и никакой интерференционной картины! Как только «слежку» убирали, частица вновь начинала проявлять волновые свойства, будто знала, что за ней уже никто не наблюдает.

    Еще одна теория

    Физик Борн предположил, что частица не превращается в волну в прямом смысле слова. Электрон «содержит» в себе волну вероятности, именно она дает интерференционную картину. Эти частицы обладают свойством суперпозиции, то есть могут находиться в любом месте с определенной долей вероятности, поэтому их и может сопровождать подобная «волна».

    Тем не менее результат налицо: сам факт наличия наблюдателя влияет на результат эксперимента. Кажется невероятным, но это не единственный пример подобного рода. Физики проводили опыты и на более крупных частях материи, однажды объектом стал тончайший отрез алюминиевой фольги. Ученые отметили, что один только факт некоторых измерений влиял на температуру предмета. Природу подобных явлений они объяснить пока еще не в силах.

    Структура

    Но из чего состоит электрон? На данный момент современная наука не может дать ответ на этот вопрос. До недавнего времени он считался неделимой фундаментальной частицей, сейчас же ученые склоняются к тому, что он состоит из еще более мелких структур.

    Удельный заряд электрона также считался элементарным, но теперь открыты кварки, имеющие дробный заряд. Существует несколько теорий относительно того, из чего состоит электрон.

    Сегодня можно увидеть статьи, в которых заявляется, что ученым удалось разделить электрон. Однако это верно лишь отчасти.

    Новые эксперименты

    Советские ученые еще в восьмидесятых годах прошлого века предположили, что электрон возможно будет разделить на три квазичастицы. В 1996 году удалось разделить его на спинон и холон, а недавно физиком Ван ден Бринком и его командой частица была разделена на спинон и орбитон. Однако расщепления удается добиться только в специальных условиях. Эксперимент может проводиться в условиях крайне низких температур.

    Когда электроны «остывают» до абсолютного нуля, а это около -275 градусов по Цельсию, они практически останавливаются и образуют между собой нечто вроде материи, будто сливаясь в одну частицу. В таких условиях физикам и удается наблюдать квазичастицы, из которых «состоит» электрон.

    Переносчики информации

    Радиус электрона очень мал, он равен 2,81794 . 10 -13 см, однако выходит, что его составляющие имеют намного меньший размер. Каждая из трех частей, на которые удалось «разделить» электрон, несет в себе информацию о нем. Орбитон, как следует из названия, содержит данные об орбитальной волне частицы. Спинон отвечает за спин электрона, а холон сообщает нам о заряде. Таким образом, физики могут наблюдать отдельно различные состояния электронов в сильно охлажденном веществе. Им удалось проследить пары «холон-спинон» и «спинон-орбитон», но не всю тройку вместе.

    Новые технологии

    Физикам, открывшим электрон, пришлось ждать несколько десятков лет до тех пор, пока их открытие было применено на практике. В наше время технологии находят использование уже через несколько лет, достаточно вспомнить графен - удивительный материал, состоящий из атомов углерода в один слой. Чем будет полезно расщепление электрона? Ученые предрекают создание скорость которого, по их мнению, в несколько десятков раз больше, чем у самых мощных современных ЭВМ.

    В чем тайна квантовой компьютерной технологии? Это можно назвать простой оптимизацией. В привычном компьютере минимальная, неделимая часть информации - это бит. И если мы считаем данные чем-то визуальным, то для машины варианта только два. Бит может содержать либо ноль, либо единицу, то есть части двоичного кода.

    Новый метод

    Теперь давайте представим, что в бите содержится и ноль, и единица - это «квантовый бит», или «кьюбит». Роль простых переменных будет играть спин электрона (он может вращаться либо по часовой стрелке, либо против). В отличие от простого бита, кьюбит может выполнять одновременно несколько функций, за счет этого и будет происходить увеличение скорости работы, малая масса и заряд электрона здесь не имеют значения.

    Объяснить это можно на примере с лабиринтом. Чтобы выбраться из него, нужно перепробовать множество различных вариантов, из которых правильным будет только один. Традиционный компьютер пусть и решает задачи быстро, но все же в один момент времени может работать только над одной-единственной проблемой. Он переберет по одному все варианты путей, и в итоге обнаружит выход. Квантовый же компьютер, благодаря двойственности кьюбита, может решать множество задач одновременно. Он пересмотрит все возможные варианты не по очереди, а в единый момент времени, и тоже решит задачу. Трудность пока состоит только в том, чтобы заставить множество квантов работать над одной задачей - это и будет основой компьютера нового поколения.

    Применение

    Большинство людей пользуется компьютером на бытовом уровне. С этим пока отлично справляются и обычные ПК, однако чтобы прогнозировать события, зависящие от тысяч, а может и сотен тысяч переменных, машина должна быть просто огромна. же легко справится с такими вещами, как прогнозирование погоды на месяц, обработка данных по стихийным бедствиям и их предсказание, а также будет совершать сложнейшие математические вычисления со многими переменными за долю секунды, и все это с процессором величиной в несколько атомов. Так что возможно, уже очень скоро наши самые мощные компьютеры будут толщиной с лист бумаги.

    Сохранение здоровья

    Квантовые компьютерные технологии внесут огромный вклад в медицину. Человечество получит возможность создавать наномеханизмы с мощнейшим потенциалом, с их помощью можно будет не только диагностировать болезни, просто посмотрев на весь организм изнутри, но и оказывать медицинскую помощь без хирургического вмешательства: мельчайшие роботы с «мозгами» отличного компьютера смогут выполнять все операции.

    Неизбежна революция и в сфере компьютерных игр. Мощные машины, способные мгновенно решать задачи, смогут воспроизводить игры с невероятно реалистичной графикой, не за горами уже и компьютерные миры с полным погружением.