Увеличение по экспоненте. Экспоненциальный рост и отношения хищник—жертва

Экспоненциальный рост


Если прирост численности популяции пропорционален количеству особей, численность популяции будет расти экспоненциально.

Выражение «экспоненциальный рост» вошло в наш лексикон для обозначения быстрого, как правило безудержного увеличения. Оно часто используется, например, при описании стремительного роста числа городов или увеличения численности населения. Однако в математике этот термин имеет точный смысл и обозначает определенный вид роста.

Экспоненциальный рост имеет место в тех популяциях, в которых прирост численности (число рождений минус число смертей) пропорционален числу особей популяции. Для популяции человека, например, коэффициент рождаемости примерно пропорционален количеству репродуктивных пар, а коэффициент смертности примерно пропорционален количеству людей в популяции (обозначим его ) . Тогда, в разумном приближении,

прирост населения = число рождений - число смертей


или
(Здесь - так называемый коэффициент пропорциональности, который позволяет нам записать выражение пропорциональности в виде уравнения.)

Пусть - число особей, добавившихся к популяции за время , тогда если в популяции в общей сложности особей, то условия для экспоненциального роста будут удовлетворены, если


После того как в XVII веке Исаак Ньютон изобрел дифференциальное исчисление, мы знаем, как решать это уравнение для - численности популяции в любое заданное время. (Для справки: такое уравнение называется дифференциальным.) Вот его решение:
где - число особей в популяции на начало отсчета, а - время, прошедшее с этого момента. Символ обозначает такое специальное число, оно называется основание натурального логарифма (и приблизительно равно 2,7), и вся правая часть уравнения называется экспоненциальная функция.

Чтобы лучше понять, что такое экспоненциальный рост, представьте себе популяцию, состоящую изначально из одной бактерии. Через определенное время (через несколько часов или минут) бактерия делится надвое, тем самым удваивая размер популяции. Через следующий промежуток времени каждая из этих двух бактерий снова разделится надвое, и размер популяции вновь удвоится - теперь будет уже четыре бактерии. После десяти таких удвоений будет уже более тысячи бактерий, после двадцати - более миллиона, и так далее. Если с каждым делением популяция будет удваиваться, ее рост будет продолжаться до бесконечности.

Существует легенда (скорее всего, не соответствующая действительности), будто бы человек, который изобрел шахматы, доставил этим такое удовольствие своему султану, что тот пообещал исполнить любую его просьбу. Человек попросил, чтобы султан положил на первую клетку шахматной доски одно зерно пшеницы, на вторую - два, на третью - четыре и так далее. Султан, посчитав это требование ничтожным по сравнению с оказанной им услугой, попросил своего поданного придумать другую просьбу, но тот отказался. Естественно, к 64-му удвоению число зерен стало таким, что во всем мире не нашлось бы нужного количества пшеницы, чтобы удовлетворить эту просьбу. В той версии легенды, которая известна мне, султан в этот момент приказал отрубить голову изобретателю. Мораль, как я говорю моим студентам, такова: иногда не следует быть чересчур умным!

Пример с шахматной доской (как и с воображаемыми бактериями) показывает нам, что никакая популяция не может расти вечно. Рано или поздно она попросту исчерпает ресурсы - пространство, энергию, воду, что угодно. Поэтому популяции могут расти по экспоненциальному закону лишь некоторое время, и рано или поздно их рост должен замедлиться. Для этого нужно изменить уравнение так, чтобы при приближении численности популяции к максимально возможной (которая может поддерживаться внешней средой) скорость роста замедлялась. Назовем эту максимальную численность популяции . Тогда видоизмененное уравнение будет выглядеть так:


Когда намного меньше , членом можно пренебречь, и мы возвращаемся к первоначальному уравнению обычного экспоненциального роста. Однако когда приближается к своему максимальному значению , значение стремится к нулю, соответственно стремится к нулю и прирост численности популяции. Общая численность популяции в этом случае стабилизируется и остается на уровне . Кривая, описываемая этим уравнением, а также само уравнение, имеют несколько названий - S-кривая , логистическое уравнение, уравнение Вольтерры, уравнение Лотки-Вольтерры. (Вито Вольтерра, 1860–1940 - выдающийся итальянский математик и преподаватель; Альфред Лотка, 1880–1949 - американский математик и страховой аналитик.) Как бы она ни называлась, это - достаточно простое выражение численности популяции, резко возрастающей экспоненциально, а затем замедляющейся при приближении к некоему пределу. И она гораздо лучше отражает рост численности реальных популяций, чем обычная экспоненциальная функция.

Отношения хищник-жертва


Отношения между хищниками и их жертвами развиваются циклически, являясь иллюстрацией нейтрального равновесия.

Иногда простая математическая модель хорошо описывает сложную биологическую систему. Примером этого служат долговременные отношения между видами хищника и жертвы в какой-либо экосистеме. Математические расчеты роста популяции отдельно взятого вида (см. выше) показывают, что пределы плотности популяции можно описать простыми уравнениями, которые на выходе дают характерную S-образную кривую. Это - кривая численности популяции, которая растет экспоненциально, пока она небольшая, а затем выравнивается, когда она достигает пределов возможности экосистемы поддерживать ее. Простое продолжение этой концепции позволяет нам понять экосистему, в которой взаимодействуют два вида - хищник и жертва.

Итак, если число растительноядных жертв , а число плотоядных хищников , то вероятность, что хищник встретится с травоядным, пропорциональна произведению . Другими словами, чем выше численность одного из видов, тем выше вероятность таких встреч. В отсутствие хищников популяция жертвы будет расти экспоненциально (по крайне мере вначале), а в отсутствие жертв популяция хищника сократится до нуля - либо из-за голода, либо в результате миграции. Теперь, если - изменение популяции растительноядных за время , а изменение популяции плотоядных за тот же интервал времени, то две популяции описываются уравнениями:


Здесь - скорость роста численности травоядных в отсутствие хищников, а - скорость сокращения численности плотоядных в отсутствие травоядных. Постоянные и - скорость, с которой встречи хищников с жертвами удаляют травоядных из популяции, и скорость, с которой эти встречи позволяют хищникам прибавлять численность своей популяции. Знак минус в первом уравнении показывает, что встречи сокращают популяцию жертвы, а знак плюс во втором говорит о том, что встречи увеличивают популяцию хищника. Как видите, любое изменение численности травоядных влияет на численность плотоядных, и наоборот. Две популяции необходимо рассматривать вместе.

Решение этих уравнений показывает, что обе популяции развиваются циклически. Если популяция травоядных увеличивается, вероятность встреч хищник-жертва возрастает, и, соответственно (после некоторой временной задержки), растет популяция хищников. Но рост популяции хищников приводит к сокращению популяции травоядных (также после некоторой задержки), что ведет к снижению численности потомства хищников, а это повышает число травоядных и так далее. Эти две популяции как бы танцуют вальс во времени - когда изменяется одна из них, за ней следом изменяется и другая.

Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».
Джеймс Трефил - профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.

Люди не слишком хорошие предсказатели будущего. На протяжении большей части истории наш опыт был «локальным и линейным»: мы использовали одни и те же инструменты, ели одни и те же блюда, жили в определенном месте. В результате наши способности к прогнозированию основаны на интуиции и прошлом опыте. Это похоже на лестницу: сделав несколько шагов вверх, мы понимаем, каким будет оставшийся путь по этой лестнице. Проживая жизнь, мы ожидаем, что каждый новый день будет похож на предыдущий. Однако сейчас все меняется.

Известный американский изобретатель и футуролог Рэймонд Курцвейл в своей книге «Сингулярность уже близко» (The Singularity Is Near) пишет, что скачок развития технологий, который мы наблюдаем последние десятилетия, вызвал ускорение прогресса во множестве разных областей. Это привело к неожиданным технологическим и социальным изменениям, происходящим не только между поколениями, но и внутри них. Теперь интуитивный подход в предсказании будущего не работает. Будущее разворачивается уже не линейно, а экспоненциально: все сложнее предсказать, что будет дальше и когда это случится. Темпы технического прогресса постоянно удивляют нас, и чтобы за ними успевать и научиться предсказывать будущее, нужно сначала научиться мыслить экспоненциально.

Что такое экспоненциальный рост?

В отличие от линейного роста, который является результатом многократно добавления постоянной, экспоненциальный рост - это многократное умножение. Если линейный рост - это стабильная во времени прямая линия, то линия экспоненциального роста похожа на взлет. Чем большее значение принимает величина, тем быстрее она растет дальше.

Представьте, что вы идете по дороге, и каждый ваш шаг получается метр в длину. Вы делаете шесть шагов, и теперь вы продвинулись на шесть метров. После того, как вы сделаете еще 24 шага, вы окажетесь в 30 метрах от того места, где вы начали. Это линейный рост.

А теперь представьте (хотя ваше тело так не умеет, но представьте), что каждый раз длина вашего шага увеличивается вдвое. То есть сначала вы шагаете на один метр, затем на два, затем на четыре, затем на восемь и так далее. За шесть таких шагов вы преодолеете 32 метра - это гораздо больше, чем за шесть шагов по одному метру. В это трудно поверить, но если продолжать в том же темпе, то после тридцатого шага вы окажетесь на расстоянии миллиарда метров от исходной точки. Это 26 поездок вокруг Земли. И это экспоненциальный рост.

Интересно, что каждый новый шаг при таком росте - это сумма всех предыдущих. То есть после 29 шагов вы преодолели 500 миллионов метров, и столько же вы преодолеваете за один следующий, тридцатый шаг. Это означает, что любой из ваших предыдущих шагов несравнимо мал по отношению к последующим нескольким шагам взрывного роста, а большая его часть происходит в течение относительно короткого периода времени. Если представить такой рост в виде движения из точки А в точку Б, самый большой прогресс в перемещении будет достигнут на последнем этапе.

Мы часто упускаем показательные тенденции на ранних стадиях, так как начальный темп экспоненциального роста медленный и постепенный, его трудно отличить от линейного роста. Кроме того, зачастую предсказания, основанные на предположении, что какое-то явление будет развиваться по экспоненте, могут показаться невероятными, и мы от них отказываемся.

«Когда в 1990 году началось сканирование генома человека, критики отметили, что, учитывая скорость, с которой сначала шел этот процесс, геном мог бы быть отсканирован только через тысячи лет. Однако проект был завершен уже в 2003 году», - приводит пример Рэймонд Курцвейл.

В последнее время развитие технологий идет по экспоненте: с каждым десятилетием, с каждым годом мы умеем несравнимо больше, чем раньше.

Может ли экспоненциальный рост когда-нибудь закончиться?

На практике экспоненциальные тенденции не длятся вечно. Тем не менее, некоторые из них могут продолжаться в течение длительных периодов времени, если есть соответствующие условия для взрывного развития.

Как правило, экспоненциальный тренд состоит из серии последовательных S-образных технологических циклов жизни или S-образных кривых. Каждая кривая выглядит как буква «S» из-за трех стадий роста, которые она показывает: начальный медленный рост, взрывной рост и выравнивание, по мере того, как технология созревает. Эти S-кривые пересекаются, и когда одна технология замедляется, начинается рост новой. С каждым новым S-образным витком развития, количество времени, необходимое для достижения более высоких уровней производительности, становится меньше.

Например, говоря о развитии технологий в прошлом веке, Курцвейл перечисляет пять вычислительных парадигм: электромеханические, реле, вакуумные лампы, дискретные транзисторы и интегральные схемы. Когда одна технология исчерпывала свой потенциал, начинала прогрессировать следующая, и она делала это стремительнее, чем ее предшественники.

Планирование экспоненциального будущего

В условиях экспоненциального развития очень сложно предсказать, что ждет нас в будущем. Построить график, основанный на геометрической прогрессии - это одно, а прикинуть, как изменится жизнь за десять-двадцать лет - совсем другое. Но можно следовать простому эмпирическому правилу: ожидай, что жизнь тебя очень сильно удивит, и планируй все исходя из ожидаемых сюрпризов. Иными словами, предполагать можно самые невероятные исходы и готовиться к ним, как если бы они точно состоялись.

«Будущее будет гораздо более удивительным, чем большинство людей могут себе представить. Лишь немногие действительно осознали тот факт, что скорость самого изменения ускоряется», - пишет Рэймонд Курцвейл.

Как будет выглядеть наша жизнь в ближайшие пять лет? Один из способов сделать прогноз - посмотреть на последние пять лет и перенести этот опыт на следующие пять, но это «линейное» мышление, которое, как мы выяснили, работает не всегда. Скорость изменений меняется, поэтому для того прогресса, который был достигнут за последние пять лет, в будущем потребуется уже больше времени. Вполне вероятно, что те изменения, которых вы ждете через пять лет, на самом деле произойдут через три или два года. После небольшой практики мы научимся лучше предсказывать дальнейшее развитие жизни, научимся видеть перспективы экспоненциального роста и сможем лучше планировать наше собственное будущее.

Это не просто интересная концепция. Наше мышление, заточенное чаще под линейное развитие, может привести нас в тупик. Именно линейное мышление заставляет некоторых бизнесменов и политиков противиться переменам, они просто не понимают, что развитие происходит по экспоненте, и беспокоятся из-за того, что все сложнее становится контролировать будущее. Но именно это поле для конкуренции. Чтобы угнаться за этим изменением, нужно всегда быть на шаг впереди и делать не то, что актуально сейчас, а то, что будет актуальным и востребованным в будущем, учитывать, что развитие происходит не линейно, а экспоненциально.

Экспоненциальное мышление уменьшает действие разрушительных стрессов, которые возникают из-за нашего страха перед будущим, и открывает новые возможности. Если мы сможем лучше планировать наше будущее и сможем мыслить экспоненциально, мы облегчим переход от одной парадигмы к другой и встретим будущее спокойно.

Когда снежный ком катится с горы, он постоянно увеличивается. Чем больше он становится, тем быстрее катится, чем быстрее катится, тем быстрее растет.

Математики и физики очень любят описывать мир при помощи чисел. А еще больше - при помощи функций. Функция - это правило, по которому одному числу (например, x ) ставится в соответствие другое (например y ). Функции бывают простые, вроде y=10x или y=x 2 , а бывают посложнее вроде y=10*sin(7x2+3x-9) . Если вместо x и y подставить определенные физические параметры и найти функцию, которая их связывает, то получится закон природы.

Еще у функций есть производная. Это - скорость изменения функции. То есть то, насколько изменится y при небольшом изменении x . Например, в случае функции y=10x производная всегда постоянная: y всегда будет расти в 10 раз быстрее, чем x . А в случае функции y=x 2 производная будет меняться. Если мы увеличим x c 0 до 1, то y тоже увеличится с 0 до 1. А если увеличим x с 1 до 2, то y увеличится с 1 до 4. То есть, производная с ростом x увеличилась.

Экспонентой называется функция y=e x , где e - хитрое математическое число, которое примерно равно 2,72. Она обладает замечательным свойством: ее производная равна ей самой. То есть, если расстояние, которое проходит снежный ком, зависит от времени как экспонента, то и его скорость выражается той же самой экспонентой. Это свойство очень помогает математикам решать разные дифференциальные уравнения. Они очень любят с ней работать и стараются разные другие функции путем сдвига, растяжения, или переворачивания графика превратить в экспоненту. Все такие функции можно назвать экспоненциальными. У экспоненциально протекающих процессов есть одно общее свойство: за одинаковый интервал времени их параметры меняются в одинаковое число раз. Банковский вклад каждый год увеличивается на 7%, снежный ком за минуту увеличивается в три раза, а количество урана-235 на атомных электростанциях уменьшается вдвое каждые 700 миллионов лет. Экспоненциальные функции окружают нас повсюду. Экспоненциально развиваются все явления, в которых присутствует обратная связь, когда результат влияет на скорость процесса. В случае со снежным комом обратная связь положительная: чем больше результат, тем быстрее протекает процесс. А масса и скорость снежного кома y экспоненциально возрастают со временем x . Аналогично ведут себя деньги в банке при фиксированной процентной ставке. Чем больше денег, тем больше ежегодный прирост - и тем быстрее денег хватит на домик на Мальдивах. Так же увеличивается численность животных при отсутствии внешних угроз: чем больше популяция, тем больше размножающихся особей, тем быстрее она увеличивается. А еще, когда микрофон подносишь близко к динамику, то самый тихий шорох через секунду превратится в звонкий гул.

Бывает, что обратная связь отрицательная: чем больше результат, тем медленнее идет процесс. Например, когда мы голодны, мы начинаем быстро поглощать еду, но как только чувство голода уменьшается, мы начинаем есть спокойно, потом лениво доедаем десерт. Чай остывает тоже по экспоненте: чем больше разность температур между чаем и воздухом, тем быстрее он остывает. Так что, если вам надо срочно отвлечься на 15 минут, а горячего чаю выпить хочется - налейте в него холодного молока или воды. Тогда разница температур уменьшится, и чай не остынет так быстро, как если бы он был горячим.

Чем быстрее движется струна гитары, тем быстрее она тормозится о воздух, поэтому громкость звука после дерганья за струну экспоненциально уменьшается. Еще один пример - ядерный распад. Каждое ядро может распасться в случайный момент времени, но чем ядер больше, тем больше распадов будет происходить за одну минуту. Чем быстрее ядра распадаются, тем меньше их становится, а значит и интенсивность радиации со временем падает.

Экспоненциальный рост - возрастание величины, когда скорость роста пропорциональна значению самой величины. Подчиняется экспоненциальному закону . Экспоненциальный рост противопоставляется более медленным (на достаточно длинном промежутке времени) линейной или степенной зависимостям. В случае дискретной области определения с равными интервалами его ещё называют геометрическим ростом или геометрическим распадом (значения функции образуют геометрическую прогрессию). Экспоненциальная модель роста также известна как мальтузианская модель роста.

Свойства

Для любой экспоненциально растущей величины чем большее значение она принимает, тем быстрее растёт. Также это означает, что величина зависимой переменной и скорость её роста прямо пропорциональны . Но при этом, в отличие от гиперболической , экспоненциальная кривая никогда не уходит в бесконечность за конечный промежуток времени.

Экспоненциальный рост в итоге оказывается более быстрым, чем любой степенной и тем более любой линейный рост .

Математическая запись

Экспоненциальный рост описывается дифференциальным уравнением :

\frac{dx}{dt} = kx

Решение этого дифференциального уравнения - экспонента:

x = ae^{kt}

Примеры

Примером экспоненциального роста может быть рост числа бактерий в колонии до наступления ограничения ресурсов. Другим примером экспоненциального роста являются сложные проценты .

См. также

Напишите отзыв о статье "Экспоненциальный рост"

Ссылки

Отрывок, характеризующий Экспоненциальный рост

Она проснулась поздно. Та искренность, которая бывает при пробуждении, показала ей ясно то, что более всего в болезни отца занимало ее. Она проснулась, прислушалась к тому, что было за дверью, и, услыхав его кряхтенье, со вздохом сказала себе, что было все то же.
– Да чему же быть? Чего же я хотела? Я хочу его смерти! – вскрикнула она с отвращением к себе самой.
Она оделась, умылась, прочла молитвы и вышла на крыльцо. К крыльцу поданы были без лошадей экипажи, в которые укладывали вещи.
Утро было теплое и серое. Княжна Марья остановилась на крыльце, не переставая ужасаться перед своей душевной мерзостью и стараясь привести в порядок свои мысли, прежде чем войти к нему.
Доктор сошел с лестницы и подошел к ней.
– Ему получше нынче, – сказал доктор. – Я вас искал. Можно кое что понять из того, что он говорит, голова посвежее. Пойдемте. Он зовет вас…
Сердце княжны Марьи так сильно забилось при этом известии, что она, побледнев, прислонилась к двери, чтобы не упасть. Увидать его, говорить с ним, подпасть под его взгляд теперь, когда вся душа княжны Марьи была переполнена этих страшных преступных искушений, – было мучительно радостно и ужасно.
– Пойдемте, – сказал доктор.
Княжна Марья вошла к отцу и подошла к кровати. Он лежал высоко на спине, с своими маленькими, костлявыми, покрытыми лиловыми узловатыми жилками ручками на одеяле, с уставленным прямо левым глазом и с скосившимся правым глазом, с неподвижными бровями и губами. Он весь был такой худенький, маленький и жалкий. Лицо его, казалось, ссохлось или растаяло, измельчало чертами. Княжна Марья подошла и поцеловала его руку. Левая рука сжала ее руку так, что видно было, что он уже давно ждал ее. Он задергал ее руку, и брови и губы его сердито зашевелились.
Она испуганно глядела на него, стараясь угадать, чего он хотел от нее. Когда она, переменя положение, подвинулась, так что левый глаз видел ее лицо, он успокоился, на несколько секунд не спуская с нее глаза. Потом губы и язык его зашевелились, послышались звуки, и он стал говорить, робко и умоляюще глядя на нее, видимо, боясь, что она не поймет его.

1. Классы нелинейных регрессий.

2. Параболическая форма зависимости.

3. Гиперболическая форма зависимости.

4. Экспоненциальная форма зависимости.

5. Степенная форма зависимости.

Между экономическими явлениями существуют нелиней­ные соотношения, которые выражаются с помощью нелинейных функций.

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам Примерами таких регрессий являются функции:

Полиномы разных степеней;

Равносторонняя гипербола.

2. К нелинейным регрессиям по оцениваемым параметрам от­носятся функции:

Степенная;

Показательная;

Экспоненциальная.

Нелинейная регрессия по включенным переменным определяется, как и в линейной регрессии, методом наименьших квадратов (МНК), так как эти функции линейны по параметрам.

1. Параболическая форма зависимости.

Уравнение регрессии параболы 2-го порядка имеет следующий вид:

Нормальные уравнения метода наименьших квадратов для параболической зависимости таковы:

Решая эту систему уравнений, получаем значения параметров a , b и c .

Парабола второй степени при b > 0 и с < 0 симметрична относительно точки максимума, изменяю­щей направление связи, а именно рост на падение. Такого рода функцию можно наблюдать в экономике труда при изучении зависимости заработной платы работников физического труда от возраста, с увеличением возраста повышается заработная плата ввиду одновременного увеличения опыта и повышения квалификации работника. Однако с определенного возраста ввиду старения организма и снижения производительности труда дальнейшее повышение возраста может приводить к снижению заработной платы работника.

При b < 0 и с > 0 парабола второго порядка симметрична относительно минимума функции в точке, меняющей направление связи, а именно снижение на рост.

2. Гиперболическая форма зависимости.

Уравнение регрессии гиперболы имеет следующий вид:

Из системы нормальных уравнений метода наименьших квадратов для гиперболы:

определяются значения коэффициентов гиперболического уравнения регрессии a и b .

Гиперболическая зависимость может быть использована на микро- и макроуровне - например, для характеристики связи удельных расходов сырья, материалов, топлива с объемом выпускаемой продукции, времени обращения товаров от величины товарооборота. Классическим ее примером является кривая Филлипса, характеризующая соотношение между нормой безработицы и процентомприроста заработной платы.

Рассмотрим регрессию, нелинейную по оцениваемым пара­метрам

3.Экспоненциальная форма зависимости.

Общий вид экспоненциального уравнения регрессии:

Для упрощения алгоритма обработки выборочной совокупности проводится линеаризация экспоненциального уравнения регрессии путем логарифмирования второго из представленных уравнений

Проведя замену ln y на z , получается линейное уравнение вида:

z = a + bx .

определяем параметры уравнения регрессии a и b . Производя обратную замену, получаем эмпирические значения результирующего признака.

4. Степенная форма зависимости.

Общий вид степенного уравнения регрессии:

Логарифмирование дан­ного уравнения приводит его к линейному виду:

Оценки параметров a и b уравнения могут быть найдены МНК. Система нормальных уравнений имеет вид:

Параметр b определяется из системы, а параметр a – потенцированием выражения lna .

Показателем тесноты нелинейной корреляции является индекс корреляции, вычисляемый по формуле:

,

где - индивидуальные значения у по уравнению связи.

Индекс корреляции находится в границах: 0 < R < 1 и чем ближе к единице, тем теснее связь рассматриваемых признаков, более надежно найденное уравнение регрессии.

Индекс детерминации R 2 используется для проверки статистической значимости в целом уравнения нелинейной регрессии по -критерию Фишера.