Использование теоремы Виета. Арифметические действия с числами

РАЗНОСТЬ

РАЗНОСТЬ

1. Число, составляющее остаток в вычитании (мат.). Уменьшаемое равно вычитаемому плюс разность.


Толковый словарь Ушакова . Д.Н. Ушаков. 1935-1940 .


Синонимы :

Смотреть что такое "РАЗНОСТЬ" в других словарях:

    См. разница... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. разность избыток, разница; отличие, различие, разрыв, несходство; разнокалиберность, перепад, сальдо, марджин, натяг,… … Словарь синонимов

    - (difference) Изменение значения какой либо переменной между фиксированными моментами времени. Если xt – значение переменной х во время t, то первая разность определяется как Δxt=xt–xt–1. Вторая разность равна первой разнице Δxt, минус первая… … Экономический словарь

    РАЗНОСТЬ - (1) потенциалов (напряжение (см. (2))) количественная характеристика электрического поля неподвижных электрических зарядов () между двумя его точками, равная работе электрического поля по перемещению единичного положительного заряда из одной… … Большая политехническая энциклопедия

    РАЗНОСТЬ, разнота и пр. см. разный. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

    Результат вычитания … Большой Энциклопедический словарь

    РАЗНОСТЬ, и, жен. 1. см. разный. 2. Результат, итог вычитания. | прил. разностный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    разность - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN differential … Справочник технического переводчика

    Разность многозначный термин: результат вычитания. Разность (минералогия) (например, «среднезернистые разности» или «мелоподобные разности») Разность потенциалов … Википедия

    И; ж. 1. к Разный (1 зн.); различие. Р. убеждений, взглядов. Обнаружить р. в подходах к историческим фактам. // Различие между двумя сравниваемыми величинами в числовом выражении. Р. высот над уровнем моря. Р. температур. Р. уровней воды. Р. в… … Энциклопедический словарь

    разность - ▲ величина различие разность величина различия; результат вычитания; количественное различие. разница. перепад (# давлений). приращение. ▼ ни на сколько, угол ↓ вычита … Идеографический словарь русского языка

Книги

  • Комплект таблиц. Алгебра. 7 класс. 15 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 15 листов. Выражения.…
  • Распределенная во времени «разность разностей» на примере оценки отдачи от дополнительного профессионального обучения , А. В. Аистов. В работе представлена эконометрическая модель, описывающая распределение во времени эффекта воздействия, построенная на основе методологии «разность разностей». Модель позволила…

Сегодня достойна в стихах быть воспета
О свойствах корней теорема Виета.
Что лучше, скажи, постоянства такого:
Умножил ты корни – и дробь уж готова
В числителе с , в знаменателе а.
И сумма корней тоже дроби равна
Хоть с минусом дробь эта
Что за беда
В числители в , в знаменателе а .
(Из школьного фольклора)

В эпиграфе замечательная теорема Франсуа Виета приведена не совсем точно. В самом деле, мы можем записать квадратное уравнение, которое не имеет корней и записать их сумму и произведение. Например, уравнение х 2 + 2х + 12 = 0 не имеет действительных корней. Но, подойдя формально, мы можем записать их произведение (х 1 · х 2 = 12) и сумму (х 1 + х 2 = -2). Наши стихи будут соответствовать теореме с оговоркой: «если уравнение имеет корни», т.е. D ≥ 0.

Первое практическое применение этой теоремы – составление квадратного уравнения, имеющего заданные корни. Второе: она позволяет устно решать многие квадратные уравнения. На отработку этих навыков, прежде всего и обращается внимание в школьных учебниках.

Мы же здесь будем рассматривать более сложные задачи, решаемые с помощью теоремы Виета.

Пример 1.

Один из корней уравнения 5х 2 – 12х + с = 0 в три раза больше за второй. Найдите с.

Решение.

Пусть второй корень равен х 2 .

Тогда первый корень х1 = 3х 2 .

Согласно теореме Виета сумма корней равна 12/5 = 2,4.

Составим уравнение 3х 2 + х 2 = 2,4.

Отсюда х 2 = 0,6. Следовательно х 1 = 1,8.

Ответ: с = (х 1 · х 2) · а = 0,6 · 1,8 · 5 = 5,4.

Пример 2.

Известно, что х 1 и х 2 – корни уравнения х 2 – 8х + p = 0, причём 3х 1 + 4х 2 = 29. Найдите p.

Решение.

Согласно теореме Виета х 1 + х 2 = 8, а по условию 3х 1 + 4х 2 = 29.

Решив систему из этих двух уравнений найдём значение х 1 = 3, х 2 = 5.

А следовательно p = 15.

Ответ: p = 15.

Пример 3.

Не вычисляя корней уравнения 3х 2 + 8 х – 1 = 0, найдите х 1 4 + х 2 4

Решение.

Заметим, что по теореме Виета х 1 + х 2 = -8/3 и х 1 · х 2 = -1/3 и преобразуем выражение

а) х 1 4 + х 2 4 = (х 1 2 + х 2 2) 2 – 2х 1 2 х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) 2 – 2(х 1 х 2) 2 = ((-8/3) 2 – 2 · (-1/3)) 2 – 2 · (-1/3) 2 = 4898/9

Ответ: 4898/9.

Пример 4.

При каких значениях параметра а разность наибольшего и наименьшего корней уравнения
2х 2 – (а + 1)х + (а – 1) = 0 равна их произведению.

Решение.

Это квадратное уравнение. Оно будет иметь 2 разных корня, если D > 0. Иными словами (а + 1) 2 – 8(а – 1) > 0 или (а – 3) 2 > 0. Следовательно, мы имеем 2 корня при всех а, за исключением а = 3.

Для определенности будем считать, что х 1 >х 2 и получим х 1 + х 2 = (а + 1)/2 и х 1 · х 2 = (а – 1)/2. Исходя из условия задачи х 1 – х 2 = (а – 1)/2. Все три условия должны выполняться одновременно. Рассмотрим первое и последнее уравнения как систему. Она легко решается методом алгебраического сложения.

Получаем х 1 = а/2, х 2 = 1/2. Проверим при каких а выполнится второе равенство: х 1 · х 2 = (а – 1)/2. Подставим полученные значения и будем иметь: а/4 = (а – 1)/2. Тогда, а = 2. Очевидно, что если а = 2, то все условия выполнены.

Ответ: при а = 2.

Пример 5.

Чему равно наименьшее значение а, при котором сумма корней уравнения
х 2 – 2а(х – 1) – 1 = 0 равна сумме квадратов его корней.

Решение.

Прежде всего, приведем уравнение к каноническому виду: х 2 – 2ах + 2а – 1 = 0. Оно будет иметь корни, если D/4 ≥ 0. Следовательно: а 2 – (2а – 1) ≥ 0. Или (а – 1) 2 ≥ 0. А это условие справедливо при любом а.

Применим теорему Виета: х 1 + х 2 = 2а, х 1 · х 2 = 2а – 1. Посчитаем

х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 . Или после подстановки х 1 2 + х 2 2 = (2а) 2 – 2 · (2а – 1) = 4а 2 – 4а + 2. Осталось составить равенство которое соответствует условию задачи: х 1 + х 2 = х 1 2 + х 2 2 . Получим: 2а = 4а 2 – 4а + 2. Это квадратное уравнение имеет 2 корня: а 1 = 1 и а 2 = 1/2. Наименьший из них –1/2.

Ответ: 1/2.

Пример 6.

Найти зависимость между коэффициентами уравнения ах 2 + вх + с = 0 если сумма кубов его корней равна произведению квадратов этих корней.

Решение.

Будем исходить из того, что данное уравнение имеет корни и, поэтому, к нему можно применить теорему Виета.

Тогда условие задачи запишется так: х 1 3 + х 2 3 = х 1 2 · х 2 2 . Или: (х 1 + х 2)(х 1 2 – х 1 · х 2 + х 2 2) = (х 1 х 2) 2 .

Необходимо преобразовать второй множитель. х 1 2 – х 1 · х 2 + х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) – х 1 х 2 .

Получим (х 1 + х 2)((х 1 + х 2) 2 – 3х 1 х 2) = (х 1 х 2) 2 . Осталось заменить суммы и произведения корней через коэффициенты.

(-b/a)((b/a) 2 – 3 · c/a) = (c/a) 2 . Это выражение легко преобразуется к виду b(3ac – b 2)/a = c 2 . Соотношение найдено.

Замечание. Следует учесть, что полученное соотношение имеет смысл рассматривать лишь после того, как выполнится другое: D ≥ 0.

Пример 7.

Найдите значение переменной а, для которого сумма квадратов корней уравнения х 2 + 2ах + 3а 2 – 6а – 2 = 0 есть величина наибольшая.

Решение.

Если у этого уравнения есть корни х 1 и х 2 , то их сумма х 1 + х 2 = -2а, а произведение х 1 · х 2 = 3а 2 – 6а – 2.

Вычисляем х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 = (-2а) 2 – 2(3а 2 – 6а – 2) = -2а 2 + 12а + 4 = -2(а – 3) 2 + 22.

Теперь очевидно, что это выражение принимает наибольшее значение при а = 3.

Остается проверить, в самом ли деле у исходного квадратного уравнения существуют корни при а = 3. Проверяем подстановкой и получаем: х 2 + 6х + 7 = 0 и для него D = 36 – 28 > 0.

Следовательно, ответ: при а = 3.

Пример 8.

Уравнение 2х 2 – 7х – 3 = 0 имеет корни х 1 и х 2 . Найти утроенную сумму коэффициентов приведенного квадратного уравнения, корнями которого являются числа Х 1 = 1/х 1 и Х 2 = 1/х 2 . (*)

Решение.

Очевидно, что х 1 + х 2 = 7/2 и х 1 · х 2 = -3/2. Составим второе уравнение по его корням в виде х 2 + рх + q = 0. Для этого используем утверждение, обратное теореме Виета. Получим: р = -(Х 1 + Х 2) и q = Х 1 · Х 2 .

Выполнив подстановку в эти формулы, исходя из (*), тогда: р = -(х 1 + х 2)/(х 1 · х 2) = 7/3 и q = 1/(х 1 · х 2) = -2/3.

Искомое уравнение примет вид: х 2 + 7/3 · х – 2/3 = 0. Теперь легко посчитаем утроенную сумму его коэффициентов:

3(1 + 7/3 – 2/3) = 8. Ответ получен.

Остались вопросы? Не знаете, как использовать теорему Виета?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Математические выражения (формулы) сокращённого умножения (квадрат суммы и разности, куб суммы и разности, разность квадратов, сумма и разность кубов) крайне не заменимы во многих областях точных наук. Эти 7 символьных записей не заменимы при упрощении выражений, решении уравнений, при умножении многочленов, сокращении дробей , решении интегралов и многом другом. А значит будет очень полезно разобраться как они получаются, для чего они нужны, и самое главное, как их запомнить и потом применять. Потом применяя формулы сокращенного умножения на практике самым сложным будет увидеть, что есть х и что есть у. Очевидно, что никаких ограничений для a и b нет, а значит это могут быть любые числовые или буквенные выражения.

И так вот они:

Первая х 2 - у 2 = (х - у) (х+у) .Чтобы рассчитать разность квадратов двух выражений надо перемножить разности этих выражений на их суммы.

Вторая (х + у) 2 = х 2 + 2ху + у 2 . Чтобы найти квадрат суммы двух выражений нужно к квадрату первого выражения прибавить удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Третья (х - у) 2 = х 2 - 2ху + у 2 . Чтобы вычислить квадрат разности двух выражений нужно от квадрата первого выражения отнять удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Четвертая (х + у) 3 = х 3 + 3х 2 у + 3ху 2 + у 3. Чтобы вычислить куб суммы двух выражений нужно к кубу первого выражения прибавить утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Пятая (х - у) 3 = х 3 - 3х 2 у + 3ху 2 - у 3 . Чтобы рассчитать куб разности двух выражений необходимо от куба первого выражения отнять утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

Шестая х 3 + у 3 = (х + у) (х 2 - ху + у 2) Чтобы высчитать сумму кубов двух выражений нужно умножить суммы первого и второго выражения на неполный квадрат разности этих выражений.

Седьмая х 3 - у 3 = (х - у) (х 2 + ху + у 2) Чтобы произвести вычисление разности кубов двух выражений надо умножить разность первого и второго выражения на неполный квадрат суммы этих выражений.

Не сложно запомнить, что все формулы применяются для произведения расчетов и в противоположном направлении (справа налево).

О существовании этих закономерностей з нали еще около 4 тысяч лет тому назад. Их широко применяли жители древнего Вавилона и Египта. Но в те эпохи они выражались словесно или геометрически и при расчетах не использовали буквы.

Разберем доказательство квадрата суммы (а + b) 2 = a 2 +2ab +b 2 .

Первым эту математическую закономерность доказал древнегреческий учёный Евклид, работавший в Александрии в III веке до н.э., он использовал для этого геометрический способ доказательства формулы, так как буквами для обозначения чисел не пользовались и учёные древней Эллады. Ими повсеместно употреблялись не “а 2 ”, а “квадрат на отрезке а”, не “ab”, а “прямоугольник , заключенный между отрезками a и b”.

Приведем правила вычисления погрешности результата различных арифметических операций над приближенными числами.

Относительно алгебраической суммы u = х ± у можно утверждать следующее.

Теорема 1.2 . Предельная абсолютная погрешность суммы приближенных чисел равна сумме предельных абсолютных погрешностей слагаемых, т. е.

Δ u = Δ x + Δ y (1.13)

Из формулы (1.13) следует, что предельная абсолютная погрешность суммы не может быть меньше предельной абсолютной погрешности наименее точного из слагаемых, т. е. если в состав суммы входят приближенные слагаемые с разными абсолютными погрешностями, то сохранять лишние значащие цифры в более точных не имеет смысла.

Пример 1.12 . Найти сумму приближенных чисел, все цифры которых являются верными в широком смысле, и ее предельную абсолютную и относительную погрешности u= 0.259 + 45.12+ 1.0012.

Решение . Предельные абсолютные погрешности слагаемых здесь равны соответственно 0.001; 0.01; 0.0001.

Суммирование производим, руководствуясь следующим правилом:

1) выделим наименее точные слагаемые (в нашем примере это второе слагаемое) и оставим их без изменения; ,

2) остальные числа округлим по образцу выделенных, оставляя один или два запасных знака;

3) сложим данные числа, учитывая все сохраненные знаки;

4)полученный результат округлим до точности наименее точных слагаемых. Имеем

Δ u = 0.001 + 0.01 + 0.0001 = 0.0111;

u = 0.259 + 45.12 + 1.0012 = 0.26 + 45.12 + 1.00 = 46.38 ± 0.01.

Основной вклад в абсолютную погрешность результата здесь вносят предельные погрешности исходных данных, приведенные выше.

Теорема 1.3 . Если все слагаемые в сумме имеют один и тот же знак, то предельная относительная погрешность суммы не превышает наибольшей из предельных относительных погрешностей слагаемых:

При вычислении разности двух приближенных чисел u = х - у ее абсолютная погрешность, согласно теореме 1.2, равна сумме абсолютных погрешностей уменьшаемого и вычитаемого, т. е. Δ u = Δ x + Δ y , а предельная относительная погрешность

(1.15)

Из формулы (1.15) следует, что если приближенные значения х и у близки, то предельная относительная погрешность будет очень большой.

Пример 1.13 . Найти разность х - у с тремя верными знаками, если х = 12.1254 ± 0.0001, у = 12.128 ± 0.001.

Решение.

Имеем 12.1254 – 12.128 = - 0.0026.

Δ u = 0.0001 + 0.001 = 0.0011;

δ u = 0.0011/|-0.00261 =0.42;

δ x =0.0001/ 12.1254 = 0.000008;

δ y =0.001 /12.128 = 0.00008.

Согласно этим результатам разность х - у имеет не более одной верной цифры и относительная погрешность очень велика по сравнению с относительными погрешностями операндов.

В некоторых случаях удается избежать вычисления разности близких чисел с помощью преобразования выражения так, чтобы разность была исключена. Рассмотрим один из таких примеров.

Пример 1.14 . Найти разность с тремя верными знаками.

Решение .

Умножим и разделим на сумму. Получим

Если представляется сложным заменить вычитание близких приближенных чисел сложением, то следует поступать так: если известно, что при вычитании должно пропасть m первых значащих цифр, а в результате требуется сохранить n верных цифр, тогда в уменьшаемом и вычитаемом следует сохранять m + n верных зна чащих цифр:

Теорема 1.4 . Предельная относительная погрешность произведения u = х ∙у приближенных чисел, отличных от нуля, равна сумме предельных относительных погрешностей сомножителей, т. е.

δ u = δ x + δ y . (1.16)

В частности, если u = kx, где k - точное число, имеем Δ u = |k| Δ x , δ u = δ x .

Пример 1.15 . Определить произведение приближенных чисел х = 12.45 и у = 2.13 и число верных значащих цифр в нем, если все написанные цифры сомножителей - верные в узком смысле.

Решение.

По условию предельные абсолютные погрешности сомножителей равны Δ x = Δ y = 0.005; δ x = 0.005/12.45 = = 0.0004; δ y = 0.005/2.13 = 0.0023. Тогда по теореме 1.4 имеем δ u = δ x + δ y = 0.0004 + 0.0023 = 0.0027 ≈ 0.003. Вычислим произведение 12.45 ∙ 2.13 = 26.5185. Δ u = = 26.5185 0.003 = 0.079 ≈ 0.08. Таким образом, результат имеет три верных значащих цифры в широком смысле и может быть записан в виде u = 26.5 (1 ± 0.003).

Теорема 1.5 . Предельная относительная погрешность частного равна сумме предельных относительных погрешностей делимого и делителя.

Пример 1.16 . Вычислить частное приближенных чисел х = 12.45 и у = 2.18 и число верных значащих цифр в нем, если все написанные цифры сомножителей - верные в узком смысле.

Решение.

Предельная относительная погрешность частного по теореме 1.5 равна δ u = 0.003. Вычислим частное 12.45 / 2,13 = 5.84507. Δ u = 5.84507 0.003 = 0.0175 ≈ 0,02. Результат имеет две верных значащих цифры в узком смысле и может быть записан в виде u = 5.8 (1 ± 0.003).