Примеры практического применения систем искусственного интеллекта. Методы искусственного интеллекта

Среди важнейших классов задач, которые ставились перед разработчиками интеллектуальных систем с момента определения искусственного интеллекта как научного направления (с середины 50-х годов ХХ века), следует выделить следующие направления искусственного интеллекта , которые решают задачи, что плохо поддаются формализации: доказательство теорем, распознавания изображений, машинный перевод и понимание человеческой речи, игровые программы, машинная творчество, экспертные системы. Кратко рассмотрим их сущность.

Направления искусственного интеллекта

Доказательство теорем . Изучение приемов доказательства теорем сыграло важную роль в развитии искусственного интеллекта. Много неформальных задач, например, медицинская диагностика, применяют при решении методические подходы, которые использовались при автоматизации доказательства теорем. Поиск доказательства математической теоремы требует не только провести дедукцию, исходя из гипотез, но также создать интуитивные предположения о том, какие промежуточные утверждение следует доказать для общего доказательства основной теоремы.

Распознавание изображений . Применение искусственного интеллекта для распознавании образов позволила создавать практически работающие системы идентификации графических объектов на основе аналогичных признаков. В качестве признаков могут рассматриваться любые характеристики объектов, подлежащих распознаванию. Признаки должны быть инвариантны к ориентации, размера и формы объектов. Алфавит признаков формируется разработчиком системы. Качество распознавания во многом зависит от того, насколько удачно сложившийся алфавит признаков. Распознавания состоит в априорном получении вектора признаков для выделенного на изображении отдельного объекта и, затем, в определении которой из эталонов алфавита признаков этот вектор отвечает.

Машинный перевод и понимание человеческой речи . Задача анализа предложений человеческой речи с применением словаря является типичной задачей систем искусственного интеллекта. Для ее решения был создан язык-посредник, облегчающий сопоставление фраз из разных языков. В дальнейшем этот язык-посредник превратилась в семантическую модель представления значений текстов, подлежащих переводу. Эволюция семантической модели привела к созданию языка для внутреннего представления знаний. В результате, современные системы осуществляют анализ текстов и фраз в четыре основных этапа: морфологический анализ, синтаксический, семантический и прагматический анализ.

Игровые программы . В основу большинства игровых программ положены несколько базовых идей искусственного интеллекта, таких как перебор вариантов и самообучения. Одна из наиболее интересных задач в сфере игровых программ, использующих методы искусственного интеллекта, заключается в обучении компьютера игры в шахматы. Она была основана еще на заре вычислительной техники, в конце 50-х годов.

В шахматах существуют определенные уровни мастерства, степени качества игры, которые могут дать четкие критерии оценки интеллектуального роста системы. Поэтому компьютерными шахматами активно занимался ученые со всего мира, а результаты их достижений применяются в других интеллектуальных разработках, имеющих реальное практическое значение.

В 1974 году впервые прошел чемпионат мира среди шахматных программ в рамках очередного конгресса IFIP (International Federation of Information Processing) в Стокгольме. Победителем этого соревнования стала шахматная программа «Каисса». Она была создана в Москве, в Институте проблем управления Академии наук СССР.

Машинная творчество . К одной из областей применений искусственного интеллекта можно отнести программные системы, способные самостоятельно создавать музыку, стихи, рассказы, статьи, дипломы и даже диссертации. Сегодня существует целый класс музыкальных языков программирования (например, язык C-Sound). Для различных музыкальных задач было создано специальное программное обеспечение: системы обработки звука, синтеза звука, системы интерактивного композиции, программы алгоритмической композиции.

Экспертные системы . Методы искусственного интеллекта нашли применение в создании автоматизированных консультирующих систем или экспертных систем. Первые экспертные системы были разработаны, как научно-исследовательские инструментальные средства в 1960-х годах прошлого столетия.

Они были системами искусственного интеллекта, специально предназначенными для решения сложных задач в узкой предметной области, такой, например, как медицинская диагностика заболеваний. Классической целью этого направления изначально было создание системы искусственного интеллекта общего назначения, которая была бы способна решить любую проблему без конкретных знаний в предметной области. Ввиду ограниченности возможностей вычислительных ресурсов, эта задача оказалась слишком сложной для решения с приемлемым результатом.

Коммерческое внедрение экспертных систем произошло в начале 1980-х годов, и с тех пор экспертные системы получили значительное распространение. Они используются в бизнесе, науке, технике, на производстве, а также во многих других сферах, где существует вполне определенная предметная область. Основное значение выражения «вполне определенное», заключается в том, что эксперт-человек способен определить этапы рассуждений, с помощью которых может быть решена любая задача по данной предметной области. Это означает, что аналогичные действия могут быть выполнены компьютерной программой.

Теперь с уверенностью можно сказать, что использование систем искусственного интеллекта открывает широкие границы.

Сегодня, экспертные системы являются одним из самых успешных применений технологии искусственного интеллекта. Поэтому рекомендуем Вам ознакомится с .


Определение

Искусственный интеллект можно определить как научную дисциплину, которая занимается автоматизацией разумного поведения.

Искусственный интеллект (ИИ , англ. Artificial intelligence, AI ) - наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.

Цели и задачи

Целью исскуственного интеллекта является создание технических систем, способных решать задачи невычислительного характера и выполнять действия, требующие переработки содержательной ин­формации и считающиеся прерогативой человеческого мозга. К числу таких задач относятся, например, задачи на доказательство тео­рем, игровые задачи (скажем, при игре в шахматы), задачи по пере­воду с одного языка на другой, по сочинению музыки, распознаванию зрительных образов, решению сложных творческих про­блем науки и общественной практики. Одной из важных задач исскуственного интеллекта является создание интеллектуальных роботов, способных автоном­но совершать операции по достижению целей, поставленных че­ловеком, и вносить коррективы в свои действия.

Структура понятия

"Искусственный интеллект" складывается из нескольких основных положений и дисциплин, являющихся его основой. Более подробно это описано на рисунке предоставленном ниже. Изображение взято из

Ниже приведены основные определения использованных на картинке терминов.

Нечёткая логика и теория нечётких множеств - раздел математики, являющийся обобщением классической логики и теории множеств. Понятие нечёткой логики было впервые введено профессором Лютфи Заде в 1965 году. В этой статье понятие множества было расширено допущением, что функция принадлежности элемента к множеству может принимать любые значения в интервале , а не только 0 или 1. Такие множества были названы нечёткими. Также автором были предложены различные логические операции над нечёткими множествами и предложено понятие лингвистической переменной, в качестве значений которой выступают нечёткие множества.

Искусственные нейронные сети (ИНС) - математические модели, а также их программные или аппаратные реализации, построенные по принципу организации и функционирования биологических нейронных сетей - сетей нервных клеток живого организма. Это понятие возникло при изучении процессов, протекающих в мозге, и при попытке смоделировать эти процессы. Первой такой попыткой были нейронные сети Маккалока и Питтса. Впоследствии, после разработки алгоритмов обучения, получаемые модели стали использовать в практических целях: в задачах прогнозирования, для распознавания образов, в задачах управления и др.

Интеллектуальный агент - программа, самостоятельно выполняющая задание, указанное пользователем компьютера, в течение длительных промежутков времени. Интеллектуальные агенты используются для содействия оператору или сбора информации. Одним из примеров заданий, выполняемых агентами, может служить задача постоянного поиска и сбора необходимой информации в Интернете. Компьютерные вирусы, боты, поисковые роботы - всё это также можно отнести к интеллектуальным агентам. Хотя такие агенты имеют строгий алгоритм, «интеллектуальность» в этом контексте понимается как способность приспосабливаться и обучаться.

Экспертная система (ЭС, expert system) - компьютерная программа, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные ЭС начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х получили коммерческое подкрепление. Предтечи экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения по заданным условиям, например определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания.

Генетический алгоритм (англ. genetic algorithm ) - это эвристический алгоритм поиска, используемый для решения задач оптимизации и моделирования путём случайного подбора, комбинирования и вариации искомых параметров с использованием механизмов, напоминающих биологическую эволюцию. Является разновидностью эволюционных вычислений. Отличительной особенностью генетического алгоритма является акцент на использование оператора «скрещивания», который производит операцию рекомбинации решений-кандидатов, роль которой аналогична роли скрещивания в живой природе.

Модели и методы исследований

Символьное моделирование мыслительных процессов

Анализируя историю ИИ, можно выделить такое обширное направление как моделирование рассуждений . Долгие годы развитие этой науки двигалось именно по этому пути, и теперь это одна из самых развитых областей в современном ИИ. Моделирование рассуждений подразумевает создание символьных систем, на входе которых поставлена некая задача, а на выходе требуется её решение. Как правило, предлагаемая задача уже формализована, то есть переведена в математическую форму, но либо не имеет алгоритма решения, либо он слишком сложен, трудоёмок и т. п. В это направление входят: доказательство теорем, принятие решений и теория игр , планирование и диспетчеризация, прогнозирование.

Работа с естественными языками

Немаловажным направлением является обработка естественного языка , в рамках которого проводится анализ возможностей понимания, обработки и генерации текстов на «человеческом» языке. В частности, здесь ещё не решена проблема машинного перевода текстов с одного языка на другой. В современном мире большую роль играет разработка методов информационного поиска. По своей природе, оригинальный тест Тьюринга связан с этим направлением.

Накопление и использование знаний

Согласно мнению многих учёных, важным свойством интеллекта является способность к обучению. Таким образом, на первый план выходит инженерия знаний , объединяющая задачи получения знаний из простой информации, их систематизации и использования. Достижения в этой области затрагивают почти все остальные направления исследований ИИ. Здесь также нельзя не отметить две важные подобласти. Первая из них - машинное обучение - касается процесса самостоятельного получения знаний интеллектуальной системой в процессе её работы. Второе связано с созданием экспертных систем - программ, использующих специализированные базы знаний для получения достоверных заключений по какой-либо проблеме.

К области машинного обучения относится большой класс задач на распознавание образов . Например, это распознавание символов, рукописного текста, речи, анализ текстов. Многие задачи успешно решаются с помощью биологического моделирования (см. след. пункт). Особо стоит упомянуть компьютерное зрение , которое связано ещё и с робототехникой.

Биологическое моделирование искусственного интеллекта

Отличается от понимания искусственного интеллекта по Джону Маккарти, когда исходят из положения о том, что искусственные системы не обязаны повторять в своей структуре и функционировании структуру и протекающие в ней процессы, присущие биологическим системам, сторонники данного подхода считают, что феномены человеческого поведения, его способность к обучению и адаптации, есть следствие именно биологической структуры и особенностей ее функционирования.

Сюда можно отнести несколько направлений. Нейронные сети используются для решения нечётких и сложных проблем, таких как распознавание геометрических фигур или кластеризация объектов. Генетический подход основан на идее, что некий алгоритм может стать более эффективным, если позаимствует лучшие характеристики у других алгоритмов («родителей»). Относительно новый подход, где ставится задача создания автономной программы - агента, взаимодействующего с внешней средой, называется агентным подходом .

Перспективы развития

На данный момент в развитии искусственного интеллекта произошло разветвление на основные отрасли, которым уделяется основное внимание в виде материальных и интеллектуальных вложений. Изображение взято из

Литература

1) "Управление знаниями корпорации и реинжиниринг бизнеса" Абдикеев, Киселев

Основными ресурсами развития компаний во все большей мере становятся люди и знания, которыми они обладают, интеллектуальный капитал и растущая профессиональная компетенция кадров. Сегодня требуются новые методы развития организации, основанные на стыке гуманитарного и инженерного подходов, что позволит получить синергетический эффект от их взаимодействия. Этот подход базируется на современных достижениях информационных технологий, а именно когнитивных технологиях развития организации. Актуально развитие симбиоза концепции управления знаниями, реинжиниринга бизнес-процессов и когнитивной человеческой составляющей.
Для менеджеров высшего звена, бизнес-аналитиков, слушателей программ МВА по направлениям "Стратегический менеджмент", "Антикризисное управление", студентов экономических вузов магистерского уровня, аспирантов и преподавателей в области корпоративного менеджмента и реинжиниринга бизнеса.

2) " Модели и методы искусственного интеллекта. Применение в экономике." М.Г. Матвеев, А.С. Свиридов, Н.А. Алейникова

П редставлены теоретические основы искусственного интеллекта: информационные аспекты, сведения о бинарной и нечеткой логике, а также методы и модели актуальных направлений искусственного интеллекта, экспертных систем, инженерии знаний, нейронных сетей и генетических алгоритмов. Подробно рассмотрены вопросы практической реализации интеллектуальных систем. Приведено множество примеров, иллюстрирующих разработку и применение рассматриваемых методов и моделей. Особое внимание уделено экономическим задачам.

3) "Искусственный интеллект и интеллектуальные системы управления. " И. М. Макаров, В. М. Лохин, С. В. Манько, М. П. Романов; отв. ред. И. М. Макарова

Рассматривается новый, активно развивающийся класс интеллектуальных систем автоматического управления, построенных на технологии обработки знаний с позиций эффективного применения при решении задач управления в условиях неопределенности. Изложены основы построения интеллектуальных систем.

4) "Искусственный интеллект: современный подход. " С. Рассел, П. Норвиг

В книге представлены все современные достижения и изложены идеи, которые были сформулированы в исследованиях, проводившихся в течениe последних пятидесяти лет, а также собраны на протяжении двух тысячелетий в области знаний, ставших стимулом к развитию искусственного интеллекта как науки проектирования рациональных агентов.

Список источников


5) http://ru.wikipedia.org/wiki/%D0%98%D1%81%D0%BA%D1%83%D1%81%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9_%D0%B8%D0%BD%D1%82%D0%B5%D0%BB%D0%BB%D0%B5%D0%BA%D1%82

Данный раздел посвящен генетическим алгоритмам. Что такое генетические алгоритмы? По сути, это оптимизационные алгоритмы, относящиеся к классу эвристик. Данные алгоритмы позволяют исключить перебор всех вариантов и значительно сокращают время вычислений. Специфика работы этих алгоритмов сводится к имитации эволюционных процессов.

9) http://www.gotai.net/implementations.aspx

Здесь Вы найдете идеи и готовые решения по применению искусственного интеллекта и связанных теорий для решения тех или иных практических задач.

10) http://www.gotai.net/documents-logic.aspx

В этом разделе собраны материалы, так или иначе относящиеся к классическому способу моделирования систем ИИ, моделирования на основе различных логических аппаратов. Как правило, это материалы, связанные с экспертными системами, системами поддержки принятия решения и агентными системы.

11) http://khpi-iip.mipk.kharkiv.edu/library/ai/conspai/12.html

Тенденции развития AI

Вы, наверное, слышали про робота, который подходит и дает вам банку колы, когда говорите ему, что вы хотите пить. Вы также, наверное, слышали о системе распознавания речи, которая управляет вашей бытовой техникой? И вы, наверное, слышали о тренажерах самолетов, которые помогут воссоздать реальную среду полета воздушного аппарата?

В 1956 году всемирно известный американский ученый Джон Маккарти, ввел термин, который является сердцем всех этих возможностей и многих других. Термин, который он придумал был “Искусственный интеллект”. Искусственный интеллект, сокращенно ИИ – это наука и инжиниринг, работающие над созданием интеллектуальных машин, а также интеллектуальных компьютерных программ, которые способны реагировать как человек. То есть, создание таких машин, способных чувствовать мир вокруг них, понимать разговоры и принимать решения, похожие на человеческий выбор. Искусственный разум дал нам все, от сканера до роботов в реальной жизни.

Сегодня область искусственного интеллекта может быть описана, как суп когнитивной информатики, психологии, лингвистики и математики, ожидание вспышки молнии – попытка объединения усилий исследователей и ресурсов, разработка новых подходов, использование мировых хранилищ знаний, чтобы создать искру, такую, что она будет создавать новую форму жизни.

В области искусственного разума, мы взращиваем машину ребенка с детства к взрослой жизни, таким образом, что мы создаем чисто новые подходы к обучению машины.

Отрасли искусственного интеллекта

Джон Маккарти определил некоторые из ветвей ИИ, которые описаны ниже. Он также отметил, что несколько из них еще предстоит определить.

Логика Искусственного Интеллекта: программа ИИ должна знать о фактах и ситуациях.

Распознавание образов: когда программа проводит наблюдение, то, как правило, запрограммирована на распознавание и сопоставление с образцом. Например, система распознавания речи или система распознавания лица.

Представление: должен быть способ, чтобы представить факты о мире устройству обладающем ИИ. Для представления, используется математический язык.

Вывод: умозаключение, позволяет извлекает новые факты из уже существующих фактов. Из некоторых фактов могут быть выведены другие.

Планирование: программа планирования начинается с фактов и изложения цели. Из них, программа генерирует стратегию для достижения поставленной цели.

Наличие Здравого Смысла и Рассуждения - это активное направление исследований и изучения ИИ возникло в 1950-х годах, но все же пока результат далек от человеческого уровня.

Эпистемология – это возможность обучения и получения знаний устройством. Позволяет изучать типы знаний, необходимых для конкретного типа задач.

Эвристика – это способ попытаться найти идею вложенную в программу.

Генетическое программирование – автоматическое создание программы LISP (Обработка списка), позволяющее решить поставленную задачу.

Инструменты, использующиеся для решения сложных задач при создании ИИ

За последние шесть десятилетий, существуют различные инструменты, разработанные для решения сложных проблем в области компьютерных наук. Некоторые из них являются:

Поиск и оптимизация

Большинство проблем в ИИ могут быть решены теоретически с помощью грамотного поиска возможных решений. Но простой исчерпывающий поиск редко бывает полезным и достаточным для большинства реальных задач. В 1990-е годы, различные виды поиска стали популярны, которые были основанные на оптимизации. В случае большинства проблем, можно составить предположение, а затем уточнить свой запрос. Различные алгоритмы оптимизации были написаны, чтобы помочь процессу поиска.

Логика

Логика позволяет производить изучение аргументов. В ИИ используется для представления знаний, а также использоваться для решения задач. Различные типы логики используются в исследованиях искусственного интеллекта. Логика первого порядка использует кванторы и предикаты, и помогает в представлении фактов и их свойств. Нечеткая логика является своего рода логикой первого порядка, что позволяет найти истинность заявления, которое будет представлено как 1 (истина) или 0 (False).

Теория вероятности

Вероятность – способ выражения знания. Это понятие было дано математическому значению в теории вероятностей, которая широко используется в ИИ.

Искусственный интеллект и его применение

Искусственный интеллект в настоящее время используется в широком спектре областей, включая моделирование, робототехнику, распознавание речи, финансы и акции, медицинскую диагностику, авиацию, безопасность, игры и т.д.

Разберем поподробней некоторые из областей:

Игровая Сфера: Существуют машины, которые могут играть в шахматы на профессиональном уровне. ИИ также применим к различным видеоиграм.

Распознавание речи: Компьютеры и роботы, которые понимают язык на уровне человека имеют встроенный ИИ в них.

Симуляторы: Моделирование является имитация какой-то реальной вещи. Оно используется во многих контекстах, начиная от видеоигр, заканчивая авиацией. Тренажеры включают в себя симуляторы полета для летчиков, с помощью которых ведется подготовка к пилотированию «воздушного корабля».

Робототехника: Роботы стали обычным явлением во многих отраслях промышленности, так как роботы оказались более эффективными, чем люди, особенно на повторяющихся рабочих местах, где люди имеют тенденцию терять концентрацию.

Финансы: Банки и другие финансовые учреждения полагаются на интеллектуальные программные обеспечения, которые обеспечивают точный анализ данных и помогает делать предсказания, основываясь на этих данных.

Медицина: Системы искусственного интеллекта используются в больницах, чтобы управлять расписанием больных, обеспечивать ротацию персонала, а также предоставлять медицинскую информацию. Искусственная нейронная сеть, которая представляет собой математическую модель, вдохновленной структурой и/или функциональными аспектами биологических нейронных сетей, помогает в медицине при определении диагноза.

Искусственный разум находит использование в различных областях и приложениях. Системы безопасности, системы распознавания текста и речи, интеллектуальный анализ данных, фильтрация электронной почты от спама и огромное количество других примеров. Британская телекоммуникационная группа применила эвристический поиск в приложении планирования, который составляет графики работы свыше двадцати тысяч инженеров. Применение ИИ также нашло место в сфере грузоперевозок, где нечеткие логические контроллеры были разработаны для автоматических коробок передач в автомобилях.

Проблемы, с которыми сталкиваются создатели искусственного интеллекта

За последние шесть десятилетий, ученые активно работают над имитацией интеллекта человека, но рост замедлился из-за многих проблем при моделировании искусственного разума. Некоторые из этих проблем являются:

База знаний: количество фактов, которые знает человек просто слишком много. Подготовка базы данных, которая будет содержать все знание этого мира является огромной трудоемкой задачей.

Вычет, рассуждения и решения проблем: ИИ должен шаг за шагом решать любую проблему. Как правило, люди решают проблемы на основе интуитивных суждений, а затем составляют план действий, программу. Искусственный интеллект делает медленный прогресс, чтобы имитировать человеческий метод решения проблем.

Обработка естественного языка: Естественный язык – это язык на котором говорят люди. Одной из основных проблем, с которыми сталкивается ИИ, это распознавание и понимание что говорят люди.

Планирование: Планирование, как правило, ограничивает только людей, потому что они могут думать. Умение планировать и думать, как человек, необходимо для интеллектуальных агентов. Как и люди, они должны иметь возможность визуализировать будущее.

Положительные стороны применения ИИ

Уже сейчас мы можем видеть небольшие применения искусственного разума в нашем доме. Например, смарт-телевизор, умный холодильник и т.д. В будущем в каждом доме будет присутствовать ИИ. Искусственный интеллект с нанотехнологиями или другими технологиями может привести к появлению новых отраслей в области науки. Наверняка, развитие искусственного интеллекта приведет к тому, что он станет частью нашей повседневной жизни. Уже сейчас происходит замена людей на роботов на некоторых рабочих местах. В военной отрасли искусственный разум позволит создавать различное современное вооружение, например роботов, которые сократят смертность при возникновении войн.

Отрицательные стороны применения ИИ

Несмотря на то, что искусственный интеллект, имеет множество преимуществ, существуют очень много недостатков.
На более базовом уровне, использование искусственного разума в повседневных задачах может привести к образованию лени со стороны человека, и это может привести к деградации основной массы народа.

Применение искусственного интеллекта и нанотехнологий в военной отрасли конечно имеет много положительных сторон, например создание идеального защитного щита от любых атак, но так же существует темная сторона. С помощью искусственного разума и нанотехнологий мы сможем создавать очень мощное и разрушительное оружие и при неосторожном использовании оно может привести к необратимым последствиям.

Массовое применение искусственного интеллекта приведет к сокращению рабочих мест для людей.

Кроме того, быстрые темпы развития и применения искусственного интеллекта и робототехники может подтолкнуть Землю к экологической катастрофе. Даже сейчас отходы компьютерных комплектующих и других электронных устройств оказывают огромный вред нашей планете.

Если мы дадим разум машинам, они смогут использовать его по максимуму. Машины с интеллектом станут умнее своих создателей и это может привести к исходу, который продемонстрирован в серии фильмах «Терминатор».

Заключение и будущее применение

Искусственный интеллект – область, в которой продолжаются множество исследований. Искусственный разум является отраслью компьютерной науки о понимании природы интеллекта и построения компьютерных систем, способных на разумные действия. Несмотря на то, что люди имеют интеллект, они не в состоянии использовать его в максимально возможной степени. Машины будут иметь возможность использовать 100% своего интеллекта, если мы дадим им этот разум. Это является преимуществом, а также недостатком. Мы зависимы от машин практически для любого применения в жизни. Машины теперь являются частью нашей жизни и используются везде. Таким образом, мы должны знать больше о машинах и должны быть осведомлены о будущем, что может случиться, если мы дадим им разум. Искусственный интеллект не может быть плохим или хорошим. Он меняется в пути использования его нами.

Согласно определению Д.А. Поспелова, "Система называется интеллектуальной, если в ней реализованы следующие основные функции:

  • накапливать знания об окружающем систему мире, классифицировать и оценивать их с точки зрения прагматической полезности и непротиворечивости, инициировать процессы получения новых знаний, осуществлять соотнесение новых знаний с ранее хранимыми;
  • пополнять поступившие знания с помощью логического вывода, отражающего закономерности в окружающем систему мире в накопленных ею ранее знаниях, получать обобщенные знания на основе более частных знаний и логически планировать свою деятельность;
  • общаться с человеком на языке, максимально приближенном к естественному человеческому языку;
  • получать информацию от каналов, аналогичных тем, которые использует человек при восприятии окружающего мира;
  • уметь формировать для себя или по просьбе человека (пользователя) объяснение собственной деятельности;
  • оказывать пользователю помощь за счет тех знаний, которые хранятся в памяти, и тех логических средств рассуждений, которые присущи системе".

Перечисленные функции можно назвать функциями представления и обработки знаний, рассуждения и общения. Наряду с обязательными компонентами, в зависимости от решаемых задач и области применения в конкретной системе, эти функции могут быть реализованы в различной степени, что определяет индивидуальность архитектуры. На рис. 2.1 в наиболее общем виде представлена структура интеллектуальной системы в виде совокупности блоков и связей между ними.

База знаний представляет собой совокупность сред, хранящих знания различных типов. Рассмотрим кратко их назначение.

База фактов (данных) хранит конкретные данные, а база правил - элементарные выражения, называемые в теории искусственного интеллекта продукциями .

База процедур содержит прикладные программы, с помощью которых выполняются все необходимые преобразования и вычисления.

База закономерностей включает различные сведения, относящиеся к особенностям той среды, в которой действует система.

База метазнаний (база знаний о себе) содержит описание самой системы и способов ее функционирования: сведения о том, как внутри системы представляются единицы информации различного типа, как взаимодействуют различные компоненты системы, как было получено решение задачи.

База целей содержит целевые структуры, называемые сценариями, позволяющие организовать процессы движения от исходных фактов, правил, процедур к достижению той цели, которая поступила в систему от пользователя либо была сформулирована самой системой в процессе ее деятельности в проблемной среде.

Управление всеми базами, входящими в базу знаний , и организацию их взаимодействия осуществляет система управления базами знаний . С ее же помощью реализуются связи баз знаний с внешней средой. Таким образом, машина базы знаний осуществляет первую функцию интеллектуальной системы.

Выполнение второй функции обеспечивает часть интеллектуальной системы, называемая решателем и состоящая из ряда блоков, которые управляются системой управления решателя . Часть из блоков реализует логический вывод .

Блок дедуктивного вывода осуществляет в решателе дедуктивные рассуждения, с помощью которых из закономерностей из базы знаний , фактов из базы фактов и правил из базы правил выводятся новые факты. Кроме этого, данный блок реализует эвристические процедуры поиска решений задач как поиск путей решения задачи по сценариям при заданной конечной цели.

Для реализации рассуждений, которые не носят дедуктивного характера, т. е. для поиска по аналогии, по прецеденту и т. д., используются блоки индуктивного и правдоподобного выводов .

Блок планирования применяется в задачах планирования решений совместно с блоком дедуктивного вывода .

Назначение блока функциональных преобразований состоит в решении задач расчетно-логического и алгоритмического типов.

Третья функция - функция общения - реализуется как с помощью компоненты естественно-языкового интерфейса, так и с помощью рецепторов и эффекторов, которые осуществляют так называемое невербальное общение и используются в интеллектуальных роботах.

2.2. Разновидности интеллектуальных систем

В зависимости от набора компонентов, реализующих рассмотренные функции, можно выделить следующие основные разновидности интеллектуальных систем:

  • интеллектуальные информационно-поисковые системы ;
  • экспертные системы (ЭС);
  • расчетно-логические системы ;
  • гибридные экспертные системы.

Интеллектуальные информационно-поисковые системы являются системами взаимодействия с проблемно-ориентированными (фактографическими) базами данных на естественном, точнее, ограниченном как грамматически, так и лексически (профессиональной лексикой) естественном языке (языке деловой прозы). Для них характерно использование (помимо базы знаний , реализующей семантическую модель представления знаний о проблемной области) лингвистического процессора.

Экспертные системы являются одним из бурно развивающихся классов интеллектуальных систем. Данные системы в первую очередь стали создаваться в математически слабоформализованных областях науки и техники, таких как медицина, геология, биология и другие. Для них характерна аккумуляция в системе знаний и правил рассуждений опытных специалистов в данной предметной области , а также наличие специальной системы объяснений.

Расчетно-логические системы позволяют решать управленческие и проектные задачи по их постановкам (описаниям) и исходным данным вне зависимости от сложности математических моделей этих задач. При этом конечному пользователю предоставляется возможность контролировать в режиме диалога все стадии вычислительного процесса. В общем случае по описанию проблемы на языке предметной области обеспечивается автоматическое построение математической модели и автоматический синтез рабочих программ при формулировке функциональных задач из данной предметной области . Эти свойства реализуются благодаря наличию базы знаний в виде функциональной семантической сети и компонентов дедуктивного вывода и планирования.

В последнее время в специальный класс выделяются гибридные экспертные системы . Указанные системы должны вобрать в себя лучшие черты как экспертных, так и расчетно-логических и информационно-поисковых систем. Разработки в области гибридных экспертных систем находятся на начальном этапе.

Наиболее значительные успехи в настоящее время достигнуты в таком классе интеллектуальных систем, как экспертные системы.

Важное место в теории искусственного интеллекта (ИИ) занимает проблема представления знаний. В настоящее время выделяют следующие основные типы моделей представления знаний:

  • семантические сети , в том числе функциональные;
  • фреймы и сети фреймов ;
  • продукционные модели .

Семантические сети определяют как граф общего вида, в котором можно выделить множество вершин и ребер. Каждая вершина графа представляет некоторое понятие, а дуга - отношение между парой понятий. Метка и направление дуги конкретизируют семантику. Метки вершин семантической нагрузки не несут, а используются как справочная информация .

Различные разновидности семантических сетей обладают различной семантической мощностью, следовательно, можно описать одну и ту же предметную область более компактно или громоздко.

Фреймом называют структуру данных для представления и описания стереотипных объектов, событий или ситуаций. Фреймовая модель представления знаний состоит из двух частей:

  • набора фреймов , составляющих библиотеку внутри представляемых знаний;
  • механизмов их преобразования, связывания и т. д. Существует два типа фреймов :
  • образец (прототип) - интенсиональное описание некоторого множества экземпляров;
  • экземпляр (пример) - экстенсиональное представление фрейм -образца.

В общем виде фрейм может быть представлен следующим кортежем:

<ИФ, (ИС, ЗС, ПП),..., (ИС, ЗС, ПП)>,

где ИФ - имя фрейма ; ИС - имя слота ; ЗС - значение слота ; ПП - имя присоединенной процедуры (необязательный параметр ).

Слоты - это некоторые незаполненные подструктуры фрейма , заполнение которых приводит к тому, что данный фрейм ставится в соответствие некоторой ситуации, явлению или объекту.

В качестве данных фрейм может содержать обращения к процедурам (так называемые присоединенные процедуры). Выделяют два вида процедур: процедуры-демоны и процедуры-слуги. Процедуры-демоны активизируются при каждой попытке добавления или удаления данных из

Развитие искусственного интеллекта — вопрос времени. Рано или поздно машины смогут на равных соревноваться с человеком в действиях, требующих мыслительных процессов. Недавно профессор математики из Оксфордского университета Маркус дю Сотой предположил, что технологии, обладающие сознанием, могут быть приравнены к людям и с юридической точки зрения.


Искусственный интеллект подался в писатели

Компьютерное "самосознание"

По мнению многих ученых, рано или поздно технологии получат возможность самостоятельно развивать свой интеллект. Этот процесс называется "технологической сингулярностью". "В какой-то момент мы сможем сказать, что эта вещь имеет осознание самой себя, и, возможно, это и будет той гранью, за которой это сознание возникает", — считает дю Сотой.

Но как определить, обладает ли машина "самосознанием"? В настоящее время для определения уровня искусственного интеллекта используется "тест Тьюринга". Суть его состоит в том, что эксперт оценивает беседу человека и машины на те или иные темы. При этом он заранее не знает, кто из этих двоих — компьютерная программа, а кто — оператор-человек… Если эксперт затрудняется сказать, кто из них кто, то тест считается пройденным.

По словам американского изобретателя и футуролога Рея Курцвейла, к 2029 году появятся машины, которые смогут пройти тест Тьюринга, а к 2040-м годам искусственный интеллект в миллиард раз превзойдет человеческий…

В последнего поколения используются структуры, имитирующие нейронную активность головного мозга. Таким образом, процесс сканирования способен выявить наличие сознания. Как? Ну, к примеру, у человека нейроны в сознательном и бессознательном (скажем, спящем) состоянии работают по-разному. Если компьютерный мозг будет реагировать как мозг человека в сознании, то, значит, оно есть!

Три вида искусственного интеллекта

А что, собственно, следует понимать под словосочетанием " "? Он, по мнению экспертов, может быть трех видов.

Первый вид — узконаправленный, способный выполнять только ряд определенных функций. Это, например, электронные ассистенты, роботы — парковщики автомобилей или программы, играющие в шахматы.

Второй вид — общий ИИ. Он наиболее близок к человеческому. Это в первую очередь человекоподобные , которые максимально похожи на нас. Они могут играть роль портье в гостиницах, консультантов в магазинах, спасателей… Их научат имитировать человеческие эмоции, чтобы сделать взаимодействие с человеком более конструктивным.

Третья разновидность — сверхинтеллект. Это как раз то самое, чего боятся некоторые футурологи и писатели-фантасты… Возможности такого интеллекта будут намного превосходить человеческие. Скорее всего, такие "высокоинтеллектуальные" устройства со временем объединятся в мощнейшую сеть наподобие Skynet из "Терминатора"…

Нет Skynet!

Для начала давайте представим себе, что компьютеры стали способны осознавать себя как "личности". Допустим, они будут "понимать", когда им причиняют вред. Ну, предположим, не проводят вовремя чистку или стучат кулаком по корпусу в случае зависания… Или просто перегружают процессор и память работой…

Если существует понятие "жестокое обращение с животными", то почему бы не существовать и понятию "жестокое обращение с компьютерами"? При этом не забудьте, что искусственный интеллект, вероятно, куда умнее любого животного. А раз так, то необходимо будет предоставить электронным системам возможность защищать свои права!

"У компьютеров с искусственным интеллектом очень скоро может появиться свой собственный кодекс "прав", которые могут позволить им подать на вас в суд за пренебрежительное отношение к ним", — предрекает дю Сотой.

Впрочем, может, не все так уж страшно? В ходе недавней конференции Code 2016 предприниматель Элон Маск, в прошлом году основавший некоммерческую организацию Open AI, цель деятельности которой — создание и развитие дружественного искусственного интеллекта, объявил, что в будущем люди и высокие технологии должны научиться тесно взаимодействовать между собой. В частности, человек будущего сможет подключать к собственному мозгу виртуальный аватар, интегрированный в специальную сеть.

Действия аватаров будут контролироваться интеллектуальными программами, которые не позволят им нанести ущерба кому-либо или чему-либо. "Развитие технологий, связанных с искусственным разумом, не должно пугать, — сказал Маск, — его наличие и эволюция необязательно означают, что в будущем все мы обязательно получим подобие Skynet".